Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Electrochemically Scalable Production of Fluorine Modified Graphene for Flexible and High-Energy Ionogel-based Micro-Supercapacitors Feng Zhou, Haibo Huang, Chuanhai Xiao,, Shuanghao Zheng,,, Xiaoyu Shi,,, Jieqiong Qin,, Qiang Fu,, Xinhe Bao,, Xinliang Feng,*,ǁ Klaus Müllen,*, and Zhong-Shuai Wu*, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian , China State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian , China University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, , China Department of Chemical Physics, University of Science and Technology of China 96 JinZhai Road, Hefei , P. R. China ǁ Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstra e 4, Dresden, Germany Max-Planck-Institut für Polymerforschung, Ackermannweg 10, Mainz, Germany S1

2 Calculation. The capacitance values were calculated from the discharge curves of CV and GCD according to the following equations (1) and (2): C 1 V f I( V dv v( V V ) ) Vi f i (1) I t C (2) V f V ) ( i Where ν is the scan rate, V f and V i are the potential limits of CV curve. I(V) is the voltammetry discharge current. Δt refers to the discharge time. Areal capacitance areal C electrode (F cm -2 ) and volumetric capacitance volumetric C electrode (F cm -3 ) of single electrode were calculated from the formula (3) and (4): C 4 C / A (3) areal electrode electrode C 4 C / V (4) volumetric electrode electrode Where A electrode and V electrode refer to the area and volume of two electrodes, respectively. Areal capacitance and volumetric capacitance of the devices were calculated based on area and volume of two electrodes according to the formula (5) and (6): C / areal device C Aelectrode (5) C / volumetric device C Velectrode (6) The volumetric energy density E (Wh cm -3 ) and power density P (W cm -3 ) of the device was obtained from the equations: 2 1 volumetric ( Vf Vi IR) E Cdevice (7) S2

3 E P 3600 (8) t where IR is Ohmic drop. Figure S1. SEM image of FG nanosheets obtained from NaBF 4 electrolyte. FG nanosheets on (a, b) silicon wafer and on (c, d) copper gauze. S3

4 Figure S2. SEM images of FG flakes on silicon wafer obtained from (a) NH 4 BF 4 and (b) KPF 6 electrolyte. Figure S3. Statistical distribution of lateral size of FG nanosheets. S4

5 Ratio (%) Figure S4. (a, b) TEM images of FG nanosheets obtained from NaBF 4 electrolyte Number of layers Figure S5. Statistical thickness analysis of FG nanosheets obtained by HRTEM measurement. S5

6 Figure S6. X-ray diffraction spectra of FG (inset: X-ray diffraction spectra of graphite foil and FG). The diffraction peak (002) of FG appears at 26.3, with a interlayer d-spacing of 3.48 Å; whereas, the peak of graphite appears at 26.5 with d-spacing of 3.36 Å. Figure S7. 3D view of the surface of FG electrode on PET substrate, measured by Alpha step D-600. (a) 45 o counter-clockwise view, (b) top view, and (c) 45 o clockwise view. S6

7 Figure S8. (a) 2D pseudo-color view of the surface and (b) 3D cross-section view of FG electrode on PET substrate, measured by Alpha step D-600. (c) Cross-section SEM image of FG electrode on PET. Figure S9. The CV curves of FG-MSCs in EMIMBF 4 obtained at (a) 1~20 and (b) 50~1000 mv s -1. S7

8 Figure S10. GCD curves of FG-MSCs in EMIMBF 4 obtained at different current densities of 0.2 to 10 A cm -3. S8

9 Figure S11. Electrochemical impedance spectra of FG-MSCs, EG-MSCs, and HG-MSCs. Figure S12. Contact angle measurements of EMIMBF 4 against different materials films using the drop shape method. (a) 25.8 o for FG film, (b) 64.2 o for EG film, (c) 48.7 o for HG film. S9

10 Figure S13. (a) Areal capacitance and (b) volumetric capacitance of FG-MSCs with different FG film thickness as a function of scan rate. MSC-07, MSC-13 and MSC-26 are referred to as the devices based on the FG films with different thickness of 0.7, 1.3 and 2.6 μm, respectively. Figure S14. Electrochemical impedance spectra of FG-MSCs with different thickness FG films of 0.7, 1.3 and 2.6 μm, respectively. And their corresponding microdevices are referred to as MSC-07, MSCs-13 and MSC-26. S10

11 Figure S15. The ionic conductivity of EMIMBF 4 ionogel electrolyte as a function of the content (wt%) of PVdF-HFP polymer. S11

12 Figure S16. Electrochemical characterization of FG-MSCs in gel electrolyte of PVA/H 2 SO 4. (a,b) The CVs obtained at different scan rates of (a) 1~10 and (b) 20~500 mv s -1. (c) Areal capacitance and (d) volumetric capacitance of FG-MSCs as a function of scan rate. (e) Ragone plot of FG-MSCs. and (f) cycling stability of FG-MSCs, for 5000 times obtained at 0.2 ma cm -2. S12

13 Table S1. Elemental analysis of FG, EG and HG from XPS. Element FG (at%) EG (at%) HG (at%) C O F S13

14 Table S2. Performance Comparison of FG-MSCs with carbon-based MSCs. MSCs Electrolyt e FG-MSCs EMIMBF 4 / PVDF-HF P C A a mf cm -2 a C V F cm -3 S14 P b W cm -3 E b mwh cm -3 Refs This work FG-MSCs EMIMBF This work EG-MSCs EMIMBF This work HG-MSCs EMIMBF This work MPG-MSC H 2 SO 4 /PV s A CDC-MSC TEABF s AC-MSCs H 2 SO VACNT-M SCs LWG -MSCs OLC-MSC s rgo/cnt- MSCs LSG-MSCs Li 2 SO GO/H 2 O c 0.43 c 5 TEABF M KCl BMIMNT F 2 /fumed silica IPC-MSCs TEABF VGNs-MS PYR 13 NTF Cs 2 C A : areal capacitance; C V volumetric capacitance; P: power density; E: energy density; MPG: methane plasma reduced graphene; CDC: carbide-derived carbon; AC: activated carbon; VACNT: vertically aligned carbon nanotubes; LWG: laser written graphene oxide film; OLC: onion-like carbon; rgo: reduced graphene oxide; CNT: carbon nanotube; LSG: laser-scribed graphene; IPC: inkjet-printed carbon; VGNs: vertical graphene nanosheets. TEABF 4 : Tetraethylammonium tetrafluoroborate;

15 BMIMNTF 2 : 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; PYR 13 NTF 2 : N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonylimide); a These values are calculated based on the volume of single electrode. b These values are calculated based on the whole device. c These values are calculated based on the thickness of the electrodes. S15

16 References (1) Wu, Z.-S.; Parvez, K.; Feng, X.; Muellen, K. Nat. Commun. 2013, 4, (2) Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P.; Gogotsi, Y. Science 2010, 328, 480. (3) Wei, L.; Nitta, N.; Yushin, G. ACS Nano 2013, 7, (4) Ghosh, A.; Viet Thong, L.; Bae, J. J.; Lee, Y. H. Sci. Rep. 2013, 3, (5) Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Nat. Nanotechnol. 2011, 6, 496. (6) Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Nat. Nanotechnol. 2010, 5, 651. (7) Beidaghi, M.; Wang, C. Adv. Funct. Mater. 2012, 22, (8) El-Kady, M. F.; Kaner, R. B. Nat. Commun. 2013, 4, (9) Pech, D.; Brunet, M.; Taberna, P.-L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conedera, V.; Durou, H. J. Power Sources 2010, 195, (10) Aradilla, D.; Delaunay, M.; Sadki, S.; Gerard, J.-M.; Bidan, G. J. Mater. Chem. A 2015, 3, S16

Ionic Liquid Pre-intercalated MXene Films for Ionogel-based Flexible. Micro-Supercapacitors with High Volumetric Energy Density

Ionic Liquid Pre-intercalated MXene Films for Ionogel-based Flexible. Micro-Supercapacitors with High Volumetric Energy Density Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Ionic Liquid Pre-intercalated MXene Films for Ionogel-based Flexible Micro-Supercapacitors

More information

Supporting Information

Supporting Information Supporting Information Transparent and Self-supporting Graphene Films with Wrinkled- Graphene-Wall-assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors

More information

Supporting Information

Supporting Information Supporting Information Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer Daozhi Shen, Guisheng

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Self-healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel Yang Yue, Nishuang Liu, * Yanan Ma, Siliang Wang, Weijie Liu, Cheng Luo Hang Zhang, Feng

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Flexible Quasi-Solid-State Planar Micro-supercapacitors Based

Flexible Quasi-Solid-State Planar Micro-supercapacitors Based Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Flexible Quasi-Solid-State Planar Micro-supercapacitors

More information

High Energy Density of All Screen-Printable Solid-State. Microsupercapacitor Integrated by Graphene/CNTs as. Hierarchical Electrodes

High Energy Density of All Screen-Printable Solid-State. Microsupercapacitor Integrated by Graphene/CNTs as. Hierarchical Electrodes Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting information High Energy Density of All Screen-Printable Solid-State

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201205064 Large Areal Mass, Flexible and Free-Standing Reduced Graphene

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Supplementary Information. Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for. Flexible and On-Chip Energy Storage

Supplementary Information. Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for. Flexible and On-Chip Energy Storage Supplementary Information Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and On-Chip Energy Storage Maher F. El-Kady 1,2 and Richard B. Kaner* 1,3 [1] Department of Chemistry

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

Stacked-Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for High-Rate All-Solid-State Pseudocapacitors with Enhanced Volumetric Capacitance Zhong-Shuai Wu,* Yijun Zheng, Shuanghao Zheng,

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Stacking Up Layers of Polyaniline/Carbon Nanotube

More information

Electrospun Mat of Polyvinyl Alcohol/Graphene Oxide for Superior Electrolyte Performance

Electrospun Mat of Polyvinyl Alcohol/Graphene Oxide for Superior Electrolyte Performance Supporting Information Electrospun Mat of Polyvinyl Alcohol/Graphene Oxide for Superior Electrolyte Performance Qin Pan, Ningjun Tong, Nanfei He, Yixin Liu, Eunkyoung Shim, Behnam Pourdeyhimi, and Wei

More information

Construction of Microfluidic-Oriented Polyaniline Nanorod arrays. /Graphene Composite Fibers towards Wearable Micro-

Construction of Microfluidic-Oriented Polyaniline Nanorod arrays. /Graphene Composite Fibers towards Wearable Micro- Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Construction of Microfluidic-Oriented Polyaniline Nanorod arrays /Graphene

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

Supporting Information

Supporting Information Supporting Information Fe 3 O 4 @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes Huailin Fan, Ruiting Niu, & Jiaqi Duan, Wei Liu and Wenzhong Shen * State Key Laboratory of Coal Conversion,

More information

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors Supporting Information Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors Miao Gao, Wei-Kang Wang, Xing Zhang, Jun Jiang, Han-Qing Yu CAS Key Laboratory of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

Preparation of Graphene/Graphene Oxide Microsupercapacitor by Using Laser-Scribed Method

Preparation of Graphene/Graphene Oxide Microsupercapacitor by Using Laser-Scribed Method Chemical Methodologies 3(2019) 183-193 Chemical Methodologies Journal homepage: http://chemmethod.com Original Research article Preparation of Graphene/Graphene Oxide Microsupercapacitor by Using Laser-Scribed

More information

Supporting information

Supporting information Supporting information 3D porous MXene (Ti 3 C 2 )/reduced graphene oxide hybrid s for advanced lithium storage Zhiying Ma,, Xufeng Zhou,*, Wei Deng,, Da Lei,, and Zhaoping Liu *,. Key Laboratory of Graphene

More information

Supporting Information. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window

Supporting Information. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window Supporting Information Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window Kai Wang a, b, Haiping Wu a, b, Yuena Meng a, b, Yajie Zhang a, and Zhixiang

More information

Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors

Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors Szymon Sollami

More information

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline High-performance Supercapacitors Based on Electrochemicalinduced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes Guan Wu 1, Pengfeng Tan 1, Dongxing Wang 2, Zhe Li 2, Lu Peng

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Two-dimensional CoNi nanoparticles@s,n-doped

More information

Lei Zhou, Dawei He*, Honglu Wu, Zenghui Qiu

Lei Zhou, Dawei He*, Honglu Wu, Zenghui Qiu Synthesis of Three Dimensional Graphene/Multiwalled Carbon Nanotubes Nanocomposites Hydrogel and Investigation of their Electrochemical Properties as Electrodes of Supercapacitors Lei Zhou, Dawei He*,

More information

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information Facile synthesis of accordion-like Ni-MOF superstructure

More information

Supporting Information

Supporting Information Supporting Information Two-dimensional titanium carbide/rgo composite for high-performance supercapacitors Chongjun Zhao a *, Qian Wang a, Huang Zhang b,c **, Stefano Passerini b,c, Xiuzhen Qian a a School

More information

Supporting Information. Supercapacitors

Supporting Information. Supercapacitors Supporting Information Ni(OH) 2 Nanoflower/Graphene Hydrogels: A New Assembly for Supercapacitors Ronghua Wang ab, Anjali Jayakumar a, Chaohe Xu* c and Jong-Min Lee* a [a] School of Chemical and Biomedical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information A Three-Dimensional Graphene Frameworks-Enabled

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

Hongyan Li, Yang Hou, Faxing Wang, Martin R. Lohe, Xiaodong Zhuang,* Li Niu,* and Xinliang Feng*

Hongyan Li, Yang Hou, Faxing Wang, Martin R. Lohe, Xiaodong Zhuang,* Li Niu,* and Xinliang Feng* Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene Hongyan Li, Yang Hou, Faxing Wang, Martin R. Lohe,

More information

Application of laser Scribed method to fabricate graphene/graphene oxide multilayer

Application of laser Scribed method to fabricate graphene/graphene oxide multilayer (JETNSR) VOL: 3, NO 1, 2019 SIATS Journals Journal of Experimental &Theoretical Nanotechnology Specialized Researches (JETNSR) Journal home page: http://www.siats.co.uk VOL: 3, NO. 1, 2019 e-issn 2590-4132

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

state expose the the positive (electrode 2; top electrode S 1

state expose the the positive (electrode 2; top electrode S 1 Supplementary Figure 1. Procedure for fabricatingg ENHANS ribbon. (a) All solid state symmetric supercapacitor, (b) supercapacitor after peeling off the paper cover from one of the copper tape electrodes

More information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels Supporting Information Engineering Two-Dimensional Mass-Transport Channels of MoS 2 Nanocatalyst towards Improved Hydrogen Evolution Performance Ge Wang a, Jingying Tao a, Yijie Zhang a, Shengping Wang

More information

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Supporting Information Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Jaidev, R Imran Jafri, Ashish Kumar Mishra, Sundara Ramaprabhu* Alternative

More information

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide Supplementary Information for Scientific Reports Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide Sheets for the Application in High-Performance Asymmetric

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO 3 nanobelts

Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO 3 nanobelts Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Low-cost and high energy density asymmetric

More information

Energy & Environmental Science

Energy & Environmental Science Energy & Environmental Science COMMUNICATION Cite this: Energy Environ. Sci., 2018, 11, 2001 Received 22nd March 2018, Accepted 31st May 2018 DOI: 10.1039/c8ee00855h rsc.li/ees All-solid-state flexible

More information

Supporting Information. Electrochemical Raman Spectroscopy Investigation

Supporting Information. Electrochemical Raman Spectroscopy Investigation Supporting Information High-Capacitance Mechanism for Ti 3 C 2 T x MXene by In Situ Electrochemical Raman Spectroscopy Investigation Minmin Hu,, Zhaojin Li,, Tao Hu,, Shihao Zhu,, Chao Zhang and Xiaohui

More information

Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors

Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 30, NUMBER 1 FEBRUARY 27, 2017 ARTICLE Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors Jun-hao

More information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China Supporting information for Assembly of flexible CoMoO 4 @NiMoO 4 xh 2 O and Fe 2 O 3 electrodes for solid-state asymmetric supercapacitors Jing Wang a, Leipeng Zhang b, Xusong Liu a, Xiang Zhang b, Yanlong

More information

Supporting information. School of optoelectronic engineering, Nanjing University of Post &

Supporting information. School of optoelectronic engineering, Nanjing University of Post & Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting information Graphene/MnO 2 aerogel with both high compression-tolerant ability and

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Exfoliation of Graphite into Graphene in Aqueous. Solutions of Inorganic Salts

Exfoliation of Graphite into Graphene in Aqueous. Solutions of Inorganic Salts Supporting Information Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts Khaled Parvez, Zhong-Shuai Wu, Rongjin Li, Xianjie Liu, Robert Graf, Xinliang Feng,,,,* Klaus Müllen,*

More information

Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density. and Rate Capability

Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density. and Rate Capability Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability Yan Huang, Wing Shan Ip, Yuen Ying Lau, Jinfeng Sun, Jie Zeng, Nga Sze Sea Yeung, Wing Sum Ng, Hongfei

More information

A Facile Approach for Graphdiyne Preparation in Atmosphere for. Advanced Battery Anode

A Facile Approach for Graphdiyne Preparation in Atmosphere for. Advanced Battery Anode Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 A Facile Approach for Graphdiyne Preparation in Atmosphere for Advanced Battery Anode Zicheng Zuo

More information

Mechanically Strong Graphene/Aramid Nanofiber. Power

Mechanically Strong Graphene/Aramid Nanofiber. Power Supporting Information Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power Se Ra Kwon, John Harris, Tianyang Zhou, Dimitrios Loufakis James G. Boyd, and Jodie

More information

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Electronic Supplementary Information A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Jilei Liu,, Minghua Chen, Lili Zhang, Jian Jiang, Jiaxu Yan, Yizhong

More information

Hierarchically mesoporous carbon nanopetal based electrodes for flexible. Electronic Supplementary Information

Hierarchically mesoporous carbon nanopetal based electrodes for flexible. Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Hierarchically mesoporous carbon nanopetal based electrodes for flexible

More information

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Supporting Information Pomegranate-Like N, P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Yu-Yun Chen,,,# Yun Zhang,,# Wen-Jie Jiang,, Xing Zhang,, Zhihui

More information

Supporting Information. Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials

Supporting Information. Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Carbon nanofibers by pyrolysis of self-assembled

More information

Carbon-based nanocomposite EDLC supercapacitors

Carbon-based nanocomposite EDLC supercapacitors Carbon-based nanocomposite EDLC supercapacitors C. Lei and C. Lekakou Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK, C.Lekakou@surrey.ac.uk ABSTRACT

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting information Layered Nickel metal-organic framework for high

More information

Graphene based integrated tandem supercapacitors fabricated directly on separators

Graphene based integrated tandem supercapacitors fabricated directly on separators Graphene based integrated tandem supercapacitors fabricated directly on separators Item Type Article Authors Chen, Wei; Xia, Chuan; Alshareef, Husam N. Citation Chen, Wei, Chuan Xia, and H. N. Alshareef.

More information

for High Performance, Flexible Planar Supercapacitors

for High Performance, Flexible Planar Supercapacitors Supporting Information for Ultrathin Two-Dimensional MnO 2 /Graphene Hybrid Nanostructures for High Performance, Flexible Planar Supercapacitors Lele Peng,, Xu Peng, Borui Liu, Changzheng Wu, *, Yi Xie,

More information

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Electronic Supporting Information for Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Cheng-Meng Chen* a, Qiang Zhang b, Chun-Hsien Huang c, Xiao-Chen

More information

Supporting Information

Supporting Information Supporting Information NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn Air Batteries Jie Yin, Yuxuan Li, Fan Lv, Qiaohui Fan, Yong-Qing Zhao, Qiaolan Zhang, Wei Wang, Fangyi Cheng,

More information

Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS 2 Films

Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS 2 Films Supercapacitors Direct Laser-Patterned Micro-Supercapacitors from Paintable Films Liujun Cao, Shubin Yang, * Wei Gao, Zheng Liu, Yongji Gong, Lulu Ma, Gang Shi, Sidong Lei, Yunhuai Zhang, Shengtao Zhang,

More information

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS

MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS Bologna, May 23 th 2017 M. Federica De Riccardis SSPT-PROMAS-MATAS OUTLINE Basic concepts EDLC and PC Porosity Electrode materials Carbon

More information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Supporting Information Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Wei Huang,, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng,

More information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Electronic Supplementary Material Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Li Qin 1,2,5, Ruimin Ding 1,2, Huixiang

More information

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Electronic Supplemental Information for Pyridine-functionalized Fullerene

More information

RSC Advances PAPER. Flexible micro-supercapacitors prepared using direct-write nanofibers. 1. Introduction

RSC Advances PAPER. Flexible micro-supercapacitors prepared using direct-write nanofibers. 1. Introduction RSC Advances PAPER Cite this: RSC Adv., 2017,7, 11724 Received 14th December 2016 Accepted 3rd February 2017 DOI: 10.1039/c6ra28218k rsc.li/rsc-advances Flexible micro-supercapacitors prepared using direct-write

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Characterization of partially reduced graphene oxide as room

Characterization of partially reduced graphene oxide as room Supporting Information Characterization of partially reduced graphene oxide as room temperature sensor for H 2 Le-Sheng Zhang a, Wei D. Wang b, Xian-Qing Liang c, Wang-Sheng Chu d, Wei-Guo Song a *, Wei

More information

Supporting Information

Supporting Information Supporting Information The Design of Hierarchical Ternary Hybrid for Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density Xunliang Cheng, Jing Zhang, Jing Ren, Ning Liu, Peining Chen,

More information

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Electronic Supporting Information for Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Cheng-Meng Chen* a, Qiang Zhang b, Chun-Hsien Huang c, Xiao-Chen

More information

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions Supporting Information High-Performance Strain Sensors with Fish Scale-Like Graphene Sensing Layers for Full-Range Detection of Human Motions Qiang Liu, Ji Chen, Yingru Li, and Gaoquan Shi* Department

More information

Supporting Information

Supporting Information Supporting Information MoSe2 embedded CNT-Reduced Graphene Oxide (rgo) Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances Gi Dae Park, Jung Hyun

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting information Effect of cation substitution on pseudocapacitive

More information

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Graphene Size-dependent Modulation of Graphene Framework Contributing to

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Graphene-based Hollow Spheres as Efficient Electrocatalyst for Oxygen Reduction Longfei Wu, Hongbin Feng, Mengjia Liu, Kaixiang Zhang and Jinghong Li* * Department

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Author(s) Citation Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes

More information

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors . Electronic Supplementary Material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Hydrogenated CoO x nanowire @ Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Supporting Information for

Supporting Information for Supporting Information for Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors Yuxi Xu,*, Chih-Yen Chen, Zipeng Zhao, Zhaoyang Lin, Chain Lee,

More information

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells **

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells ** Nickel Phosphide-embedded Graphene as Counter Electrode for Dye-sensitized Solar Cells ** Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao =.78 D 1359 G 163 a =.87 D 138 G 159 b =1.3 D 1351 G 1597 c 1 15 1

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium Supporting Information Revelation of the Excellent Intrinsic Activity of MoS2 NiS MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium Chuanqin Wang a,b, Bin Tian b, Mei Wu b, Jiahai Wang

More information

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Supporting Information Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting Xin Xiao, Dekang Huang, Yongqing Fu, Ming Wen, Xingxing Jiang, Xiaowei Lv, Man Li, Lin Gao,

More information

CoMn-layered double hydroxide nanowalls supported on carbon fibers. for high-performance flexible energy storage devices

CoMn-layered double hydroxide nanowalls supported on carbon fibers. for high-performance flexible energy storage devices Supporting Information CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices Jingwen Zhao, Jiale Chen, Simin Xu, Mingfei Shao, Dongpeng

More information

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Supporting Information Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez,

More information

Materials Chemistry A

Materials Chemistry A Journal of Materials Chemistry A Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted

More information

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Electronic Supplementary Information Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Dong-Hong Wang, ab Gui-Qi Gao, b Yue-Wei Zhang, a Li-Sha Zhou,

More information

Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities

Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities Xiaocong Tian, Mengzhu Shi, Xu Xu, Mengyu Yan, Lin Xu, Aamir Minhas-Khan, Chunhua Han, * Liang He, and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2016 Supporting Information for Perovskite Solar Cells Powered Electrochromic Batteries for

More information