Interaction of Incompressible Fluid and Moving Bodies

Size: px
Start display at page:

Download "Interaction of Incompressible Fluid and Moving Bodies"

Transcription

1 WDS'06 Proceedings of Contributed Papers, Part I, 53 58, ISBN MATFYZPRESS Interaction of Incompressible Fluid and Moving Bodies M. Růžička Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. The subject of this article is the numerical simulation of the interaction of two-dimensional incompressible viscous fluid and a vibrating airfoil. A solid airfoil with two degrees of freedom, which can rotate around the elastic axis and oscillate in the vertical direction, is considered. The numerical simulation consists of the finite element solution of the Navier-Stokes equations coupled with a system of ordinary differential equations describing the airfoil motion. The time-dependent computational domain and a moving grid are taken into account with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations. High Reynolds numbers up to 10 6 require the application of a suitable stabilization of the finite element discretization. Numerical tests prove that the developed method is sufficiently accurate and robust. Introduction The interaction of the fluid and bodies plays a significant role in many branches of engineering. Example includes air plane industry, where the point is to observe and study deformations of wings induced by flowing air. In this article we are concerned with numerical solution of an aero-elastic problem of two dimensional viscous incompressible flow over an air profile with two degrees of freedom in a wind tunnel. In our model the airfoil is represented by a solid body, which can perform vertical and torsional vibrations. Mathematical model of the flow is formed by the system of two-dimensional non-stationary Navier-Stokes equations and the continuity equation, coupled by initial and mixed boundary conditions. Stabilized finite element method is used to get a numerical solution. With regard to the moving airfoil the computational domain is time-dependent. This involvement requires to use a suitable technique for the simulation on a moving computational grid. To solve this we choose Arbitrary Lagrangian-Eulerian method. In terms of this technique the Navier-Stokes equations are reformulated. In a proper accuracy the used finite element method leads to a large discrete system of nonlinear algebraic equations. We solve the nonlinearity by implementing the Oseen method. This method splits the nonlinearity into a sequence of linear problems. To capture the solution of the large linear system we use direct solvers working sufficiently up to 10 5 unknowns. For a larger system it is necessary to implement iterative methods or another sophisticated methods as Domain Decomposition or Multigrid method. The computed results have been compared with experimental data, obtained in the Institute of Thermomechanics, Academy of Sciences of the Czech Republic. Mathematical model The two-dimensional non-stationary flow of viscous, incompressible fluid is considered in the time interval [0, T], where T > 0. The symbol Ω t denotes the computational domain occupied by the fluid at time t. The boundary Ω t = Γ D Γ O Γ Wt, where the sets Γ D, Γ O a Γ Wt are mutually disjoint and boundary conditions of different types are used there. The symbol Γ D represents the inlet, where the fluid flows into the domain Ω t. The fixed, impermeable wall, Γ O represents the outlet, where the fluid flows out and Γ Wt is the boundary of the profile at the time t. Let us assume that Γ D is independent of time in contrast to Γ Wt. The flow is characterized by the velocity field u = u(x, t), and the kinematic pressure p = p(x, t), for x Ω t and t [0, T]. The kinematic pressure is defined as P/ρ, where P is the pressure and ρ = const. > 0 is the density of the fluid. The aim is to find functions α(t) and h(t), describing the oscillation of the air profile (rotation and drift). The shape of the domain Ω t depends on functions α(t) and h(t) as shown on Figure 1., where TR represents the elastic axis, which can move along the line p. 53

2 Fig. 1. Model scheme. ALE formulation of Navier-Stokes equations ALE (Arbitrary Lagrangian Eulerian) description is given by a smooth, one-to-one mapping A t : Ω 0 Ω t, X x(x, t) = A t (X). (1) For each time t I = [0, T] A t represents a smooth mapping of the reference domain Ω 0 onto the domain Ω t, which is identical with the reference domain Ω 0 in the part of its boundary, where there is no interaction with the body and also there is no deformation of the boundary. The reference domain Ω 0 is identical with the domain occupied by the fluid at initial time t = 0. The coordinates of points x Ω t are called spatial coordinates, the coordinates of points X Ω 0 are called ALE coordinates or reference coordinates. First, we define the domain velocity in the following way This velocity can be expressed in spatial coordinates as w(t, X) = x(x, t). (2) t w = w(x, t) A 1 t, so w(x, t) = w ( A 1 t (x), t ). (3) Let us consider a function f = f(x, t), x Ω t, t [0, T], f(x, t) IR, where IR is the set of real numbers. Let f(x, t) = f(a t (X), t). We can define the ALE derivative of the function f by D A Dt The application of the chain rule gives f f(x, t) = (X, t), t X = A 1 t (x). (4) D A Dt f = f + w f. (5) t By using this relation we can obtain the Navier-Stokes equations in the form D A Dt u + [(u w) ] u + p ν u = 0 in Ω t div u = 0 in Ω t. (6) The symbol ν means the kinematic viscosity of the fluid. We assume that ν > 0 is constant. Equations for the moving air profile The equations for the moving profile are derived from the Lagrange equations for the generalized coordinates h and α. In the matrix calculus these equations have the form Kd(t) + Bḋ(t) + M d(t) = f(t), (7) 54

3 where the stiffness matrix K, the viscous damping B and the mass matrix M have the form ( ) ( ) ( ) khh k K = hα Dhh D, B = hα m Sα, M = k αh k αα D αh D αα S α I α and the vector of the force f and the generalized coordinates d read ( ) ( ) L2 (t) h(t) f(t) =, d =. M(t) α(t) The symbol L 2 stands for the component of the force acting on the profile in the vertical direction, M is the torsional moment of force, D hh, D hα, D αh, D αα are the coefficients of damping, S α, I α, m and k hh, k αα, k hα, k αh denote in order the static moment around the elastic axis TR, the moment of inertia around TR, the mass of the profile and the stiffness of the profile. The functions L 2 and M acting on the profile with a width H are given by the relations 2 L 2 = T 2j n j ds H, (8) M = Γ Wt j=1 Γ Wt i,j=1 2 T ij n j ( 1) i ( x 1+δ1i x TR ) 1+δ 1i ds H, (9) where n is the unit outer normal to Ω t on Γ Wt, and δ ij is the Kronecker symbol, i.e., δ ij = 1 for i = j and δ ij = 0 for i j, x 1, x 2 are the coordinates of points on Γ Wt, which lay on the border of the profile, x TR i, i = 1, 2, are the coordinates of the elastic axe x TR and [ ( ui T ij = ρ pδ ij + ν + u )] j. (10) x j x i Initial and boundary conditions The Navier-Stokes equations must be completed by the initial condition u(x, 0) = u 0, x Ω 0, (11) and the boundary conditions. The part of the boundary Γ D represents the inlet and the impermeable fixed wall. On this boundary we specify the Dirichlet boundary condition u ΓD = u D. (12) The part of the boundary Γ O is the outlet, where we define the so-called do-nothing boundary condition (p p ref )n + ν u n = 0 on Γ O, (13) where p ref is a given reference pressure. On Γ Wt we consider the condition Moreover we define the initial conditions u ΓWt = ũ Wt = w ΓWt. (14) α(0) = α 0, α(0) = α 1, where α 0, α 1, h 0, h 1 are input parameters of the model. h(0) = h 0, ḣ(0) = h 1, (15) 55

4 Discretization of the problem Discretization in time We use equidistant partition of the time interval [0, T], formed by 0 = t 0 < t 1 < < T, t k = kτ, where τ > 0 is a used time step. On each time level we obtain the problem to find functions u n+1 : Ω tn+1 IR 2 and p n+1 : Ω tn+1 IR such that 3u n+1 4û n + û n 1 + ( (u n+1 w n+1 ) ) u n+1 ν u n+1 + p n+1 = 0 v Ω tn+1, 2τ div u n+1 = 0 v Ω tn+1. (16) This system is considered with the boundary conditions (12),(13), (14). The symbols û n and û n 1 mean the functions u n and u n 1 transformed from the domain Ω tn and Ω tn 1 to the domain Ω tn+1 using the ALE mapping. Discretization in space The starting point for the approximate solution is the weak formulation of problem (16). For this purpose the appropriate function spaces are used W = (H 1 (Ω)) 2, X = {v W; v ΓD Γ Wt = 0} and M = L 2 (Ω). We introduce the notation where and a(u, U, V ) = 3 2τ (u, v) + ν((u, v)) + (((u w n+1 ) )u, v) f(v ) = 1 2τ (p, v) + ( u, q), (17) ( ) 4û n û n 1, v v nds, Γ O (a, b) = Ω ab dx U = (u, p) W M U = (u, p) W M V = (v, q) X M. The solution of the weak formulation is U = (u, p), such that it satisfies the conditions U W M, a(u, U, V ) = f(v ), V = (v, q) X M, (18) and u satisfies the boundary conditions (12) and (14). Now we define an approximate solution. We approximate the spaces W, X, M by their finite dimensional subspaces W, X, M, (0, 0 ), 0 >0, where X = { v W ; v ΓD Γ Wt = 0 }. This means that for each (0, 0 ) we assign finite dimensional subspaces W, X, M, with dimensions dimw = n W ( ), dim X = n X ( ), dimm = n M ( ). The approximate solutions is defined as a couple U = (u, p ) W M such that a(u, U, V ) = f(v ), V = (v, q ) X M (19) and u satisfies a suitable approximation of the boundary conditions (12) a (14). The spaces of finite elements X a M must satisfy the Babuška-Brezzi (BB) condition, which guarantees the stability of the used scheme. Stabilization of the finite element method In order to get good results, it is necessary to apply the streamline diffusion stabilization of the finite element method given in [Lube G.]. The reason is that the standard application of the finite element method leads to numerical schemes that give non-physical results represented by non-physical oscillations, especially for high Reynolds numbers. This phenomenon is called Gibb s oscillations. 56

5 We have the triangulation T of the domain Ω t with triangles K i. We define the stabilization components there ( ) 3 L (U, U, V ) = δ K u ν u + (w )u + p, (w )v (20) 2τ K i T K i ( ) 1 F (V ) = 2τ (4ûn û n 1 ), (w )v K i T δ K where U = (u, p) U = (u, p) V = (v, q), δ Ki 0 are suitable parameters, w = u w n+1 is the transport velocity and (, ) Ki is the scalar product in space L 2 (K i ). Next, we define the stabilization component for the pressure in the form P (U, V ) = τ Ki ( u, v) Ki, U = (u, p) V = (v, q), (21) K i T with suitable parameters τ Ki 0. The solution of the stabilized discrete problem is U = (u, p ) W M, such that the component u satisfies the boundary conditions (12) in Γ D and (14) in Γ Wt and a (U, U, V ) + L (U, U, V ) + P (U, V ) = f (V ) + F (V ), (22) V = (v, q ) X M. K i, Now, we introduce the way how to choose parameters δ K and τ K. The magnitude of the velocity field varies in different sub-domains of Ω 0. That is why, we split the domain into two sub-domains. The diffusion component dominates on the first sub-domain and the convective component on the second. On both sub-domains we choose these parameters in a different way. The parameter δ K is based on the transport velocity w and the viscosity ν. We put K δ K = δ ξ(re w ), (23) 2 w L (K) where Re w = δ K w L (K) (24) 2ν is the so-called local Reynolds number and K is size of the element K measured in the direction of w. The function ξ( ) is non-decreasing in dependence on Re w in such a way, that for local convective dominance (Re w > 1) ξ 1 and for local diffusion dominance (Re w < 1) ξ 0. The parameter δ (0, 1] is chosen suitably. The function ξ( ) could be defined e.g. ( ξ(re w Re w ) ) = min 6, 1. (25) The choice of the parameter τ K is different in local convective dominance sub-domain and in local diffusion dominance sub-domain. τ K = τ K w L (K) and τ K = 0 (26) for local convective dominance, respectively local diffusion dominance. The symbol τ means a parameter from (0, 1]. Numerical solution The triangulation of the domain is realized by the software ANGENER, which can be used for initial isotropic triangulation and also for anisotropic adaptive refinement. We use this technique for obtaining the best performance/accuracy rate in the computational mesh (see Figure 2.). As a result we obtain the pressure and the velocity fields and also the position of the moving profile. From this information we derive frequency characteristics, which is also the output of experiments. This fact gives us the possibility to compare both approaches. 57

6 Fig. 2. Anisotropically adapted mesh. main frequency [Hz] f 1 experiment f 2 experiment f 1 numerical experiment f 2 numerical experiment velocity [m/s] Conclusion Fig. 3. Resonance frequency. In this article we derived a procedure for obtaining the numerical solution of the interaction of the moving airfoil with the fluid. We used this approach for solving a particular problem, which was also studied experimentally. On several examples it is shown that the presented method is sufficiently robust and useful for a given type of problem. We show the comparison of the computed and experimentally obtained resonance frequency of induced vibration of the profile for several values of the initial velocity (see Figure 3). For improvement of the accuracy of the computation we could implement a turbulent model to the description of the flow. The further goal is to verify the method on the other test problems, mainly for a higher deviation of the profile and a higher speed of the air, when the system may loose its stability. Acknowledgments. This research was partially supported by grant number project MPO TAN- DEM subproject FT-TA/026, number OV , part 13. and grant number 344/2005/B-MAT/MFF of the Grant Agency of Charles University. References Dolejší V.: ANGENER V3.0, dolejsi/angen/angen.htm, Matematicko-fyzikální fakulta Univerzity Karlovy. Horáček J.: Nelineární formulace kmitání profilu pro aero-hydroelastické výpočty. In: Dynamika strojů 2003, Praha , ÚT AVČR, Praha, 2003, [ISBN ] Horáček J., Kozánek J., Veselý J.: Dynamic and stability properties of an aeroelastic model. In: Inženýrská mechanika 2005, Svratka , ÚT AVČR, Praha 2005, (CD ROM, 12 str.). [ISBN ] Horáček J., Luxa M., Vaněk F., Veselý J., Vlček V.: Návrh experimentálního zařízení pro studium nestacionárních 2D aeroelastických jevů optickými metodami, Výzkumná zpráva Ústavu termomechaniky AV ČR č. Z 1347/04, listopad Lube G.: Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems, Num. Anal. and Math. Model., Banach Center publications (29), Warszawa,

NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL

NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL Proceedings of ALGORITMY 212 pp. 29 218 NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL MARTIN HADRAVA, MILOSLAV FEISTAUER, AND PETR SVÁČEK Abstract. The present paper

More information

Numerical Approximation of Flow Induced Airfoil Vibrations

Numerical Approximation of Flow Induced Airfoil Vibrations Int. Conference on Boundary and Interior Layers BAIL 6 G. Lube, G. Rapin (Eds c University of Göttingen, Germany, 6 Numerical Approximation of Flow Induced Airfoil Vibrations Petr Sváček Department of

More information

TWO DIMENSIONAL SIMULATION OF FLUID-STRUCTURE INTERACTION USING DGFEM

TWO DIMENSIONAL SIMULATION OF FLUID-STRUCTURE INTERACTION USING DGFEM Proceedings of ALGORITMY 212 pp. 85 94 TWO DIMENSIONAL SIMULATION OF FLUID-STRUCTURE INTERACTION USING DGFEM JAROSLAVA HASNEDLOVÁ-PROKOPOVÁ,, MILOSLAV FEISTAUER, JAROMÍR HORÁČEK, ADAM KOSÍK, AND VÁCLAV

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION REP- RESENTED BY HUMAN VOCAL FOLD

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION REP- RESENTED BY HUMAN VOCAL FOLD NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION REP- RESENTED BY HUMAN VOCAL FOLD J. Valášek 1, P. Sváček 1 1 Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical

More information

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel

STEADY AND UNSTEADY 2D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS FLOW. Radka Keslerová, Karel Kozel Conference Applications of Mathematics 1 in honor of the th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 1 STEADY AND UNSTEADY D NUMERICAL SOLUTION OF GENERALIZED NEWTONIAN FLUIDS

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE Proceedings of the Czech Japanese Seminar in Applied Mathematics 2005 Kuju Training Center, Oita, Japan, September 15-18, 2005 pp. 69 76 NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING

More information

RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS

RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS Proceedings of ALGORITMY 2016 pp. 113 124 RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS VÍT DOLEJŠÍ AND FILIP ROSKOVEC Abstract.

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

ON SINGULAR PERTURBATION OF THE STOKES PROBLEM

ON SINGULAR PERTURBATION OF THE STOKES PROBLEM NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING BANACH CENTER PUBLICATIONS, VOLUME 9 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 994 ON SINGULAR PERTURBATION OF THE STOKES PROBLEM G. M.

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

Singularly Perturbed Partial Differential Equations

Singularly Perturbed Partial Differential Equations WDS'9 Proceedings of Contributed Papers, Part I, 54 59, 29. ISN 978-8-7378--9 MTFYZPRESS Singularly Perturbed Partial Differential Equations J. Lamač Charles University, Faculty of Mathematics and Physics,

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Shape Optimization in Problems Governed by Generalised Navier Stokes Equations: Existence Analysis

Shape Optimization in Problems Governed by Generalised Navier Stokes Equations: Existence Analysis Shape Optimization in Problems Governed by Generalised Navier Stokes Equations: Existence Analysis Jaroslav Haslinger 1,3,JosefMálek 2,4, Jan Stebel 1,5 1 Department of Numerical Mathematics, Faculty of

More information

Numerical Methods for the Navier-Stokes equations

Numerical Methods for the Navier-Stokes equations Arnold Reusken Numerical Methods for the Navier-Stokes equations January 6, 212 Chair for Numerical Mathematics RWTH Aachen Contents 1 The Navier-Stokes equations.............................................

More information

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers R. Sanchez 1, D. Thomas 2, R. Palacios 1, V. Terrapon 2 1 Department of Aeronautics, Imperial College London 2 Department

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

Some remarks on grad-div stabilization of incompressible flow simulations

Some remarks on grad-div stabilization of incompressible flow simulations Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University Göttingen M. Stynes Workshop Numerical Analysis

More information

FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH DYNAMICAL EFFECTS

FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH DYNAMICAL EFFECTS Proceedings of Czech Japanese Seminar in Applied Mathematics 2004 August 4-7, 2004, Czech Technical University in Prague http://geraldine.fjfi.cvut.cz pp. 63 72 FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH

More information

On several aspects of finite element approximations of laminar/turbulent transition models

On several aspects of finite element approximations of laminar/turbulent transition models EPJ Web of Conferences 67 23 (24) DOI:.5/ epjconf/ 246723 C Owned by the authors published by EDP Sciences 24 On several aspects of finite element approximations of laminar/turbulent transition models

More information

Numerical simulation of steady and unsteady flow for generalized Newtonian fluids

Numerical simulation of steady and unsteady flow for generalized Newtonian fluids Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical simulation of steady and unsteady flow for generalized Newtonian fluids To cite this article: Radka Keslerová et al 2016 J. Phys.: Conf.

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

Nonlinear effects on the rotor driven by a motor with limited power

Nonlinear effects on the rotor driven by a motor with limited power Applied and Computational Mechanics 1 (007) 603-61 Nonlinear effects on the rotor driven by a motor with limited power L. Pst Institute of Thermomechanics, Academy of Sciences of CR, Dolejškova 5,18 00

More information

Electronic Transactions on Numerical Analysis Volume 32, 2008

Electronic Transactions on Numerical Analysis Volume 32, 2008 Electronic Transactions on Numerical Analysis Volume 32, 2008 Contents 1 On the role of boundary conditions for CIP stabilization of higher order finite elements. Friedhelm Schieweck. We investigate the

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

BACHELOR THESIS. Finite element method for flow in time-dependent domains

BACHELOR THESIS. Finite element method for flow in time-dependent domains Charles University in Prague Faculty of Mathematics and Physics BACHELOR THESIS Lukáš Korous Finite element method for flow in time-dependent domains Department of Numerical Mathematics Supervisor: prof.

More information

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture 10 th Symposimum on Overset Composite Grids and Solution Technology, NASA Ames Research Center Moffett Field, California, USA 1 Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Introduction to Continuum Mechanics

Introduction to Continuum Mechanics Introduction to Continuum Mechanics I-Shih Liu Instituto de Matemática Universidade Federal do Rio de Janeiro 2018 Contents 1 Notations and tensor algebra 1 1.1 Vector space, inner product........................

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS FREE BOUNDARY PROBLEMS IN FLUID MECHANICS ANA MARIA SOANE AND ROUBEN ROSTAMIAN We consider a class of free boundary problems governed by the incompressible Navier-Stokes equations. Our objective is to

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

EQUADIFF 9. Mária Lukáčová-Medviďová Numerical solution of compressible flow. Terms of use:

EQUADIFF 9. Mária Lukáčová-Medviďová Numerical solution of compressible flow. Terms of use: EQUADIFF 9 Mária Lukáčová-Medviďová Numerical solution of compressible flow In: Zuzana Došlá and Jaromír Kuben and Jaromír Vosmanský (eds.): Proceedings of Equadiff 9, Conference on Differential Equations

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS Conference Applications of Mathematics 212 in honor of the 6th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 212 ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

More information

On the validation study devoted to stratified atmospheric flow over an isolated hill

On the validation study devoted to stratified atmospheric flow over an isolated hill On the validation study devoted to stratified atmospheric flow over an isolated hill Sládek I. 2/, Kozel K. 1/, Jaňour Z. 2/ 1/ U1211, Faculty of Mechanical Engineering, Czech Technical University in Prague.

More information

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems Institute for Mathematics and Scientific Computing, Austria DISC Summerschool 5 Outline of the talk POD and singular value decomposition

More information

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990 Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339 351 1 A NEW STRATEGY FOR FINITE ELEMENT COMPUTATIONS INVOLVING MOVING BOUNDARIES AND INTERFACES THE DEFORMING-SPATIAL-DOMAIN/SPACE-TIME

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

On discontinuity capturing methods for convection diffusion equations

On discontinuity capturing methods for convection diffusion equations On discontinuity capturing methods for convection diffusion equations Volker John 1 and Petr Knobloch 2 1 Universität des Saarlandes, Fachbereich 6.1 Mathematik, Postfach 15 11 50, 66041 Saarbrücken, Germany,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIII, Number 1, March 2008 HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IOAN TELEAGA AND JENS

More information

Introduction to immersed boundary method

Introduction to immersed boundary method Introduction to immersed boundary method Ming-Chih Lai mclai@math.nctu.edu.tw Department of Applied Mathematics Center of Mathematical Modeling and Scientific Computing National Chiao Tung University 1001,

More information

FSI with Application in Hemodynamics Analysis and Simulation

FSI with Application in Hemodynamics Analysis and Simulation FSI with Application in Hemodynamics Analysis and Simulation Mária Lukáčová Institute of Mathematics, University of Mainz A. Hundertmark (Uni-Mainz) Š. Nečasová (Academy of Sciences, Prague) G. Rusnáková

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Influence of Eccentricity and Angular Velocity on Force Effects on Rotor of Magnetorheological Damper

Influence of Eccentricity and Angular Velocity on Force Effects on Rotor of Magnetorheological Damper EPJ Web of Conferences 18, 291 (218) EFM 217 https://doi.org/1.151/epjconf/21818291 Influence of Eccentricity and Angular Velocity on Force Effects on Rotor of Magnetorheological Damper Dominik Šedivý

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior N. Manoj Abstract The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Partitioned Methods for Multifield Problems

Partitioned Methods for Multifield Problems C Partitioned Methods for Multifield Problems Joachim Rang, 6.7.2016 6.7.2016 Joachim Rang Partitioned Methods for Multifield Problems Seite 1 C One-dimensional piston problem fixed wall Fluid flexible

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

STABILIZED GALERKIN FINITE ELEMENT METHODS FOR CONVECTION DOMINATED AND INCOMPRESSIBLE FLOW PROBLEMS

STABILIZED GALERKIN FINITE ELEMENT METHODS FOR CONVECTION DOMINATED AND INCOMPRESSIBLE FLOW PROBLEMS NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING BANACH CENTER PUBLICATIONS, VOLUME 29 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1994 STABILIZED GALERIN FINITE ELEMENT METHODS FOR CONVECTION

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

A novel difference schemes for analyzing the fractional Navier- Stokes equations

A novel difference schemes for analyzing the fractional Navier- Stokes equations DOI: 0.55/auom-207-005 An. Şt. Univ. Ovidius Constanţa Vol. 25(),207, 95 206 A novel difference schemes for analyzing the fractional Navier- Stokes equations Khosro Sayevand, Dumitru Baleanu, Fatemeh Sahsavand

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω.

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω. 1 The Stokes System The motion of a (possibly compressible) homogeneous fluid is described by its density ρ(x, t), pressure p(x, t) and velocity v(x, t). Assume that the fluid is barotropic, i.e., the

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

The Fluid Flow in the T-Junction. The Comparison of the Numerical Modeling and Piv Measurement

The Fluid Flow in the T-Junction. The Comparison of the Numerical Modeling and Piv Measurement Available online at www.sciencedirect.com Procedia Engineering 39 (2012 ) 19 27 XIIIth International Scientific and Engineering Conference HERVICON-2011 The Fluid Flow in the T-Junction. The Comparison

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media

Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media Nonlinear Equations for Finite-Amplitude Wave Propagation in Fiber-Reinforced Hyperelastic Media Alexei F. Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

More information

On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability Boundary Conditions

On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability Boundary Conditions Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August -, 5 pp36-41 On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Note on the fast decay property of stea Navier-Stokes flows in the whole space Tomoyuki Nakatsuka Preprint No. 15-017 PRAHA 017 Note on the fast

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on umerical Analysis. Volume 3, pp. 13-133, 8. Copyright 8,. SS 18-913. TERACTO OF COMPRESSBLE FLOW AD A MOVG ARFOL MART RŮŽČKA, MLOSLAV FESTAUER, JAROMÍR HORÁČEK, AD PETR SVÁČEK

More information

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011 Derivation of Navier-Stokes Equation 1 The total stress tensor

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

Active Flutter Control using an Adjoint Method

Active Flutter Control using an Adjoint Method 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 26, Reno, Nevada AIAA 26-844 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 12 Jan, 26. Active Flutter Control using an

More information

Applications of Harmonic Balance Method in Periodic Flows Gregor Cvijetić and Inno Gatin

Applications of Harmonic Balance Method in Periodic Flows Gregor Cvijetić and Inno Gatin Applications of Harmonic Balance Method in Periodic Flows Gregor Cvijetić and Inno Gatin Faculty of Mechanical Engineering and Naval Architecture, Zagreb 10000, Croatia, gregor.cvijetic@gmail.com The Harmonic

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information