Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Size: px
Start display at page:

Download "Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard"

Transcription

1 Robotics 2 Target Tracking Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

2 Linear Dynamical System (LDS) Stochastic process governed by is the state vector is the input vector is the process noise is the system matrix is the input gain The system can be observed through is the measurement vector is the measurement noise is the measurement matrix

3 Discrete Time LDS Continuous model are difficult to realize Algorithms work at discrete time steps Measurements are acquired with certain rates In practice, discrete models are employed Discrete-time LDS are governed by is the state transition matrix is the discrete-time input gain Same observation function of continuous models

4 Discrete Time LDS Continuous model are difficult to realize Algorithms work at discrete time steps Measurements are acquired with certain rates In practice, discrete models are employed Discrete-time LDS are governed by In target tracking, the input is unknown! is the state transition matrix is the discrete-time input gain Same observation function of continuous models

5 LDS Example Throwing ball We want to throw a ball and compute its trajectory This can be easily done with an LDS The ball s state shall be represented as We ignore winds but consider the gravity force g No floor constraints We observe the ball with a noise-free position sensor

6 LDS Example Throwing ball Throwing a ball from s with initial velocity v Consider only the gravity force, g, of the ball y o s v x State vector Process matrices Initial state Input vector (scalar) Measurement vector Measurement matrix

7 LDS Example Throwing ball Initial State No noise

8 LDS Example Throwing ball System evolution Observations

9 LDS Example Throwing ball System evolution Observations

10 LDS Example Throwing ball System evolution Observations

11 LDS Example Throwing ball System evolution Observations

12 LDS Example Throwing ball System evolution Observations

13 LDS Example Throwing ball System evolution Observations

14 LDS Example Throwing ball System evolution Observations

15 LDS Example Throwing ball System evolution Observations

16 LDS Example Throwing ball System evolution Observations

17 LDS Example Throwing ball System evolution Observations

18 LDS Example Throwing ball System evolution Observations

19 LDS Example Throwing ball System evolution Observations

20 LDS Example Throwing ball Initial State It s windy and our sensor is imperfect: let s add Gaussian process and observation noise

21 LDS Example Throwing ball System evolution Observations

22 LDS Example Throwing ball System evolution Observations

23 LDS Example Throwing ball System evolution Observations

24 LDS Example Throwing ball System evolution Observations

25 LDS Example Throwing ball System evolution Observations

26 LDS Example Throwing ball System evolution Observations

27 LDS Example Throwing ball System evolution Observations

28 LDS Example Throwing ball System evolution Observations

29 LDS Example Throwing ball System evolution Observations

30 LDS Example Throwing ball System evolution Observations

31 LDS Example Throwing ball System evolution Observations

32 LDS Example Throwing ball System evolution Observations

33 Target Tracking Tracking is the estimation of the state of a moving object based on remote measurements. [Bar-Shalom] Detection is Knowing the presence of an object Tracking is Maintaining a state of an object over time Tracking maintains the object s state and identity despite detection errors (false negatives, false alarms), occlusions, and in the presence of other objects

34 Target Tracking Problem Statement Given (Linear/nonlinear) dynamical system model External measurements (from some sort of sensor) Wanted System state estimate (e.g. position, velocity, acceleration, ) Problems Track maintenance (i.e. creation, occlusion, deletion) Multiple targets Data association

35 Target Tracking Long History, Many Applications Fleet Management Surveillance Air Traffic Control People Tracking, HRI Motion Capture Military Applications

36 Tracking cycle

37 Tracking cycle Kalman filter motion model predicted state posterior state innovation from matched landmarks observation model predicted measurements in sensor coordinates targets raw sensory data

38 Kalman Filter (KF) Consider a discrete time LDS with dynamic equation where is a process noise The measurement equation is where is a measurement noise The initial state is generally unknown and modeled as a Gaussian random variable State estimate Covariance estimate

39 KF Cycle: State prediction State prediction In target tracking, no a priori knowledge of the dynamic equation is generally available Instead, different target motion models are used Brownian motion model Constant velocity model Constant acceleration model More advanced models (problem related)

40 Motion Models: Brownian No motion assumption Useful to describe stop-and-go motion behavior State representation Ball example Initial state Transition matrix

41 Motion Models: Brownian No motion assumption Useful to describe stop-and-go motion behavior State representation Ball example Initial state Transition matrix State prediction: Uncertainty grows

42 Motion Models: Brownian No motion assumption Useful to describe stop-and-go motion behavior State representation Ball example Initial state Transition matrix State prediction: Uncertainty grows

43 Motion Models: Brownian No motion assumption Useful to describe stop-and-go motion behavior State representation Ball example Initial state Transition matrix State prediction: Uncertainty grows

44 Motion Models: Brownian No motion assumption Useful to describe stop-and-go motion behavior State representation Ball example Initial state Transition matrix State prediction: Uncertainty grows

45 MMs: Constant Velocity Constant target velocity assumption Useful to model smooth target motion State representation Ball example Initial state Transition matrix

46 MMs: Constant Velocity Constant target velocity assumption Useful to model smooth target motion State representation Ball example Initial state Transition matrix State prediction: Linear target motion Uncertainty grows

47 MMs: Constant Velocity Constant target velocity assumption Useful to model smooth target motion State representation Ball example Initial state Transition matrix State prediction: Linear target motion Uncertainty grows

48 MMs: Constant Velocity Constant target velocity assumption Useful to model smooth target motion State representation Ball example Initial state Transition matrix State prediction: Linear target motion Uncertainty grows

49 MMs: Constant Velocity Constant target velocity assumption Useful to model smooth target motion State representation Ball example Initial state Transition matrix State prediction: Linear target motion Uncertainty grows

50 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix

51 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

52 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

53 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

54 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

55 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix

56 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

57 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

58 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

59 MMs: Constant Acceleration Constant target acceleration assumed Useful to model target motion that is smooth in position and velocity changes State representation Ball example Initial state Transition matrix State prediction: Non-linear motion Uncertainty grows

60 KF Cycle: Measurement Predict. Measurement prediction Observation Typically, only the target position is observed. The measurement matrix is then Note: One can also observe (not in this course) Velocity (Doppler radar) Acceleration (accelerometers)

61 KF Cycle: Data Association Once measurements are predicted and observed, we have to associate them with each other This is basically resolving the origin uncertainty of observations Data association is typically done in the sensor reference frame Data association can be a hard problem and many advanced techniques exist More on this later in this course

62 KF Cycle: Data Association Step 1: Compute the pairing difference and its associated uncertainty The difference between predicted measurement and observation is called innovation The associated covariance estimate is called the innovation covariance The prediction-observation pair is often called pairing

63 KF Cycle: Data Association Step 2: Check if the pairing is statistically compatible Compute the Mahalanobis distance Compare it against the proper threshold from an cumulative ( chi square ) distribution Significance level Degrees of freedom Compatibility on level α is finally given if this is true

64 KF Cycle: Data Association Constant velocity model Process noise Measurement noise No false alarm No problem

65 KF Cycle: Data Association Constant velocity model Process noise Measurement noise Uniform false alarm False alarm rate = 3 Ambiguity: several observations in the validation gate

66 KF Cycle: Data Association Constant velocity model Process noise Measurement noise Uniform false alarm False alarm rate = 3 Wrong association as closest observation is false alarm

67 KF Cycle: Update Computation of the Kalman gain State and state covariance update

68 Track management: Naïve Creation When to create a new track? What is the initial state? Occlusion/deletion When to delete a track? Is it just occluded? Two heuristics Greedy initialization Every observation not associated is a new track Initialize only position Lazy initialization Accumulate several unassociated observations Initialize position & velocity Two heuristics Greedy deletion Delete if no observation can be associated No occlusion handling Lazy deletion Delete if no observation can be associated for several time Implicit occlusion handling

69 Example: Tracking the Ball Unlike the previous experiment in which we had a model of the ball s trajectory and just observed it, we now want to track the ball Comparison: small versus large process noise Q and the effect of the three different motion models For simplicity, we perform no gaiting (i.e. no Mahalanobis test) but accept the pairing every time

70 Ball Tracking: Brownian Small process noise Large process noise Ground truth Observations State estimate

71 Ball Tracking: Brownian Ground truth Observations State estimate

72 Ball Tracking: Brownian Ground truth Observations State estimate

73 Ball Tracking: Brownian Ground truth Observations State estimate

74 Ball Tracking: Brownian Ground truth Observations State estimate

75 Ball Tracking: Brownian Ground truth Observations State estimate

76 Ball Tracking: Brownian Ground truth Observations State estimate

77 Ball Tracking: Brownian Ground truth Observations State estimate

78 Ball Tracking: Brownian Ground truth Observations State estimate

79 Ball Tracking: Brownian Ground truth Observations State estimate

80 Ball Tracking: Brownian Ground truth Observations State estimate

81 Ball Tracking: Brownian Ground truth Observations State estimate

82 Ball Tracking: Brownian Ground truth Observations State estimate

83 Ball Tracking: Brownian Ground truth Observations State estimate

84 Ball Tracking: Brownian large difference! Ground truth Observations State estimate

85 Ball Tracking: Constant Velocity Small process noise Large process noise Ground truth Observations State estimate

86 Ball Tracking: Constant Velocity Ground truth Observations State estimate

87 Ball Tracking: Constant Velocity Ground truth Observations State estimate

88 Ball Tracking: Constant Velocity Ground truth Observations State estimate

89 Ball Tracking: Constant Velocity Ground truth Observations State estimate

90 Ball Tracking: Constant Velocity Ground truth Observations State estimate

91 Ball Tracking: Constant Velocity Ground truth Observations State estimate

92 Ball Tracking: Constant Velocity Ground truth Observations State estimate

93 Ball Tracking: Constant Velocity Ground truth Observations State estimate

94 Ball Tracking: Constant Velocity Ground truth Observations State estimate

95 Ball Tracking: Constant Velocity Ground truth Observations State estimate

96 Ball Tracking: Constant Velocity Ground truth Observations State estimate

97 Ball Tracking: Constant Velocity Ground truth Observations State estimate

98 Ball Tracking: Constant Velocity Ground truth Observations State estimate

99 Ball Tracking: Constant Velocity smaller difference Ground truth Observations State estimate

100 Ball Tracking: Const. Acceleration Small process noise Large process noise Ground truth Observations State estimate

101 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

102 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

103 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

104 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

105 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

106 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

107 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

108 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

109 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

110 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

111 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

112 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

113 Ball Tracking: Const. Acceleration Ground truth Observations State estimate

114 Ball Tracking: Const. Acceleration very small difference! Ground truth Observations State estimate

115 Ball Tracking: Wrap Up The better the motion model, the better the tracker is able to follow the target A large process noise covariance can partly compensate a poor motion model But: large process noise covariances cause the validation gates to be large, which in turn, creates a high level of ambiguity for data association in case of multiple targets In other words: the tracker can t tell which is which target anymore because they are all statistically compatible with the observations

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Data Association Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Data Association Data association is the process of associating uncertain measurements to known tracks. Problem

More information

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms L11. EKF SLAM: PART I NA568 Mobile Robotics: Methods & Algorithms Today s Topic EKF Feature-Based SLAM State Representation Process / Observation Models Landmark Initialization Robot-Landmark Correlation

More information

Robotics 2 Least Squares Estimation. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard

Robotics 2 Least Squares Estimation. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard Robotics 2 Least Squares Estimation Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard Problem Given a system described by a set of n observation functions {f i (x)} i=1:n

More information

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras

Introduction to Mobile Robotics Information Gain-Based Exploration. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras Introduction to Mobile Robotics Information Gain-Based Exploration Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Tasks of Mobile Robots mapping SLAM localization integrated

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Introduction to Mobile Robotics Bayes Filter Kalman Filter

Introduction to Mobile Robotics Bayes Filter Kalman Filter Introduction to Mobile Robotics Bayes Filter Kalman Filter Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Bayes Filter Reminder 1. Algorithm Bayes_filter( Bel(x),d ):

More information

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz What is SLAM? Estimate the pose of a robot and the map of the environment

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras 1 Motivation Recall: Discrete filter Discretize the

More information

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Recap: State Estimation using Kalman Filter Project state and error

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

Robotics 2 AdaBoost for People and Place Detection

Robotics 2 AdaBoost for People and Place Detection Robotics 2 AdaBoost for People and Place Detection Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard v.1.0, Kai Arras, Oct 09, including material by Luciano Spinello and Oscar Martinez Mozos

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Tracking and Identification of Multiple targets

Tracking and Identification of Multiple targets Tracking and Identification of Multiple targets Samir Hachour, François Delmotte, Eric Lefèvre, David Mercier Laboratoire de Génie Informatique et d'automatique de l'artois, EA 3926 LGI2A first name.last

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm

Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm Tactical Ballistic Missile Tracking using the Interacting Multiple Model Algorithm Robert L Cooperman Raytheon Co C 3 S Division St Petersburg, FL Robert_L_Cooperman@raytheoncom Abstract The problem of

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Robot Localisation. Henrik I. Christensen. January 12, 2007

Robot Localisation. Henrik I. Christensen. January 12, 2007 Robot Henrik I. Robotics and Intelligent Machines @ GT College of Computing Georgia Institute of Technology Atlanta, GA hic@cc.gatech.edu January 12, 2007 The Robot Structure Outline 1 2 3 4 Sum of 5 6

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information

Advanced Techniques for Mobile Robotics Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Least Squares Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Problem Given a system described by a set of n observation functions {f i (x)} i=1:n

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Particle Filters. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Particle Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Motivation For continuous spaces: often no analytical formulas for Bayes filter updates

More information

Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University

Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University Abnormal Activity Detection and Tracking 1 The Problem Goal: To track activities

More information

A Two-Stage Approach to Multi-Sensor Temporal Data Fusion

A Two-Stage Approach to Multi-Sensor Temporal Data Fusion A Two-Stage Approach to Multi-Sensor Temporal Data Fusion D.Hutber and Z.Zhang INRIA, 2004 Route des Lucioles, B.P.93, 06902 Sophia Antipolis Cedex, France. dhutber@sophia.inria.fr, zzhangosophia.inria.fr

More information

Previously on TT, Target Tracking: Lecture 2 Single Target Tracking Issues. Lecture-2 Outline. Basic ideas on track life

Previously on TT, Target Tracking: Lecture 2 Single Target Tracking Issues. Lecture-2 Outline. Basic ideas on track life REGLERTEKNIK Previously on TT, AUTOMATIC CONTROL Target Tracing: Lecture 2 Single Target Tracing Issues Emre Özan emre@isy.liu.se Division of Automatic Control Department of Electrical Engineering Linöping

More information

Robot Localization and Kalman Filters

Robot Localization and Kalman Filters Robot Localization and Kalman Filters Rudy Negenborn rudy@negenborn.net August 26, 2003 Outline Robot Localization Probabilistic Localization Kalman Filters Kalman Localization Kalman Localization with

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Gaussian Filters Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile robot

More information

Tracking Groups of People with a Multi-Model Hypothesis Tracker

Tracking Groups of People with a Multi-Model Hypothesis Tracker Tracking Groups of People with a Multi-Model Hypothesis Tracker Boris Lau Kai O. Arras Wolfram Burgard Abstract People in densely populated environments typically form groups that split and merge. In this

More information

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu ESTIMATOR STABILITY ANALYSIS IN SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu Institut de Robtica i Informtica Industrial, UPC-CSIC Llorens Artigas 4-6, Barcelona, 88 Spain {tvidal, cetto,

More information

Using the Kalman Filter for SLAM AIMS 2015

Using the Kalman Filter for SLAM AIMS 2015 Using the Kalman Filter for SLAM AIMS 2015 Contents Trivial Kinematics Rapid sweep over localisation and mapping (components of SLAM) Basic EKF Feature Based SLAM Feature types and representations Implementation

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Introduction to Mobile Robotics Probabilistic Sensor Models

Introduction to Mobile Robotics Probabilistic Sensor Models Introduction to Mobile Robotics Probabilistic Sensor Models Wolfram Burgard 1 Sensors for Mobile Robots Contact sensors: Bumpers Proprioceptive sensors Accelerometers (spring-mounted masses) Gyroscopes

More information

Lecture Outline. Target Tracking: Lecture 3 Maneuvering Target Tracking Issues. Maneuver Illustration. Maneuver Illustration. Maneuver Detection

Lecture Outline. Target Tracking: Lecture 3 Maneuvering Target Tracking Issues. Maneuver Illustration. Maneuver Illustration. Maneuver Detection REGLERTEKNIK Lecture Outline AUTOMATIC CONTROL Target Tracking: Lecture 3 Maneuvering Target Tracking Issues Maneuver Detection Emre Özkan emre@isy.liu.se Division of Automatic Control Department of Electrical

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

Rao-Blackwellized Particle Filter for Multiple Target Tracking

Rao-Blackwellized Particle Filter for Multiple Target Tracking Rao-Blackwellized Particle Filter for Multiple Target Tracking Simo Särkkä, Aki Vehtari, Jouko Lampinen Helsinki University of Technology, Finland Abstract In this article we propose a new Rao-Blackwellized

More information

Suppression of impulse noise in Track-Before-Detect Algorithms

Suppression of impulse noise in Track-Before-Detect Algorithms Computer Applications in Electrical Engineering Suppression of impulse noise in Track-Before-Detect Algorithms Przemysław Mazurek West-Pomeranian University of Technology 71-126 Szczecin, ul. 26. Kwietnia

More information

CSC487/2503: Foundations of Computer Vision. Visual Tracking. David Fleet

CSC487/2503: Foundations of Computer Vision. Visual Tracking. David Fleet CSC487/2503: Foundations of Computer Vision Visual Tracking David Fleet Introduction What is tracking? Major players: Dynamics (model of temporal variation of target parameters) Measurements (relation

More information

A Multiple Target Range and Range-Rate. Tracker Using an Extended Kalman Filter and. a Multilayered Association Scheme

A Multiple Target Range and Range-Rate. Tracker Using an Extended Kalman Filter and. a Multilayered Association Scheme A Multiple Target Range and Range-Rate Tracker Using an Extended Kalman Filter and a Multilayered Association Scheme A thesis submitted by Leah Uftring In partial fufillment of the degree requirements

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets

Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets J. Clayton Kerce a, George C. Brown a, and David F. Hardiman b a Georgia Tech Research Institute, Georgia Institute of Technology,

More information

(Extended) Kalman Filter

(Extended) Kalman Filter (Extended) Kalman Filter Brian Hunt 7 June 2013 Goals of Data Assimilation (DA) Estimate the state of a system based on both current and all past observations of the system, using a model for the system

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

Conditions for Suboptimal Filter Stability in SLAM

Conditions for Suboptimal Filter Stability in SLAM Conditions for Suboptimal Filter Stability in SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto and Alberto Sanfeliu Institut de Robòtica i Informàtica Industrial, UPC-CSIC Llorens Artigas -, Barcelona, Spain

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

ERROR COVARIANCE ESTIMATION IN OBJECT TRACKING SCENARIOS USING KALMAN FILTER

ERROR COVARIANCE ESTIMATION IN OBJECT TRACKING SCENARIOS USING KALMAN FILTER ERROR COVARIANCE ESTIMATION IN OBJECT TRACKING SCENARIOS USING KALMAN FILTER Mr K V Sriharsha K.V 1, Dr N V Rao 2 1 Assistant Professor, Department of Information Technology, CVR College of Engg (India)

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Multi-Sensor Multi-Target Tracking - Strategies for Events that Become Invisible

Multi-Sensor Multi-Target Tracking - Strategies for Events that Become Invisible Multi-Sensor Multi-Target Tracking - Strategies for Events that Become Invisible D.Hutber and Z.Zhang INRIA, 2004 Route des Lucioles, B.P.93, 06902 Sophia Antipolis Cedex, France. dhutber@sophia.inria.fr,

More information

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions December 14, 2016 Questions Throughout the following questions we will assume that x t is the state vector at time t, z t is the

More information

Sliding Window Test vs. Single Time Test for Track-to-Track Association

Sliding Window Test vs. Single Time Test for Track-to-Track Association Sliding Window Test vs. Single Time Test for Track-to-Track Association Xin Tian Dept. of Electrical and Computer Engineering University of Connecticut Storrs, CT 06269-257, U.S.A. Email: xin.tian@engr.uconn.edu

More information

Data association uncertainty occurs when remote sensing devices, such as radar,

Data association uncertainty occurs when remote sensing devices, such as radar, The Probabilistic Data Association Filter ESTIMATION IN THE PRESENCE OF MEASUREMENT ORIGIN UNCERTAINTY YAAKOV BAR-SHALOM, FRED DAUM, and JIM HUANG Data association uncertainty occurs when remote sensing

More information

Guidance for Writing Lab Reports for PHYS 233:

Guidance for Writing Lab Reports for PHYS 233: Guidance for Writing Lab Reports for PHYS 233: The following pages have a sample lab report that is a model of what we expect for each of your lab reports in PHYS 233. It is written for a lab experiment

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robot localization Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic

More information

Mutual Information Based Data Selection in Gaussian Processes for People Tracking

Mutual Information Based Data Selection in Gaussian Processes for People Tracking Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 01, Victoria University of Wellington, New Zealand. Mutual Information Based Data Selection in Gaussian Processes for People Tracking

More information

Ground Moving Target Parameter Estimation for Stripmap SAR Using the Unscented Kalman Filter

Ground Moving Target Parameter Estimation for Stripmap SAR Using the Unscented Kalman Filter Ground Moving Target Parameter Estimation for Stripmap SAR Using the Unscented Kalman Filter Bhashyam Balaji, Christoph Gierull and Anthony Damini Radar Sensing and Exploitation Section, Defence Research

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

DATA FUSION III: Estimation Theory

DATA FUSION III: Estimation Theory DATA FUSION III: Estimation Theory Date: March 30, 2006 Time: 5:00 7:30 PM Location: B-300-2-3 (AAR-400) (Main Building, 2nd floor, near freight elevators) Instructor: Dr. James K Beard Credits: 1 Course

More information

Heterogeneous Track-to-Track Fusion

Heterogeneous Track-to-Track Fusion Heterogeneous Track-to-Track Fusion Ting Yuan, Yaakov Bar-Shalom and Xin Tian University of Connecticut, ECE Dept. Storrs, CT 06269 E-mail: {tiy, ybs, xin.tian}@ee.uconn.edu T. Yuan, Y. Bar-Shalom and

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Particle Filter for Localization Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, and the book Probabilistic Robotics from Thurn et al.

More information

A Sufficient Comparison of Trackers

A Sufficient Comparison of Trackers A Sufficient Comparison of Trackers David Bizup University of Virginia Department of Systems and Information Engineering P.O. Box 400747 151 Engineer's Way Charlottesville, VA 22904 Donald E. Brown University

More information

Probabilistic Fundamentals in Robotics

Probabilistic Fundamentals in Robotics Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robot localization Basilio Bona DAUIN Politecnico di Torino June 2011 Course Outline Basic mathematical framework Probabilistic

More information

CONDENSATION Conditional Density Propagation for Visual Tracking

CONDENSATION Conditional Density Propagation for Visual Tracking CONDENSATION Conditional Density Propagation for Visual Tracking Michael Isard and Andrew Blake Presented by Neil Alldrin Department of Computer Science & Engineering University of California, San Diego

More information

Mobile Robots Localization

Mobile Robots Localization Mobile Robots Localization Institute for Software Technology 1 Today s Agenda Motivation for Localization Odometry Odometry Calibration Error Model 2 Robotics is Easy control behavior perception modelling

More information

Simultaneous Localization and Mapping (SLAM) Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Simultaneous Localization and Mapping (SLAM) Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Simultaneous Localization and Mapping (SLAM) Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Introduction SLAM asks the following question: Is it possible for an autonomous vehicle

More information

Robotics 2. AdaBoost for People and Place Detection. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2. AdaBoost for People and Place Detection. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 AdaBoost for People and Place Detection Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard v.1.1, Kai Arras, Jan 12, including material by Luciano Spinello and Oscar Martinez Mozos

More information

Using Match Uncertainty in the Kalman Filter for a Sonar Based Positioning System

Using Match Uncertainty in the Kalman Filter for a Sonar Based Positioning System Using atch Uncertainty in the Kalman Filter for a Sonar Based ositioning System Oddbjørn Bergem, Claus Siggaard Andersen, Henrik Iskov Christensen Norwegian Defence Research Establishment, Norway Laboratory

More information

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015 Probability Refresher Kai Arras, University of Freiburg Winter term 2014/2015 Probability Refresher Introduction to Probability Random variables Joint distribution Marginalization Conditional probability

More information

A Gaussian Mixture Motion Model and Contact Fusion Applied to the Metron Data Set

A Gaussian Mixture Motion Model and Contact Fusion Applied to the Metron Data Set 1th International Conference on Information Fusion Chicago, Illinois, USA, July 5-8, 211 A Gaussian Mixture Motion Model and Contact Fusion Applied to the Metron Data Set Kathrin Wilkens 1,2 1 Institute

More information

Using Tobit Kalman filtering in order to improve the motion recorded by Microsoft Kinect

Using Tobit Kalman filtering in order to improve the motion recorded by Microsoft Kinect International Workshop on Applied Probabilities 8th International Workshop on Applied Probabilities IWAP2016 Using Tobit Kalman filtering in order to improve the motion recorded by Microsoft Kinect K.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Summary of last lecture We know how to do probabilistic reasoning over time transition model P(X t

More information

Place-Dependent People Tracking

Place-Dependent People Tracking Place-Dependent People Tracking Matthias Luber, Gian Diego Tipaldi and Kai O. Arras Abstract People typically move and act under the constraints of an environment, making human behavior strongly place-dependent.

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception.

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception. The Kalman Filter (part 1) HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_spring_575x/ March 5, 2007 HCI/ComS 575X: Computational Perception

More information

v are uncorrelated, zero-mean, white

v are uncorrelated, zero-mean, white 6.0 EXENDED KALMAN FILER 6.1 Introduction One of the underlying assumptions of the Kalman filter is that it is designed to estimate the states of a linear system based on measurements that are a linear

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Sequential Bayesian Estimation of the Probability of Detection for Tracking

Sequential Bayesian Estimation of the Probability of Detection for Tracking 2th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 Sequential Bayesian Estimation of the Probability of Detection for Tracking Kevin G. Jamieson Applied Physics Lab University

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems Modeling CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami February 21, 2017 Outline 1 Modeling and state estimation 2 Examples 3 State estimation 4 Probabilities

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

Introduction to Unscented Kalman Filter

Introduction to Unscented Kalman Filter Introduction to Unscented Kalman Filter 1 Introdution In many scientific fields, we use certain models to describe the dynamics of system, such as mobile robot, vision tracking and so on. The word dynamics

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Local Track Repair for Video Tracking on Small UAVs Stephen DelMarco 1, Mathew Antone 2, Austin Reiter 3, Todd Jenkins 4 1,2,3 BAE Systems Inc, 6 New England Executive Park, Burlington, MA USA 01803, 4

More information

The Use of Short-Arc Angle and Angle Rate Data for Deep-Space Initial Orbit Determination and Track Association

The Use of Short-Arc Angle and Angle Rate Data for Deep-Space Initial Orbit Determination and Track Association The Use of Short-Arc Angle and Angle Rate Data for Deep-Space Initial Orbit Determination and Track Association Dr. Moriba Jah (AFRL) Mr. Kyle DeMars (UT-Austin) Dr. Paul Schumacher Jr. (AFRL) Background/Motivation

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

ADDRESSING TRACK COALESCENCE IN SEQUENTIAL K-BEST MULTIPLE HYPOTHESIS TRACKING

ADDRESSING TRACK COALESCENCE IN SEQUENTIAL K-BEST MULTIPLE HYPOTHESIS TRACKING ADDRESSING TRACK COALESCENCE IN SEQUENTIAL K-BEST MULTIPLE HYPOTHESIS TRACKING A Thesis Presented to The Academic Faculty By Ryan D. Palkki In Partial Fulfillment of the Requirements for the Degree Master

More information

Distributed estimation in sensor networks

Distributed estimation in sensor networks in sensor networks A. Benavoli Dpt. di Sistemi e Informatica Università di Firenze, Italy. e-mail: benavoli@dsi.unifi.it Outline 1 An introduction to 2 3 An introduction to An introduction to In recent

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Instituto de Sistemas e Robótica * Pólo de Coimbra * Tracking and Data Association Using Data from a LRF

Instituto de Sistemas e Robótica * Pólo de Coimbra * Tracking and Data Association Using Data from a LRF Instituto de Sistemas e Robótica * Pólo de Coimbra * Tracing and Data Association Using Data from a LRF Technical Report Nº ISRLM2005/04 Cristiano Premebida October, 2005. Departamento de Engenharia Electrotécnica

More information

Information Theoretic Focal Length Selection for Real Time Active 3 D Object Tracking

Information Theoretic Focal Length Selection for Real Time Active 3 D Object Tracking Information Theoretic Focal Length Selection for Real Time Active 3 D Object Tracking J. Denzler, M. Zobel, H. Niemann Chair for Pattern Recognition University of Erlangen Nuremberg 91058 Erlangen, Germany

More information

Introduction to Sensor Data Fusion Methods and Applications

Introduction to Sensor Data Fusion Methods and Applications Introduction to Sensor Data Fusion Methods and Applications Last lecture: Why Sensor Data Fusion? Motivation, general context Discussion of examples oral examination: 6 credit points after the end of the

More information

Spatially Grounded Multi-Hypothesis Tracking of People

Spatially Grounded Multi-Hypothesis Tracking of People Proceedings of the IEEE ICRA 2009 Workshop on People Detection and Tracking Kobe, Japan, May 2009 Spatially Grounded Multi-Hypothesis Tracking of People Matthias Luber Gian Diego Tipaldi Kai O. Arras Abstract

More information

Radar-Optical Observation Mix

Radar-Optical Observation Mix Radar-Optical Observation Mix Felix R. Hoots" April 2010! ETG Systems Engineering Division April 19, 10 1 Background" Deep space satellites are those with period greater than or equal to 225 minutes! Synchronous!

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information