PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

Size: px
Start display at page:

Download "PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z"

Transcription

1 PERIODS OF FIBONACCI SEQUENCES MODULO m ARUDRA BURRA Abstract. We show that the Fiboacci sequece modulo m eriodic for all m, ad study the eriod i terms of the modulus.. Prelimiaries Defiitio. A geeralized Fiboacci sequece is a ifiite comlex sequece (g ) Z which satisfies the recurrece g = g + g for all. The Fiboacci sequece is the geeralized Fiboacci sequece (F ) for which F 0 =0ad F =. If (g ) is ay geeralized Fiboacci sequece, ad m Z, the we ca costruct a ew sequece (g (m) ) such that for each, g (m) is the remaider of g whe divided by m. The sequece (F (m) ) is called the sequece of Fiboacci umbers modulo m. Lemma. If (g ) is a geeralized Fiboacci sequece i Z, g (m) is a geeralized Fiboacci sequece i Z/(m). Proof. The roof follows from the fact that the caoical rig homomorhism from Z to Z/(m) seds ay g Z to its remaider whe divided by m, which is g (m). Defiitio. If (a ) Z is a ifiite comlex sequece, we defie the eriod of (a ) to be the least umber such that (a + )=(a ). We rovide the followig lemma without roof. Lemma. For ay eriodic sequece (a ), a + = a for all if ad oly if the eriod of (a ) divides. Theorem. The sequece (F (m) ) is eriodic for all m. The eriod of this sequece is if ad oly if is the least umber such that F (m) =0ad F (m) + =. Proof. Recall that geeralized Fiboacci sequeces which agree o cosecutive values are idetical: i other words, if (g ) ad (h ) are geeralized Fiboacci sequeces, ad g = h, g + = h + for some, the (g )=(h ). We claim (without roof) that Lemma shows that this is also true for geeralized Fiboacci sequeces modulo m. ( Now for ) ay m, F (m) ca oly tae fiitely may values, ad hece the air F (m),f (m) + ca oly tae fiitely may values. Hece oe of these airs must reeat; i.e., F (m) 0 = F (m) (m) 0+ ad F = F (m) 0+ for some 0++ 0,. Thus F (m) = F (m) +, for all, so F (m) is eriodic. We deote its eriod by P (m). Date: May 000.

2 ARUDRA BURRA Now suose is the least umber such that F (m) =0=F (m) 0 ad F (m) + == F (m). The the sequeces F (m) ad F (m) + agree o cosecutive values, ad hece are idetical. Suose P (m) =j for some j<(by Lemma,j, soj ). The, i articular, F (m) j = F (m) 0 = 0 ad F (m) j+ = F (m) =, which cotradicts the choice of as the least umber for which this was ossible. Hece = P (m). Coversely, suose P (m) =. The F (m) = F (m) 0 = 0 ad F (m) + = F (m) =. If this also holds for some j<, the it follows from we have just roved that j = P (m), which is a cotradictio. Hece must be the least umber for which F (m) = 0 ad F (m) + =. The followig corollary is a easy cosequece of Lemma ad Theorem : Corollary. For ay m, F 0 (mod m) ad F + (mod m) if ad oly if P (m).. Periods of F (m) for rime moduli Theorem. Let > be rime. If ± (mod ), the P (). If ± (mod ) the P () +. We will require the followig lemma: Lemma 3. F = [ Proof. By the Biet formula for F, ( ( mod ) ) +(mod) [( F = + ) ( ) ] [ + = ( + + +( ) + +( ) )] = [ ( ) ] (mod) 3 +( mod ) ] Theorem follows from the followig fact, which we rove usig Lemma 3 ad some elemetary results i umber theory. If is rime, recall that (the Legedre symbol) is whe a is a quadratic residue modulo, ad whe it is ot. Theorem 3. If > is rime, the () F (mod ) a () F ( 0 (mod ) )

3 PERIODS OF FIBONACCI SEQUENCES MODULO m 3 Proofof. Sice >is rime, it must be odd, hece +(mod ) = +. Lemma 3 gives us the followig exressio for F : F = [ ] Now observe that (mod ) by Fermat s Little Theorem, ad divides the biomial coefficiets (,..., ).Sowehave F ] [ (mod ). (mod ). By Euler s criterio for quadratic residues, (mod ). Hece F (mod ). Proofof. Suose = ; i.e., is a quadratic residue modulo. The a (mod ) for some a. Notice that the exasio of F i 3 does ot have ay terms cotaiig. Thus we may substitute a for i the Biet formula for F,to get ( F + ) ( ) (mod ) [ ( + a) a ( a) ] (mod ). Alyig Fermat s Little Theorem, we see that (+a) ( a) (mod ), so F ( ) F 0 (mod ). Now suose =. Sice is odd, + is eve, ad we ca use Lemma 3 to write F + = [ ] Now ote that ( + = + ) ( = + (mod ), ad divides each of + ) ( 3,..., + So F + [ ] + (mod ). By Euler s criterio, =, so F ( ) F + 0 (mod ). We ow rove Theorem. Proof. Suose ± (mod ). Sice ad are quadratic residues modulo, ( ) =. By quadratic recirocity (sice is of the form 4+), = =. By Theorem 3, F 0 (mod ), ad F (mod ). By Corollary, P (). Now suose ± (mod ). The is a quadratic o-residue mod, so is a quadratic o-residue mod. Hece =. By Theorem 3, F (mod ) ad F + 0 (mod ). Now F = F L for all, sof + = F (+) = F + L +. Sice F + 0 (mod ), F + 0 L + 0 (mod ). Furthermore, F +3 = F (+)+(+) = F + F + + F + F +. Sice F + 0 (mod ), it follows ).

4 4 ARUDRA BURRA that F +3 F + F + (mod ). By the Fiboacci recurrece, F + = F + F +, so F + (mod ). Thus F +3 ( ) (mod ). By Corollary, P () +. Fially, for the cases = ad = we may verify by calculatio that the eriod of (F () ) is 3, ad the eriod of (F () )is0. 3. Periods of F (m) for owers of rime moduli Theorem 4. Let > be rime. For ay r, P ( r ) P () r. We will require the followig lemma: Lemma 4. For m>, P (m) is eve. Proof. Let = P (m), ad suose is odd. Recall that F F F + =( ) for ay. I articular for =, we have F F F + =, ad hece F F F + (mod m). By Corollary, F 0 (mod m) ad F F + (mod m). Thus F F F + (mod m). Hece (mod m), which is ot ossible for m>. Proof of Theorem 4. We roceed by iductio. First cosider the case r =, ad let = P (). Recall the followig idetity, which holds whe m is odd: (3) F m F = L (m ) +( ) L (m 3) + L (m ) + +( ) m 3 L +( ) m Sice is a rime, >, is odd; by Lemma 4, = P () is eve. Substitutig ad for m ad resectively i 3, we get (4) F F = L ( ) + L ( 3) + + L + Now L ( i) = F ( i) + F ( i)+ for ay i. Sice = P (), F ( i) F (mod ) ad F ( i)+ F (mod ). Now F = F =,sol ( i) (mod ) for i =, 3,...,. There are such terms i 4. Thus F F + 0 (mod ). Hece F F,soF F. But = P (), so F 0 (mod ); i.e., F.Thus F ; i.e., F 0 (mod ). We ow show that F + (mod ). Sice = P () is eve, F F F + =( ) =. Sice F 0 (mod ), F F + (mod ). But F F + (mod ) by the Fiboacci recurrece, so F+ (mod ), therefore (F + ) (F + + ). There are three ossibilities:. F + ad F + +. F F + Suose is the case. The (F + +) (F + ) =, which is ot ossible sice >. Now cosider case. If F + + the F + +; i.e., F + (mod ). But by Corollary, F + (mod ) sice = P (). This is a cotradictio sice (mod ) caot hold for >. This leaves oly the ossibility that F +. Therefore F + (mod ). We have show that F 0 (mod ) ad F + (mod ). From Corollary it follows that P ( ) P ().

5 PERIODS OF FIBONACCI SEQUENCES MODULO m The argumet used to show that F r 0 (mod r ) for r = geeralizes immediately for arbitrary r, sice it deeds oly o the (uchaged) facts that is eve ad r is odd. Similarly, the roof that F r + (mod r ) for r = ca be alied to the case of arbitrary r, which allows us to comlete the iductio ste. 4. Periods of F (m) for roducts of relatively rime moduli We coclude with the followig theorem, which relates the eriod of (F (q) the eriods of (F () ) ad (F (q) ) whe (, q) =. Theorem. Let (, q) =. The P (q) = lcm(p (),P(q)). Proof. Let = P (q). By Corollary, F 0 (mod q) ad F + (mod q), so q F, ad q F +. Hece F ad F + ; i.e., F 0 (mod ) ad F + (mod ). By Corollary, P (). Similarly, P (q). Hece lcm(p (),P(q)) P (q). Coversely, let a = P (), b = P (q). Sice lcm(a, b) is a multile of both a ad b, F lcm(a,b) 0 (mod ) ad F lcm(a,b) 0 (mod q). Sice (, q) =, by the Chiese Remaider Theorem, F lcm(a,b) 0 (mod q). Similarly, F lcm(a,b)+ (mod q). So lcm(a, b); i.e. P (q) lcm(p (),P(q)). Hece P (q) = lcm(p (),P(q)).. Periods of Geeralized Fiboacci Sequeces modulo m ( Theorem ) 6. Let (g ) be ay geeralized Fiboacci sequece i Z. For ay m, g (m) is eriodic. If P g (m) deotes the eriod of this sequece modulo m, the P g (m) P (m). Proof. Recall that {(F ), (F + )} is a basis for the sace of geeralized Fiboacci sequeces over Z. Hece ay geeralized Fiboacci sequece (g ) ca be exressed as a liear combiatio of these two sequeces. Let g = af + bf + for some a ad b. Substitutig 0 ad for F 0 ad F,wehaveg 0 = b ad g = a + b, whece get a = g g 0 ad b = g 0.Thusg =(g g 0 )F + g 0 F + for all. If = P (m), g (m) + =(g(m) g (m) 0 )F (m) + + g(m) 0 F (m) ++ =(g(m) g (m) 0 )F (m) + g (m) 0 F (m) + = g(m) for ay (these calculatios are licesed by the caoical rig homomorhism metioed i Lemma ). Hece (g ) is eriodic, ad, by Lemma, P g (m) P (m) for ay m. Theorem 7. Let (g ) be ay geeralized Fiboacci sequece i Z, ad let be g0 g rime. If ( g g ) is ivertible i Z/() the P g () =P (). Proof. We claim that F = g0g+ gg. To verify this, we eed to chec oly the g0 +g0g g cases = 0 ad =. For = 0, the umerator is g 0 g g g 0 =0=F 0. For =, the umerator is g 0 g g = g 0 (g 0 + g ) g = g0 + g 0 g g which is equal g0 g to the deomiator, so the fractio evaluates to = F. If ( g g ) is ivertible i g0 g Z/(), the ) ca be exressed as a liear combiatio of (g () claim that P () P g () P g () =P (). )to g g = g0 +g 0 g g ad hece (F () ) ad (g () + ), ad we ca aly the argumet of Theorem 6 to. Combiig this with the result of Theorem 6, we see that

PROBLEM SET 5 SOLUTIONS. Solution. We prove that the given congruence equation has no solutions. Suppose for contradiction that. (x 2) 2 1 (mod 7).

PROBLEM SET 5 SOLUTIONS. Solution. We prove that the given congruence equation has no solutions. Suppose for contradiction that. (x 2) 2 1 (mod 7). PROBLEM SET 5 SOLUTIONS 1 Fid every iteger solutio to x 17x 5 0 mod 45 Solutio We rove that the give cogruece equatio has o solutios Suose for cotradictio that the equatio x 17x 5 0 mod 45 has a solutio

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.78 Solutios to Problem Set 7. If the umber is i S, we re doe sice it s relatively rime to everythig. So suose S. Break u the remaiig elemets ito airs {, }, {4, 5},..., {, + }. By the Pigeohole Pricile,

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Crytograhy ad Comuter Security Notes 16 (rev. 1 Professor M. J. Fischer November 3, 2008 68 Legedre Symbol Lecture Notes 16 ( Let be a odd rime,

More information

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x]

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x] [ 47 ] Number System 1. Itroductio Pricile : Let { T ( ) : N} be a set of statemets, oe for each atural umber. If (i), T ( a ) is true for some a N ad (ii) T ( k ) is true imlies T ( k 1) is true for all

More information

MATH 304: MIDTERM EXAM SOLUTIONS

MATH 304: MIDTERM EXAM SOLUTIONS MATH 304: MIDTERM EXAM SOLUTIONS [The problems are each worth five poits, except for problem 8, which is worth 8 poits. Thus there are 43 possible poits.] 1. Use the Euclidea algorithm to fid the greatest

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS KEENAN MONKS Abstract The Legedre Family of ellitic curves has the remarkable roerty that both its eriods ad its suersigular locus have descritios

More information

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can.

Final Solutions. 1. (25pts) Define the following terms. Be as precise as you can. Mathematics H104 A. Ogus Fall, 004 Fial Solutios 1. (5ts) Defie the followig terms. Be as recise as you ca. (a) (3ts) A ucoutable set. A ucoutable set is a set which ca ot be ut ito bijectio with a fiite

More information

Proposition 2.1. There are an infinite number of primes of the form p = 4n 1. Proof. Suppose there are only a finite number of such primes, say

Proposition 2.1. There are an infinite number of primes of the form p = 4n 1. Proof. Suppose there are only a finite number of such primes, say Chater 2 Euclid s Theorem Theorem 2.. There are a ifiity of rimes. This is sometimes called Euclid s Secod Theorem, what we have called Euclid s Lemma beig kow as Euclid s First Theorem. Proof. Suose to

More information

The structure of finite rings. The multiplicative residues. Modular exponentiation. and finite exponentiation

The structure of finite rings. The multiplicative residues. Modular exponentiation. and finite exponentiation The structure of fiite rigs ad fiite expoetiatio The multiplicative residues We have see that the fiite rig Z p is a field, that is, every o-zero elemet of Z p has a multiplicative iverse It is a covetio

More information

Math 140A Elementary Analysis Homework Questions 1

Math 140A Elementary Analysis Homework Questions 1 Math 14A Elemetary Aalysis Homewor Questios 1 1 Itroductio 1.1 The Set N of Natural Numbers 1 Prove that 1 2 2 2 2 1 ( 1(2 1 for all atural umbers. 2 Prove that 3 11 (8 5 4 2 for all N. 4 (a Guess a formula

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

VIETA-LIKE PRODUCTS OF NESTED RADICALS

VIETA-LIKE PRODUCTS OF NESTED RADICALS VIETA-IKE PRODUCTS OF ESTED RADICAS Thomas J. Osler athematics Deartmet Rowa Uiversity Glassboro, J 0808 Osler@rowa.edu Itroductio The beautiful ifiite roduct of radicals () π due to Vieta [] i 9, is oe

More information

Homework 9. (n + 1)! = 1 1

Homework 9. (n + 1)! = 1 1 . Chapter : Questio 8 If N, the Homewor 9 Proof. We will prove this by usig iductio o. 2! + 2 3! + 3 4! + + +! +!. Base step: Whe the left had side is. Whe the right had side is 2! 2 +! 2 which proves

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

Math 609/597: Cryptography 1

Math 609/597: Cryptography 1 Math 609/597: Cryptography 1 The Solovay-Strasse Primality Test 12 October, 1993 Burt Roseberg Revised: 6 October, 2000 1 Itroductio We describe the Solovay-Strasse primality test. There is quite a bit

More information

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime.

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime. MATH 324 Summer 200 Elemetary Number Theory Solutios to Assigmet 2 Due: Wedesday July 2, 200 Questio [p 74 #6] Show that o iteger of the form 3 + is a prime, other tha 2 = 3 + Solutio: If 3 + is a prime,

More information

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006 MATH 34 Summer 006 Elemetary Number Theory Solutios to Assigmet Due: Thursday July 7, 006 Departmet of Mathematical ad Statistical Scieces Uiversity of Alberta Questio [p 74 #6] Show that o iteger of the

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

SOLVED EXAMPLES

SOLVED EXAMPLES Prelimiaries Chapter PELIMINAIES Cocept of Divisibility: A o-zero iteger t is said to be a divisor of a iteger s if there is a iteger u such that s tu I this case we write t s (i) 6 as ca be writte as

More information

Roger Apéry's proof that zeta(3) is irrational

Roger Apéry's proof that zeta(3) is irrational Cliff Bott cliffbott@hotmail.com 11 October 2011 Roger Apéry's proof that zeta(3) is irratioal Roger Apéry developed a method for searchig for cotiued fractio represetatios of umbers that have a form such

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Hoggatt and King [lo] defined a complete sequence of natural numbers

Hoggatt and King [lo] defined a complete sequence of natural numbers REPRESENTATIONS OF N AS A SUM OF DISTINCT ELEMENTS FROM SPECIAL SEQUENCES DAVID A. KLARNER, Uiversity of Alberta, Edmoto, Caada 1. INTRODUCTION Let a, I deote a sequece of atural umbers which satisfies

More information

Bertrand s Postulate. Theorem (Bertrand s Postulate): For every positive integer n, there is a prime p satisfying n < p 2n.

Bertrand s Postulate. Theorem (Bertrand s Postulate): For every positive integer n, there is a prime p satisfying n < p 2n. Bertrad s Postulate Our goal is to prove the followig Theorem Bertrad s Postulate: For every positive iteger, there is a prime p satisfyig < p We remark that Bertrad s Postulate is true by ispectio for,,

More information

Sketch of Dirichlet s Theorem on Arithmetic Progressions

Sketch of Dirichlet s Theorem on Arithmetic Progressions Itroductio ad Defiitios Sketch of o Arithmetic Progressios Tom Cuchta 24 February 2012 / Aalysis Semiar, Missouri S&T Outlie Itroductio ad Defiitios 1 Itroductio ad Defiitios 2 3 Itroductio ad Defiitios

More information

Math 104: Homework 2 solutions

Math 104: Homework 2 solutions Math 04: Homework solutios. A (0, ): Sice this is a ope iterval, the miimum is udefied, ad sice the set is ot bouded above, the maximum is also udefied. if A 0 ad sup A. B { m + : m, N}: This set does

More information

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

Homework 3. = k 1. Let S be a set of n elements, and let a, b, c be distinct elements of S. The number of k-subsets of S is

Homework 3. = k 1. Let S be a set of n elements, and let a, b, c be distinct elements of S. The number of k-subsets of S is Homewor 3 Chapter 5 pp53: 3 40 45 Chapter 6 p85: 4 6 4 30 Use combiatorial reasoig to prove the idetity 3 3 Proof Let S be a set of elemets ad let a b c be distict elemets of S The umber of -subsets of

More information

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #4 CORRECTION Algebra I 1 4 / 1 0 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O P r o f e s s o r : D r o r B a r - N a t a Correctio Homework Assigmet

More information

Solutions to Problem Sheet 1

Solutions to Problem Sheet 1 Solutios to Problem Sheet ) Use Theorem. to rove that loglog for all real 3. This is a versio of Theorem. with the iteger N relaced by the real. Hit Give 3 let N = [], the largest iteger. The, imortatly,

More information

Chapter 2. Finite Fields (Chapter 3 in the text)

Chapter 2. Finite Fields (Chapter 3 in the text) Chater 2. Fiite Fields (Chater 3 i the tet 1. Grou Structures 2. Costructios of Fiite Fields GF(2 ad GF( 3. Basic Theory of Fiite Fields 4. The Miimal Polyomials 5. Trace Fuctios 6. Subfields 1. Grou Structures

More information

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger. Homewor 1 Solutios Math 171, Sprig 2010 Hery Adams The exercises are from Foudatios of Mathematical Aalysis by Richard Johsobaugh ad W.E. Pfaffeberger. 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

LECTURE NOTES, 11/10/04

LECTURE NOTES, 11/10/04 18.700 LECTURE NOTES, 11/10/04 Cotets 1. Direct sum decompositios 1 2. Geeralized eigespaces 3 3. The Chiese remaider theorem 5 4. Liear idepedece of geeralized eigespaces 8 1. Direct sum decompositios

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0 GENERATING FUNCTIONS Give a ifiite sequece a 0,a,a,, its ordiary geeratig fuctio is A : a Geeratig fuctios are ofte useful for fidig a closed forula for the eleets of a sequece, fidig a recurrece forula,

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

3.1. Introduction Assumptions.

3.1. Introduction Assumptions. Sectio 3. Proofs 3.1. Itroductio. A roof is a carefully reasoed argumet which establishes that a give statemet is true. Logic is a tool for the aalysis of roofs. Each statemet withi a roof is a assumtio,

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

A Note on Bilharz s Example Regarding Nonexistence of Natural Density

A Note on Bilharz s Example Regarding Nonexistence of Natural Density Iteratioal Mathematical Forum, Vol. 7, 0, o. 38, 877-884 A Note o Bilharz s Examle Regardig Noexistece of Natural Desity Cherg-tiao Perg Deartmet of Mathematics Norfolk State Uiversity 700 Park Aveue,

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4.

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4. 11. FINITE FIELDS 11.1. A Field With 4 Elemets Probably the oly fiite fields which you ll kow about at this stage are the fields of itegers modulo a prime p, deoted by Z p. But there are others. Now although

More information

Notes on the prime number theorem

Notes on the prime number theorem Notes o the rime umber theorem Keji Kozai May 2, 24 Statemet We begi with a defiitio. Defiitio.. We say that f(x) ad g(x) are asymtotic as x, writte f g, if lim x f(x) g(x) =. The rime umber theorem tells

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS NORBERT KAIBLINGER Abstract. Results of Lid o Lehmer s problem iclude the value of the Lehmer costat of the fiite cyclic group Z/Z, for 5 ad all odd. By complemetary

More information

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS Joural of Algebra, Number Theory: Advaces ad Applicatios Volume, Number, 00, Pages 7-89 ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS OLCAY KARAATLI ad REFİK KESKİN Departmet

More information

Math 2112 Solutions Assignment 5

Math 2112 Solutions Assignment 5 Math 2112 Solutios Assigmet 5 5.1.1 Idicate which of the followig relatioships are true ad which are false: a. Z Q b. R Q c. Q Z d. Z Z Z e. Q R Q f. Q Z Q g. Z R Z h. Z Q Z a. True. Every positive iteger

More information

(II.G) PRIME POWER MODULI AND POWER RESIDUES

(II.G) PRIME POWER MODULI AND POWER RESIDUES II.G PRIME POWER MODULI AND POWER RESIDUES I II.C, we used the Chiese Remider Theorem to reduce cogrueces modulo m r i i to cogrueces modulo r i i. For exmles d roblems, we stuck with r i 1 becuse we hd

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

Classification of DT signals

Classification of DT signals Comlex exoetial A discrete time sigal may be comlex valued I digital commuicatios comlex sigals arise aturally A comlex sigal may be rereseted i two forms: jarg { z( ) } { } z ( ) = Re { z ( )} + jim {

More information

NAME: ALGEBRA 350 BLOCK 7. Simplifying Radicals Packet PART 1: ROOTS

NAME: ALGEBRA 350 BLOCK 7. Simplifying Radicals Packet PART 1: ROOTS NAME: ALGEBRA 50 BLOCK 7 DATE: Simplifyig Radicals Packet PART 1: ROOTS READ: A square root of a umber b is a solutio of the equatio x = b. Every positive umber b has two square roots, deoted b ad b or

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

3 Gauss map and continued fractions

3 Gauss map and continued fractions ICTP, Trieste, July 08 Gauss map ad cotiued fractios I this lecture we will itroduce the Gauss map, which is very importat for its coectio with cotiued fractios i umber theory. The Gauss map G : [0, ]

More information

ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED TO THE SPACES l p AND l I. M. Mursaleen and Abdullah K. Noman

ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED TO THE SPACES l p AND l I. M. Mursaleen and Abdullah K. Noman Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: htt://www.mf.i.ac.rs/filomat Filomat 25:2 20, 33 5 DOI: 0.2298/FIL02033M ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE RELATED

More information

Almost all hyperharmonic numbers are not integers

Almost all hyperharmonic numbers are not integers Joural of Number Theory 7 (207) 495 526 Cotets lists available at ScieceDirect Joural of Number Theory www.elsevier.com/locate/jt Almost all hyerharmoic umbers are ot itegers Haydar Göral a, Doğa Ca Sertbaş

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all commuicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, WITS

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

Exam 2 CMSC 203 Fall 2009 Name SOLUTION KEY Show All Work! 1. (16 points) Circle T if the corresponding statement is True or F if it is False.

Exam 2 CMSC 203 Fall 2009 Name SOLUTION KEY Show All Work! 1. (16 points) Circle T if the corresponding statement is True or F if it is False. 1 (1 poits) Circle T if the correspodig statemet is True or F if it is False T F For ay positive iteger,, GCD(, 1) = 1 T F Every positive iteger is either prime or composite T F If a b mod p, the (a/p)

More information

(2) F j+2 = F J+1 + F., F ^ = 0, F Q = 1 (j = -1, 0, 1, 2, ). Editorial notes This is not our standard Fibonacci sequence.

(2) F j+2 = F J+1 + F., F ^ = 0, F Q = 1 (j = -1, 0, 1, 2, ). Editorial notes This is not our standard Fibonacci sequence. ON THE LENGTH OF THE EUCLIDEAN ALGORITHM E. P. IV1ERKES ad DAVSD MEYERS Uiversity of Ciciati, Ciciati, Ohio Throughout this article let a ad b be itegers, a > b >. The Euclidea algorithm geerates fiite

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

Modern Algebra 1 Section 1 Assignment 1. Solution: We have to show that if you knock down any one domino, then it knocks down the one behind it.

Modern Algebra 1 Section 1 Assignment 1. Solution: We have to show that if you knock down any one domino, then it knocks down the one behind it. Moder Algebra 1 Sectio 1 Assigmet 1 JOHN PERRY Eercise 1 (pg 11 Warm-up c) Suppose we have a ifiite row of domioes, set up o ed What sort of iductio argumet would covice us that ocig dow the first domio

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

+ au n+1 + bu n = 0.)

+ au n+1 + bu n = 0.) Lecture 6 Recurreces - kth order: u +k + a u +k +... a k u k 0 where a... a k are give costats, u 0... u k are startig coditios. (Simple case: u + au + + bu 0.) How to solve explicitly - first, write characteristic

More information

Week 5-6: The Binomial Coefficients

Week 5-6: The Binomial Coefficients Wee 5-6: The Biomial Coefficiets March 6, 2018 1 Pascal Formula Theorem 11 (Pascal s Formula For itegers ad such that 1, ( ( ( 1 1 + 1 The umbers ( 2 ( 1 2 ( 2 are triagle umbers, that is, The petago umbers

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Limit superior and limit inferior c Prof. Philip Pennance 1 -Draft: April 17, 2017

Limit superior and limit inferior c Prof. Philip Pennance 1 -Draft: April 17, 2017 Limit erior ad limit iferior c Prof. Philip Peace -Draft: April 7, 207. Defiitio. The limit erior of a sequece a is the exteded real umber defied by lim a = lim a k k Similarly, the limit iferior of a

More information

USA Mathematical Talent Search Round 3 Solutions Year 27 Academic Year

USA Mathematical Talent Search Round 3 Solutions Year 27 Academic Year /3/27. Fill i each space of the grid with either a or a so that all sixtee strigs of four cosecutive umbers across ad dow are distict. You do ot eed to prove that your aswer is the oly oe possible; you

More information

Math 4400/6400 Homework #7 solutions

Math 4400/6400 Homework #7 solutions MATH 4400 problems. Math 4400/6400 Homewor #7 solutios 1. Let p be a prime umber. Show that the order of 1 + p modulo p 2 is exactly p. Hit: Expad (1 + p) p by the biomial theorem, ad recall from MATH

More information

Solutions to Problem Set 8

Solutions to Problem Set 8 8.78 Solutios to Problem Set 8. We ow that ( ) ( + x) x. Now we plug i x, ω, ω ad add the three equatios. If 3 the we ll get a cotributio of + ω + ω + ω + ω 0, whereas if 3 we ll get a cotributio of +

More information

Continued Fractions and Pell s Equation

Continued Fractions and Pell s Equation Max Lah Joatha Spiegel May, 06 Abstract Cotiued fractios provide a useful, ad arguably more atural, way to uderstad ad represet real umbers as a alterative to decimal expasios I this paper, we eumerate

More information

INSTRUCTOR S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard Kenneth H. Rosen AT&T Labs AND ITS APPLICATIONS FIFTH EDITION.

INSTRUCTOR S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard Kenneth H. Rosen AT&T Labs AND ITS APPLICATIONS FIFTH EDITION. INSTRUCTOR S SOLUTIONS MANUAL to accomay ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS FIFTH EDITION Bart Goddard Keeth H. Rose AT&T Labs This work is rotected by Uited States coyright laws ad is rovided

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION

PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION DANIEL LITT Abstract. This aer is a exository accout of some (very elemetary) argumets o sums of rime recirocals; though the statemets i Proositios

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers Abstract Some elemetary observatios o Narayaa polyomials ad related topics II: -Narayaa polyomials Joha Cigler Faultät für Mathemati Uiversität Wie ohacigler@uivieacat We show that Catala umbers cetral

More information

Combinatorially Thinking

Combinatorially Thinking Combiatorially Thiig SIMUW 2008: July 4 25 Jeifer J Qui jjqui@uwashigtoedu Philosophy We wat to costruct our mathematical uderstadig To this ed, our goal is to situate our problems i cocrete coutig cotexts

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

MATH 3240Q Introduction to Number Theory Homework 7

MATH 3240Q Introduction to Number Theory Homework 7 As long as algebra and geometry have been searated, their rogress have been slow and their uses limited; but when these two sciences have been united, they have lent each mutual forces, and have marched

More information

PUTNAM TRAINING PROBABILITY

PUTNAM TRAINING PROBABILITY PUTNAM TRAINING PROBABILITY (Last udated: December, 207) Remark. This is a list of exercises o robability. Miguel A. Lerma Exercises. Prove that the umber of subsets of {, 2,..., } with odd cardiality

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

Homework 4. x n x X = f(x n x) +

Homework 4. x n x X = f(x n x) + Homework 4 1. Let X ad Y be ormed spaces, T B(X, Y ) ad {x } a sequece i X. If x x weakly, show that T x T x weakly. Solutio: We eed to show that g(t x) g(t x) g Y. It suffices to do this whe g Y = 1.

More information

1. INTRODUCTION. P r e s e n t e d h e r e is a generalization of Fibonacci numbers which is intimately connected with the arithmetic triangle.

1. INTRODUCTION. P r e s e n t e d h e r e is a generalization of Fibonacci numbers which is intimately connected with the arithmetic triangle. A GENERALIZATION OF FIBONACCI NUMBERS V.C. HARRIS ad CAROLYN C. STYLES Sa Diego State College ad Sa Diego Mesa College, Sa Diego, Califoria 1. INTRODUCTION P r e s e t e d h e r e is a geeralizatio of

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra Proof of Fermat s Last Theorem by Algebra Idetities ad Liear Algebra Javad Babaee Ragai Youg Researchers ad Elite Club, Qaemshahr Brach, Islamic Azad Uiversity, Qaemshahr, Ira Departmet of Civil Egieerig,

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS LECTURE 4 SERIES WITH NONNEGATIVE TERMS II). SERIES WITH ARBITRARY TERMS Series with oegative terms II) Theorem 4.1 Kummer s Test) Let x be a series with positive terms. 1 If c ) N i 0, + ), r > 0 ad 0

More information

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS Proc. Amer. Math. Soc. 139(2011, o. 5, 1569 1577. BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS Zhi-Wei Su* ad Wei Zhag Departmet of Mathematics, Naig Uiversity Naig 210093, People s Republic of

More information

Commutativity in Permutation Groups

Commutativity in Permutation Groups Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are

More information

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS H. W. Gould Departmet of Mathematics, West Virgiia Uiversity, Morgatow, WV

More information