MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS

Size: px
Start display at page:

Download "MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS"

Transcription

1 MATERIALS FOR SUPERCAPACITORS ELECTRODES: PREFORMANCE AND NEW TRENDS Bologna, May 23 th 2017 M. Federica De Riccardis SSPT-PROMAS-MATAS OUTLINE Basic concepts EDLC and PC Porosity Electrode materials Carbon Metal oxide Conducting polymers Structures Electrode (0D, 1D, 2D, 3D) Device (symmetric, asymmetric, battery-like) 2 1

2 Basic concepts Charge storage mechanisms Electric double layer Electrostatic process Stored charge proportionally to surface area Specific areal capacitance = 0.1/0.2 F/m 2 Pseudocapacitive Faradaic redox reaction Stored charge into surface area or bulk Specific areal capacitance = 1/5 F/m 2 Current collector Separator 3 Structural characteristics of a SC electrode Current collector Electrolyte filled pore Active material Separator The performance of supercapacitors is mainly determined by the electrochemical activity and kinetic feature of the electrodes. The pore structure of electrode materials is closely related to ion and electron transport processes. Electrodes with proper pore structure are highly desirable. Porous electrodes should meet the following requirements: Sufficient pore volume Suitable ion channel Plentiful chemically active sites 4 2

3 Electrode Materials Double layer capacitors Activated carbon Carbon nanostructures Supercapacitors Pseudocapacitors Metal oxides Conducting polymers Composites (Symmetric) Hybrid supercapacitors EDL/PS (Asymmetric) Battery-like 5 Electrode Materials CARBON materials Activated carbons (ACs), CNTs, CNFs, graphene, carbon aerogels, ordered mesoporous carbons (OMCs), hierarchical porous carbons (HPCs) are widely utilized due to their: easy accessibility, good processing ability, large surface area/porosity, low electrical resistivity, robust surface chemical environment, physicochemical stability, low cost. The typical capacitance of carbon materials is F/g in aqueous electrolytes, F/g in organic electrolytes F/g in ionic liquids. 6 3

4 Electrode Materials METAL OXIDES Noble metal oxides and cheap metal oxides are more attractive than carbon materials thanks to their much larger capacitance, due to multi-electron transfer during fast Faradaic reactions. RuO2: high specific capacitance and very long cycling life, but high cost. Cheaper metal oxides (e.g. MnO2 and NiO): poor electrical conductivity and poor cycling stability. Also NITRIDES (tungsten nitride, titanium nitride, etc.) have very good pseudocapacitance. 7 Electrode Materials CONDUCTING POLYMERS They store charge in the bulk and the energy density is considerably higher than the surface redox materials. As a drawback, the power density is affected by slow ion diffusion in the bulk material but the conductivity is higher than the metal oxides. The dopant level is an essential parameter in the electrochemical charge storage. The p-doped polymers have a better performance than n-doped polymers, requiring a large negative potential and having a high resistance. The p-doping occurs with removal of -electrones from the conjugation, leading to net positive charge. 8 4

5 Structures of electrode materials Solid nanoparticles 0 D Hollow nanoparticles Core-shell nanoparticles Nanostructured electrode materials 1 D 2 D Homostructures (nanorods, nanowires, nanotubes) Heterostructures (structural/electrical core/ active material shell) Homostructures (graphene) Heterostructures (graphene and metal oxides) 3 D 3D carbon based materials Metal foams 9 0D nanomaterials 0D materials based on carbon can be solid or hollow or can have a core-shell structure. Activated carbons have high surface area (up to 3000 m 2 /g) and a wide range of pore size distribution including micropores (<2 nm), mesopores (2 50 nm), and macropores (>50 nm). 0D onion like carbon Specific areal capacitance < 10 F/cm 2 D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna and P. Simon, Nat. Nanotechnol. (2010) The combination of faradaic and non-faradaic materials into core shell 0D nanostructures offers considerable advantages: enhanced electrical conductivity, less agglomeration, robust chemical and mechanical stability. Specific capacitance: HCS-PANI ~ 520 F/g HCS ~ 270 F/g (a) FESEM and (b) TEM images of hollow carbon spheres (HCS) coated by PANI. 10 Z. Lei, Z. Chen and X. Zhao, J. Phys. Chem. C, (2010) 5

6 1D nanomaterials B. Kim, H. Chung and W. Kim, J. Phys. Chem. C, (2010) Carbon nanotubes (CNTs) have several applications in energy storage field. Vertically aligned CNTs directly grown on conductive substrates, have moderate to high surface area ( m 2 /g), porous structure, superior electronic conductivity, and excellent mechanical and thermal stability. Specific capacitance ~ A/g 1D nanostructured current collector core can provide a support for active sites, forming a core-shell 1D material. Specific capacitance ~ mV/s Z. Yu and J. Thomas, Adv. Mater. (2014) 11 1D nanomaterials SEM image PANI+CNTs TEM image PANI/CNTs combines the large pseudocapacitance of the conducting polymers with the fast charging/discharging double layer capacitance and excellent mechanical and electrical properties of the carbon nanotubes. CNTs Specific capacitance ~ mv/s PANI/CNTs Specific capacitance ~260 50mV/s M. F. De Riccardis, et al., Functional Characterisations Of Hybrid Nanocomposite Films Based On Polyaniline And Carbon Nanotubes, Advances in Science and Technology Vol. 79 (2013) pp

7 1D nanomaterials Ternary composite electrode structure formed by CNT + M.O.+ C.P. Specific energy ~ 73 Wh/kg and a cyclic retention of 81% at 1000 cycles Ye Hou, Yingwen Cheng, Tyler Hobson, Jie Liu, Nano Lett., (2010) 13 2D nanomaterials GRAPHENE with RuO 2, MnO 2, WO, NiO, VO.. RuO 2 graphene (30 wt% graphene sheets) hybrid showed a specific capacitance of 370 2mV/s mv/s in 1M KOH solution Specific capacitance of MnO 2 graphene 310 2mV/s mv/s Pure graphene 104 2mV/s mv/s H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, and H. Dai, Nano Res.(2011) 95% of capacitance retention after cycles 14 7

8 3D nanomaterials CARBON AEROGELS, MESOPOROUS CARBONS, CARBON CLOTHS 3D flower-like -Ni(OH) 2 /GO/CNTs composite prepared via a phase transformation method. Specific capacitance 1815 F/g (@ 2 A/g cycling performance of 97% capacitance retention after 2000 cycles at 10 A/g X. Ma, J. Liu,C. Liang, X. Gong and R. Che, J. Mater. Chem. A (2014) 15 3D nanomaterials Carbon or Metal foam A particular combination of -lightweight substrate -porous nanostructure design -conductivity modification. (a) Porous Ni films as the substrate (b) 3D GF by CVD growth from the Ni film substrate (c) Co 3 O 4 nanowires by hydrothermal growth on the GF (d) PEDOT MnO 2 composite shell by co-electrodeposition X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H.J. Fan, Nanoletters (2014) 16 8

9 3D nanomaterials Electrospun porous carbon nanofibers (PCNFs) As 3D structures, porous electrospun fibers obtained by pyrolysis of polymer mats allow to have high specific surface area and high pore volume. Different approaches are used for porous CNFs: Self-activation Physical/chemical activation Incorporation of sacrificial components 17 3D nanomaterials Self-activation Lignin (with a high oxygen content) can be self-activated during an heating process, by realising the groups containing oxygen and producing many pores. CNF = 100 nm SSA ~ 580 m 2 /g Specific capacitance = 50 A/g Capacitance delay = 10% after 6000 cycles C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Z, Y. Zhao, et al.j. Power Sources (2014) Physical/chemical activation H 2 O steam activation is used to generate pores. PAN fibres activated at different temperatures Pores = 0.5 nm SSA ~ 500 m 2 /g Specific capacitance = A/g C- Kim, J. Choi, W- Lee, K. Yang,.Electrochinìmica Acta (2004) 18 9

10 3D nanomaterials Incorporation of sacrificial components Blend with sacrificial components can be selectrively removed by treating in solvent or direct annealing, generating porous structures. PAN+Nafion CNF ~ 200 nm SSA ~ 1600 m 2 /g Specific capacitance = mV/s C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Z, Y. Zhao, et al.j. Power Sources (2014) Some inorganic materials can be sacrified to form ultra-pores. Pores in follow fibres are generated by etching of SiO 2 nanoparticles (bamboolike) PAN+SiO 2 Pores ~ 0.6/100 nm nm SSA ~ 1900 m 2 /g Specific capacitance = A/g Y. Sun, R.B. Sills, X. Hu, Z. Wei Seh, X. Xiao, H. Xu, W. Luo, et al. Nanoletters (2015) 19 3D nanomaterials Hybrid electrode based on ECNFs and MO or CP (two components) CNFs have been shown to be an efficient matrix for MO A shell of MnO2 nanosheets onto ECNFs was obtained by in situ redox deposition Specific capacitance = A/g retaining 94% of its initial capacitance after 1500 cycles J.G. Wang, Y. Yang, Z. H. Huang, F. Kang, Electrochimica Acta (2011) ECNF-CNTs web was prepared by electrospinning. PPy coated the electrospun ACNF/CNT (PPy/ACNF/CNT) by in situ chemical polymerization SSA = 1170 m 2 /g Specific capacitance = 330 F/g Y. W. Ju, G.-R. Choi, H. R. Jung,W. J. Lee, Electrochimica Acta (2008) 20 10

11 3D nanomaterials Hybrid electrode based on ECNFs and MO and CP (three components) J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, J. Mater. Chem. (2012) ECNFs was coated by MnO 2 /PPy (~ 20 nm) Specific capacitance = 700 F/g Areal capacitance = 1.4 F/cm D nanomaterials Advantages of electrodes produced by E.S. 1) The size of active materials can be reduced to nanoscale, proving sufficient contact between electrolyte and active materials for shortening the ion diffusion pathway. 2) The carbon matrix enables a high electrical conductivity of the composite electrode and can be directly used as active material. 3) The introduction of a porous structure is of a great importance in reducing the volume change of active materials, so acquiring long term cycling stability. 4) Selective doping of these nanomaterials can increase the conductivity and surface property, and therefore also the electrochemical activity. 5) A continuous fibre network offers a good mechanical and electrical interconnection of the hybrids, achieving freestanding electrodes

12 Hybrid Supercapacitors Type Electrode Mechanism EDLC Carbon and carbon derivates Electrochemical Double Layer capacitance Pseudocapacitor Metal oxides, conducting polymers Reversible Faradaic reactions Symmetric Asymmetric Battery-like Same electrodes, also with composite materials Different electrodes with different materials Anode: battery electrode Cathode: carbon Combination of reversible Faradaic reaction and Ellectrochemical double layer capacitance Combination of reversible Faradaic reaction and Ellectrochemical double layer capacitance Lithium intercalation and de-intercalation mechanism like in battery 23 Future challanges Design the high surface area electrode to properly utilize the total area. The nanostructure morphology should be able to extend the life time of the device. A support structure should maintain the structure of active material. The internal resistance has to be minimum. Since, it is influenced by the thickness of active material (especially in MO) and by interfacial resistance between the current collector and the electrode, it should work upon manufacturing of binder free electrode, without affecting its integrity

13 Thank you for your attention M. Federica De Riccardis 13

Supporting Information

Supporting Information Supporting Information Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes Hongwei Zhang, Owen Noonan, Xiaodan Huang, Yannan Yang, Chun Xu, Liang Zhou, and Chengzhong

More information

Materials and Structural Design for Advanced Energy Storage Devices

Materials and Structural Design for Advanced Energy Storage Devices Materials and Structural Design for Advanced Energy Storage Devices Imran Shakir Sustainable Energy Technologies Center (SET) King Saud University Saudi Arabia Specific Power (W/kg) Introduction and Motivation

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

Supporting Information for

Supporting Information for Supporting Information for Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage Wenxiang Guo, Weiwei

More information

Supporting Information

Supporting Information Supporting Information Fe 3 O 4 @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes Huailin Fan, Ruiting Niu, & Jiaqi Duan, Wei Liu and Wenzhong Shen * State Key Laboratory of Coal Conversion,

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage Supporting Information In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on Reduced Graphene Oxide for Reversible Lithium Storage Yingbin Tan, [a] Ming Liang, [b, c] Peili Lou, [a] Zhonghui Cui,

More information

Supporting Information

Supporting Information Supporting Information MoSe2 embedded CNT-Reduced Graphene Oxide (rgo) Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances Gi Dae Park, Jung Hyun

More information

Nano-Flower MnO 2 Coated Graphene Composite Electrodes for Energy Storage Devices

Nano-Flower MnO 2 Coated Graphene Composite Electrodes for Energy Storage Devices Mater. Res. Soc. Symp. Proc. Vol. 1303 2011 Materials Research Society DOI: 10.1557/opl.2011.416 Nano-Flower MnO 2 Coated Graphene Composite Electrodes for Energy Storage Devices Qian Cheng, 1,2 Jie Tang,

More information

Supporting Information

Supporting Information Supporting Information Transparent and Self-supporting Graphene Films with Wrinkled- Graphene-Wall-assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors

More information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information Supporting Information Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and Long-Life Anodes for Lithium-Ion Batteries Lichun Yang, a Xiang Li, a Yunpeng Ouyang, a Qingsheng Gao, b Liuzhang

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China Supporting information for Assembly of flexible CoMoO 4 @NiMoO 4 xh 2 O and Fe 2 O 3 electrodes for solid-state asymmetric supercapacitors Jing Wang a, Leipeng Zhang b, Xusong Liu a, Xiang Zhang b, Yanlong

More information

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries Supporting Information Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries Ding-Rong Deng, Fei Xue, Yue-Ju Jia, Jian-Chuan Ye, Cheng-Dong Bai,

More information

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor

In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor Supporting Information In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for Highperformance All-Solid-State Pseudocapacitor Zhichang Pan, Yingchang Jiang, Peiyu Yang, Zeyi Wu, Wenchao Tian,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Stacking Up Layers of Polyaniline/Carbon Nanotube

More information

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage Supporting Information Tuning the Shell Number of Multi-Shelled Metal Oxide Hollow Fibers for Optimized Lithium Ion Storage Jin Sun, Chunxiao Lv, Fan Lv, ǁ Shuai Chen, Daohao Li, Ziqi Guo, Wei Han, Dongjiang

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting information Layered Nickel metal-organic framework for high

More information

Supporting Information

Supporting Information Supporting Information MoS 2 Nanosheets Vertically Grown on Graphene Sheets for Lithium Ion Battery Anodes Yongqiang Teng 1, Hailei Zhao 1, 2,*, Zijia Zhang 1, Zhaolin Li 1, Qing Xia 1, Yang Zhang 1, Lina

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201205064 Large Areal Mass, Flexible and Free-Standing Reduced Graphene

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

Hierarchically mesoporous carbon nanopetal based electrodes for flexible. Electronic Supplementary Information

Hierarchically mesoporous carbon nanopetal based electrodes for flexible. Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Hierarchically mesoporous carbon nanopetal based electrodes for flexible

More information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Supporting Information Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Wei Tian a, Han Hu b, Yixian Wang a, Peng Li c, Jingyan

More information

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors Supporting Information Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors Miao Gao, Wei-Kang Wang, Xing Zhang, Jun Jiang, Han-Qing Yu CAS Key Laboratory of

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

Scalable Preparation of Hierarchical Porous Activated Carbon/graphene composite for High-Performance Supercapacitors

Scalable Preparation of Hierarchical Porous Activated Carbon/graphene composite for High-Performance Supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supplementary Information Scalable Preparation of Hierarchical Porous Activated

More information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Supporting Information Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Wei Huang,, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng,

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Supporting Information for Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Zhu-Yin Sui, Pei-Ying Zhang,, Meng-Ying Xu,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis and electrochemical properties of spherical and hollow-structured

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan Supporting Information Co 3 O 4-δ Quantum Dots as a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

More information

Development of Carbonbased Materials for Energy Storage

Development of Carbonbased Materials for Energy Storage Development of Carbonbased Materials for Energy Storage Hui-Ming Cheng( 成会明 ) Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences Shenyang, P. R.

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Ultrathin Petal-like NiAl Layered Double oxide/sulfide

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Two-dimensional CoNi nanoparticles@s,n-doped

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries SUPPLEMENTARY INFORMATION Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries Qiang Sun, Bin He, Xiang-Qian Zhang, and An-Hui Lu* State Key Laboratory

More information

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Waleed Nusrat, 100425398 PHY 3090U Material Science Thursday April 9 th 2015 Researchers optimize the

More information

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline

High-performance Supercapacitors Based on Electrochemicalinduced. Vertical-aligned Carbon Nanotubes and Polyaniline High-performance Supercapacitors Based on Electrochemicalinduced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes Guan Wu 1, Pengfeng Tan 1, Dongxing Wang 2, Zhe Li 2, Lu Peng

More information

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information Facile synthesis of accordion-like Ni-MOF superstructure

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Mesoporous C-coated SnO x nanosheets

More information

Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure. Imran Shakir

Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure. Imran Shakir Energy Storage material status and challenges for KSA and practical application of 3D holey-graphene structure Imran Shakir Specific Power (W/kg) Energy Storage Research Group Objective Development of

More information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 218 Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI

More information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels Supporting Information Engineering Two-Dimensional Mass-Transport Channels of MoS 2 Nanocatalyst towards Improved Hydrogen Evolution Performance Ge Wang a, Jingying Tao a, Yijie Zhang a, Shengping Wang

More information

Carbon-based nanocomposite EDLC supercapacitors

Carbon-based nanocomposite EDLC supercapacitors Carbon-based nanocomposite EDLC supercapacitors C. Lei and C. Lekakou Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK, C.Lekakou@surrey.ac.uk ABSTRACT

More information

4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016)

4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016) 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016) Electrochemical deposition of Zn supercapacitor applications nanosheets on Ni foam for Bingjun Guo, Haicheng

More information

Mechanically Strong Graphene/Aramid Nanofiber. Power

Mechanically Strong Graphene/Aramid Nanofiber. Power Supporting Information Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power Se Ra Kwon, John Harris, Tianyang Zhou, Dimitrios Loufakis James G. Boyd, and Jodie

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst Supporting Information Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst for the Hydrogen Evolution Reaction Mingjie Zang, [a] Ning Xu, [a] Guoxuan Cao, [a] Zhengjun Chen, [a] Jie Cui, [b]

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Lighter, Faster and Smaller Dense Graphene Assemblies: Remedy for Compact Energy Storage. Outline

Lighter, Faster and Smaller Dense Graphene Assemblies: Remedy for Compact Energy Storage. Outline The 8 th GO Symposium, Kumamoto Univ., 30 June 2017 Nanocarbon realizes Low carbon! Lighter, Faster and Smaller Dense Graphene Assemblies: Remedy for Compact Energy Storage Quan-Hong Yang ( 楊全红 ) Tianjin

More information

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation Xuxu Wang, ab Zhaolin Na, a Dongming Yin, a Chunli Wang, ab Yaoming Wu, a Gang

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Supporting Information for

Supporting Information for Supporting Information for High-Performance Supercapacitor Electrode based on Cobalt Oxide - Manganese Dioxide -Nickel Oxide Ternary 1D Hybrid Nanotubes Ashutosh K. Singh, 1,2, Debasish Sarkar, 3,,*, Keshab

More information

Supercapacitor Performance of Perovskite La 1-x Sr x MnO 3

Supercapacitor Performance of Perovskite La 1-x Sr x MnO 3 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supercapacitor Performance of Perovskite La 1-x Sr x MnO 3 Xueqin Lang a, Haiyang Mo

More information

Supporting Information. Supercapacitors

Supporting Information. Supercapacitors Supporting Information Sulphur-source Inspired Self-grown 3-D NixSy Nanostructures and their Electrochemical Supercapacitors Nanasaheb M. Shinde, a Qi Xun Xia, a,c Pritamkumar V. Shinde, b Je Moon Yun,

More information

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion Supporting Information A Scalable Synthesis of Few-layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-performance Li and Na Ion Battery Anodes Seung-Keun Park, a,b Jeongyeon Lee,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information A Three-Dimensional Graphene Frameworks-Enabled

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High Performance Electrodes for Supercapacitors Chun Wu a, Junjie Cai a, Qiaobao Zhang

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

MATERIALS CHEMISTRY REVIEW. Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage FRONTIERS

MATERIALS CHEMISTRY REVIEW. Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage FRONTIERS MATERIALS CHEMISTRY FRONTIERS REVIEW View Article Online View Journal View Issue Cite this: Mater. Chem. Front., 2017, 1, 251 Conducting polymer composites: material synthesis and applications in electrochemical

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Supporting Information. Supercapacitors

Supporting Information. Supercapacitors Supporting Information Ni(OH) 2 Nanoflower/Graphene Hydrogels: A New Assembly for Supercapacitors Ronghua Wang ab, Anjali Jayakumar a, Chaohe Xu* c and Jong-Min Lee* a [a] School of Chemical and Biomedical

More information

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Inexpensive Colloidal SnSb Nanoalloys as

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries JOUL, Volume 3 Supplemental Information Lightweight Metallic MgB 2 Mediates Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries Quan Pang, Chun Yuen Kwok, Dipan Kundu, Xiao Liang,

More information

Supporting Information

Supporting Information Supporting Information Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery Yang Lu, a,b Sui Gu, a,b Jing Guo a,b, Kun Rui, a,b Chunhua Chen, c Sanpei Zhang,

More information

A Review of Electrolyte Materials and Compositions for electrochemical supercapacitors

A Review of Electrolyte Materials and Compositions for electrochemical supercapacitors A Review of Electrolyte Materials and Compositions for electrochemical supercapacitors Journal: Chemical Society Reviews Manuscript ID: CS-REV-04-2015-000303 Article Type: Review Article Date Submitted

More information

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Supporting Information Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte Jaidev, R Imran Jafri, Ashish Kumar Mishra, Sundara Ramaprabhu* Alternative

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting information Effect of cation substitution on pseudocapacitive

More information

Graphene for supercapacitor application Maria Sarno

Graphene for supercapacitor application Maria Sarno University of Salerno Graphene for supercapacitor application Maria Sarno Prof. Maria Sarno Professor of Chemical Engineering Director of NANO_MATES (Research Centre for NANOMAterials and nanotechnology

More information

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three-dimensional amorphous tungsten-doped

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Trifunctional NiO Ag NiO Electrodes

More information

Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors

Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 30, NUMBER 1 FEBRUARY 27, 2017 ARTICLE Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors Jun-hao

More information

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation Supporting Information Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation Gan Jia, Yingfei Hu, Qinfeng Qian, Yingfang

More information

Chapter - 8. Summary and Conclusion

Chapter - 8. Summary and Conclusion Chapter - 8 Summary and Conclusion The present research explains the synthesis process of two transition metal oxide semiconductors SnO 2 and V 2 O 5 thin films with different morphologies and studies

More information

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors . Electronic Supplementary Material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Hydrogenated CoO x nanowire @ Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric

More information

state expose the the positive (electrode 2; top electrode S 1

state expose the the positive (electrode 2; top electrode S 1 Supplementary Figure 1. Procedure for fabricatingg ENHANS ribbon. (a) All solid state symmetric supercapacitor, (b) supercapacitor after peeling off the paper cover from one of the copper tape electrodes

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Si/SiO x Hollow Nanospheres/Nitrogen-Doped Carbon

More information

Energy Storage. Light-emitting. Nano-Carbons. H 2 Energy. CNT synthesis. Graphene synthesis Top-down. Solar H 2 generation

Energy Storage. Light-emitting. Nano-Carbons. H 2 Energy. CNT synthesis. Graphene synthesis Top-down. Solar H 2 generation Nano-Carbon battery Graphene synthesis Top-down CNT synthesis CVD reactor hydrocarbon gas Catalyst CNTs Chemical Modification COO O NO 2 COO COO COO Bottom-up O O NO NO 2 2 COO COO Nano-Carbons 20 nm Light-emitting

More information

Supporting Information

Supporting Information Supporting Information NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn Air Batteries Jie Yin, Yuxuan Li, Fan Lv, Qiaohui Fan, Yong-Qing Zhao, Qiaolan Zhang, Wei Wang, Fangyi Cheng,

More information

arxiv: v3 [cond-mat.mtrl-sci] 19 Apr 2016

arxiv: v3 [cond-mat.mtrl-sci] 19 Apr 2016 New Electrochemical Characterization Methods for Nanocomposite Supercapacitor Electrodes Jason Ma Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 arxiv:1406.0470v3

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Supporting Information. Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials

Supporting Information. Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Carbon nanofibers by pyrolysis of self-assembled

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is The Royal Society of Chemistry 2014 Porous carbon spheres and monoliths: morphology controlling, pore size tuning and

More information

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Electronic Supplementary Material Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Mohammad Al-Mamun 1, Huajie Yin 1, Porun

More information

Supporting Information

Supporting Information Supporting Information The Design of Hierarchical Ternary Hybrid for Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density Xunliang Cheng, Jing Zhang, Jing Ren, Ning Liu, Peining Chen,

More information

Conducting polymer-based flexible supercapacitor

Conducting polymer-based flexible supercapacitor REVIEW Conducting polymer-based flexible supercapacitor Indrajit Shown 1, Abhijit Ganguly 1, Li-Chyong Chen 2 & Kuei-Hsien Chen 1,2 1 Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei

More information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium Supporting Information Revelation of the Excellent Intrinsic Activity of MoS2 NiS MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium Chuanqin Wang a,b, Bin Tian b, Mei Wu b, Jiahai Wang

More information

Supporting information

Supporting information Supporting information 3D porous MXene (Ti 3 C 2 )/reduced graphene oxide hybrid s for advanced lithium storage Zhiying Ma,, Xufeng Zhou,*, Wei Deng,, Da Lei,, and Zhaoping Liu *,. Key Laboratory of Graphene

More information