Fine Structure Calculations of Atomic Data for Ar XVI

Size: px
Start display at page:

Download "Fine Structure Calculations of Atomic Data for Ar XVI"

Transcription

1 Journal of Modern Physics, 2015, 6, Published Online September 2015 in SciRes. Fine Structure Calculations of Atomic Data for Ar XVI A. I. Refaie Physics Department, Faculty of Science, Cairo University, Giza, Egypt Received 23 August 2015; accepted 19 September 2015; published 22 September 2015 Copyright 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). Abstract Fine structure energy levels, wavelengths, log gf and allowed transition probabilities (E1) have been calculated for Lithium-like Ar XVI. The optimized electrostatic parameters by a least square approach, have been used in the calculation to include the configuration interaction and relativistic effects. A total number of 69 Ar XVI levels having total angular momenta, 1/2 J 9/2 of even and odd parities, orbital angular momenta 2 l 4, with 546 E1 transitions for 6 n 10 are considered using the relativistic effect in the Breit-Pauli method, where n is the principal quantum number. A comparison is made with the available results in literature. Keywords Atomic Data, Transition Probabilities, Ar XVI 1. Introduction Identification of X-rays and EUV fine structure lines of Lithium-like Argon is needed in laboratory and in astrophysical plasma. The X-rays emitted from highly ionized atoms are proved to be important in determining the various plasma parameters [1] [2]. Experimental data [3]-[5] have been obtained in order to be compared with the theoretical predictions. Theoretical calculations of the energy levels, radiative rates and electron impact excitation rates for transitions in Li-like ions with 12 Z 20 and 2 n 5 were performed [6]. Electron self-energy screening approximations have been used in multi-electron atoms [7]. Relativistic configuration-interaction calculation of the energy levels of the core-excited states of lithium-like ions was presented [8]. The energies, transition probabilities and oscillator strengths for the electric dipole transitions between the levels of the ground and the low-lying excited states have been calculated using the multi-configuration Dirac-Hartree-Fock method [9]. Theoretical calculations were performed for the K β satellite X-rays in the active space approximation using multiconfiguration Dirac- Fock wave functions with the inclusion of the finite nuclear size effect, the Breit interaction and the quantum How to cite this paper: Refaie, A.I. (2015) Fine Structure Calculations of Atomic Data for Ar XVI. Journal of Modern Physics, 6,

2 electrodynamic corrections [10]. The Breit-Pauli R-matrix method has been used to compute the transitions from the upper configurations (n = 4, 5) [11]. The dipole-length, dipole-velocity and dipole-acceleration absorption oscillator strengths were calculated using the energies and the multiconfiguration interaction wave functions obtained from a full core plus the correlation method, in which relativistic and mass-polarization effects on the energy, as a first-order perturbation corrections, are included [12]. The relativistic energies, fine structures, hyperfine structures, Auger rates and widths of the core-excited states for the Li isoelectronic sequence were studied using the saddle-point variational method and the saddle-point complex-rotation method [13]. Electron-impact excitation for Li-like isoelectronic sequence has been obtained using the radiation and Auger damped intermediate-coupling frame transformation R-matrix approach [14]. In the present work, fine structure energy levels, wavelengths, log gf and radiative allowed transition probabilities are presented for Ar XVI. The calculations have been performed using the Breit-Pauli (BP) approximation, for describing the relativistic interaction between electrons. That is to say, the calculations include both the relativistic Hartree-Fock (RHF) in LS coupling and relativistic correction. The interpretation of the configuration level structures are made by least-squares fit of the observed levels. The least-squares fitting procedure is used to regularize the energy levels. These adjusted fine structure energy levels are used to calculate the transition probabilities. The total number of considered Ar XVI levels is found to be 69, with 546 allowed transition rates. The configuration 1s 2 2s of Li-like ions is taken as the ground state. The energy of the other electronic configurations n i l i is obtained by adjusting the scaling parameters E av and ζ i (r i ) and is listed in Table 1. The calculated fine structure energy levels have been tabulated and compared with the experimental and theoretical data [4] [11]. The allowed electric dipole transition probabilities have been also compared with Ref. [11] using Breit- Pauli R-matrix (BPRM) method and no corresponding experimental data have been found in the literature. 2. Calculation Method 2.1. Atomic Structure Theory In nonrelativistic LS coupling calculations, the normal starting point is Schrödinger s equation where the Hamiltonian for a multi-electron system, in atomic units is given as [15] N N 1 2 Z 1 H = i + i= 1 2 ri i> jrij (1) A stationary state of N-electrons is described by a wave function ψ ( q q ), where q ( r, s ) sents the space and spin coordinates of the electron i. (,, ) = ψ (,, ) Hψ q q E q q 1 N 1 N 1,, N = repre- i i i The wave function is assumed continuous with respect to the space variables and is the solution of the wave equation. In the multiconfiguration approximation, the wave functions for a state labeled αjm J are expanded in terms of the configuration state functions M ( JM J) ciφ( αilisijm j) ψ α = (2) i= 1 where α representing the configuration and also the set of quantum numbers both required to specify the state The Relativistic Effects Breit-Pauli approximation, for describing the relativistic interaction between electrons in an approximate form is [16] HBP = HNR + HFS + HRS (3) H NR is the non-relativistic multi-electron system hamiltonian. The fine-structure operator H FS is HFS = HSO + HSOO + HSS (4) where H SO is the nuclear spin-orbit term, H SOO is the spin-other-orbit term and H SS is the spin-spin term. The relativistic shift operator H RS commutes with L and S and can be written 1610

3 Table 1. Radial function parameters for Ar XVI ion in units of 1000 cm 1. Configuration Parameter Configuration Parameter 1s 2 2s E av 0 1s 2 2p E av s 2 3s E av ζ s 2 4s E av s 2 3p E av s 2 5s E av ζ s 2 6s E av s 2 4p E av s 2 7s E av ζ s 2 8s E av s 2 5p E av s 2 9s E av ζ s 2 10s E av s 2 6p E av s 2 3d E av ζ ζ s 2 7p E av s 2 4d E av ζ ζ 0.4 1s 2 8p E av s 2 5d E av ζ ζ s 2 9p E av s 2 6d E av ζ ζ s 2 10p E av s 2 7d E av ζ ζ s 2 4f E av s 2 8d E av ζ ζ s 2 5f E av s 2 9d E av ζ ζ s 2 6f E av s 2 10d E av ζ ζ s 2 7f E av s 2 5g E av ζ ζ s 2 8f E av s 2 6g E av ζ ζ s 2 9f E av s 2 7g E av ζ ζ s 2 10f E av s 2 8g E av ζ ζ s 2 9g E av ζ s 2 10g E av ζ

4 where H MC is the mass correction term, H = H + H + H + H + H (5) RS MC D1 D2 OO SSC H D 1 and H D 2 are the one and two body Darwin terms, H OO is the orbit orbit term and H SSC is the spin-spin contact term. The radial wave functions have been generated using the Relativistic Hartree-Fock (RHF) method introduced, using the computer codes (Cowan ATOMIC STRUCTURE PACKAGE) [17]. The relativistic corrections included in the differential equations are derived from the Pauli-approximation to the Dirac-Hartree Fock equations. The mass-velocity and the Darwin operators are included in the calculations. The radial parameters have been fitted in the least square optimizing program fitting the eigen-values of the hamiltonian to the available experimental energy levels. These optimized integrals have been used to compute both the wavelengths and the transition rates Electric Dipole Decay Rates The strength of a line is defined as the square of the reduced dipole matrix element [18] ( ; ) MM 2 S γj γ J = γjm D γ J M (6) where ψ and ψ' are the wave functions composed of many basis states, the sum runs over all N electrons of the atom (or ion) and r i is the radial position of the i th electron. The transition probability is related to S according to π eao 3 Aul, = S( ΔE) (7) 3hg u where u and l represents the upper and lower levels, respectively, g u is the statistical weight of the upper level of the transition, a o is the Bohr radius and E is the wave number of the spectral line in cm 1. The weighted oscillator strength for the transition between ψ and ψ' is defined as 3. Results and Discussion gu f 2 = ( Δ E) S (8) 3 The diagonalization of the energy matrices with RHF values for the energy parameters leads to the theoretical predictions for the energy levels of the configurations. The computer code [17] is used to calculate energy levels, wavelengths, log gf and electric dipole transition probabilities. For even parity, the configurations 1s 2 ns, nd and ng (n = 6-10) have been considered while 1s 2 np and nf (n = 6-10) are considered for the odd parity configurations. They correspond to total angular momenta 1/2 J 9/2 of even and odd parities with n = 6-10 while orbital angular momenta 0 L 4 and spin multiplicity (2S + 1) = 2. The mentioned configurations for the experimental energy levels taken from Ref. [4] are used in the fitting procedure for Ar XVI. For 1s 2 ns there is only one parameter (E av ) which is determined from the observed term 2 S 1/2, for 1s 2 nd there are two parameters (E av, ζ 2 ) which are determined from the observed terms 2 D 3/2 and 2 D 5/2, for 1s 2 ng there are two parameters (E av, ζ 2 ) which are determined from the observed terms 2 G 7/2 and 2 G 9/2, for 1s 2 np there are two parameters (E av, ζ 1 ) which are determined from the observed terms 2 P 1/2 and 2 P 3/2 and for 1s 2 nf there are two parameters (E av, ζ 2 ) which are determined from the observed terms 2 F 5/2, 2 F 7/2. The energy of the other electronic configurations are obtained by adjusting the scaling parameters E av and ζ i (r i ) are listed in Table 1. A total of 69 fine structure energy levels for Ar XVI are listed in Table 2, as well as the values compiled by Ref. [4] and those calculated in Ref. [11]. The calculated fine structure energy levels of the Ar XVI ion agree with the observed and calculated values within the range of 0.15% for most levels. However, ab initio calculations including relativistic effects in the Breit-Pauli R-matrix (BPRM) method by Nahar [11] show a good agreement with the present calculations of fine structure energy levels. The wavelengths λ (in units of Ǻ), log gf and radiative transition probabilities for spontaneous emission (in units of 10 8 s 1 ) for 546 electric dipole allowed transitions E1 are obtained from BP calculations. Table 3 shows 1612

5 Table 2. The calculated energy levels in cm 1 for Ar XVI in comparison with literatures. Configuration E cal E [4] E [11] Configuration E cal E [4] E [11] 1s 2 2s 2 S 1/ s 2 7p 2 P 1/2 3,897,153 3,897,133 3,896,838 1s 2 2p 2 P 1/2 1,920,620 1,920,590 1,920,622 1s 2 7p 2 P 3/2 3,897,351 3,897,321 3,897,068 1s 2 2p 2 P 3/2 2,002,380 2,002,060 2,002,377 1s 2 7d 2 D 3/2 3,899,149 3,899,119 3,898,747 1s 2 3s 2 S 1/2 2,388,872 2,388,872 2,388,861 1s 2 7d 2 D 5/2 3,899,158 3,899,178 3,898,813 1s 2 3p 2 P 1/2 2,441,940 2,441,532 2,441,941 1s 2 7f 2 F 5/2 3,904,946 3,898,946 3,898,901 1s 2 3p 2 P 3/2 2,444,335 2,443,937 2,444,322 1s 2 7f 2 F 7/2 3,904,975 3,898,975 3,898,934 1s 2 3d 2 D 3/2 2,463,791 2,463,771 2,463,789 1s 2 7g 2 G 7/2 3,905,027 3,898,934 3,898,934 1s 2 3d 2 D 5/2 2,464,481 2,464,521 2,464,470 1s 2 7g 2 G 9/2 3,905,045 3,898,952 3,898,956 1s 2 4s 2 S 1/2 3,202,101 3,202,101 3,202,025 1s 2 8s 2 S 1/2 3,969,857 3,969,857 3,969,857 1s 2 4p 2 P 1/2 3,223,450 3,223,425 3,223,446 1s 2 8d 2 D 3/2 3,974,870 3,974,842 3,974,400 1s 2 4p 2 P 3/2 3,224,555 3,224,438 3,224,543 1s 2 8d 2 D 5/2 3,974,870 3,974,881 3,974,444 1s 2 4d 2 D 3/2 3,232,733 3,232,673 3,232,642 1s 2 8p 2 P 1/2 3,979,347 3,973,160 3,973,127 1s 2 4d 2 D 5/2 3,233,089 3,232,989 3,232,861 1s 2 8p 2 P 3/2 3,979,473 3,973,286 3,973,281 1s 2 4f 2 F 5/2 3,239,433 3,233,483 3,233,662 1s 2 8f 2 F 5/2 3,980,573 3,974,543 3,974,510 1s 2 4f 2 F 7/2 3,239,591 3,233,641 3,233,827 1s 2 8f 2 F 7/2 3,980,593 3,974,562 3,974,532 1s 2 5s 2 S 1/2 3,573,450 3,573,451 3,573,442 1s 2 8g 2 G 7/2 3,980,627 3,974,530 3,974,532 1s 2 5p 2 P 3/2 3,584,656 3,584,616 3,584,646 1s 2 8g 2 G 9/2 3,980,639 3,974,542 3,974,543 1s 2 5d 2 D 3/2 3,588,906 3,588,878 3,588,849 1s 2 9s 2 S 1/2 4,023,079 4,023,079 4,023,080 1s 2 5d 2 D 5/2 3,589,068 3,589,004 3,589,036 1s 2 9d 2 D 5/2 4,026,707 4,026,737 4,026,295 1s 2 5p 2 P 1/2 3,590,099 3,584,099 3,584,141 1s 2 9d 2 D 3/2 4,026,709 4,026,709 4,026,262 1s 2 5f 2 F 5/2 3,595,165 3,589,275 3,589,255 1s 2 9p 2 P 1/2 4,031,561 4,025,371 4,025,373 1s 2 5f 2 F 7/2 3,595,247 3,589,357 3,589,354 1s 2 9p 2 P 3/2 4,031,649 4,025,459 4,025,483 1s 2 5g 2 G 7/2 3,595,383 3,589,318 3,589,343 1s 2 9f 2 F 5/2 4,032,421 4,026,341 4,026,339 1s 2 5g 2 G 9/2 3,595,432 3,589,367 3,589,409 1s 2 9f 2 F 7/2 4,032,435 4,026,355 4,026,361 1s 2 6s 2 S 1/2 3,771,342 3,771,342 3,771,342 1s 2 9g 2 G 7/2 4,032,459 4,026,361 4,026,361 1s 2 6p 2 P 1/2 3,779,502 3,779,471 3,779,145 1s 2 9g 2 G 9/2 4,032,467 4,026,369 4,026,372 1s 2 6p 2 P 3/2 3,779,801 3,779,770 3,779,507 1s 2 10s 2 S 1/2 4,061,048 4,061,048 4,061,049 1s 2 6d 2 D 3/2 3,782,704 3,782,726 3,782,173 1s 2 10d 2 D 3/2 4,063,337 4,063,363 4,063,364 1s 2 6d 2 D 5/2 3,782,750 3,782,820 3,782,283 1s 2 10d 2 D 5/2 4,063,339 4,063,383 4,063,386 1s 2 6f 2 F 5/2 3,788,420 3,794,320 3,782,426 1s 2 10p 2 P 1/2 4,068,879 4,062,709 4,062,717 1s 2 6f 2 F 7/2 3,788,467 3,794,367 3,782,481 1s 2 10p 2 P 3/2 4,068,944 4,062,774 4,062,794 1s 2 6g 2 G 7/2 3,788,549 3,782,481 3,782,481 1s 2 10f 2 F 5/2 4,069,505 4,063,445 4,063,419 1s 2 6g 2 G 9/2 3,788,577 3,782,509 3,782,513 1s 2 10f 2 F 7/2 4,069,516 4,063,455 4,063,430 1s 2 7s 2 S 1/2 3,891,943 3,891,943 3,891,943 1s 2 10g 2 G 7/2 4,069,533 4,063,450 4,063,430 1s 2 10g 2 G 9/2 4,069,539 4,063,456 4,063,

6 Table 3. Wavelengths (in Å) and the transition rates (in sec 1 ) is compared with Ref. [11]. λ (Å) Transition Log gf A ij (Sec 1 ) A ij [11] s 2 2s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 2s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 2s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 2s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 2s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 2s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 2p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 2p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 2p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 2p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 2p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 2s 2 S 1/2-1s 2 7p 2 P 3/ E E s 2 2s 2 S 1/2-1s 2 7p 2 P 1/ E E s 2 2p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 2p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 2p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 2p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 2p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 2p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 2p 2 P 1/2-1s 2 8s 2 S 1/ E E s 2 2p 2 P 3/2-1s 2 8d 2 D 3/ E E s 2 2p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 2p 2 P 3/2-1s 2 8s 2 S 1/ E E s 2 2s 2 S 1/2-1s 2 6p 2 P 3/ E E s 2 2s 2 S 1/2-1s 2 6p 2 P 1/ E E s 2 2p 2 P 1/2-1s 2 7d 2 D 3/ E E s 2 2p 2 P 1/2-1s 2 7s 2 S 1/ E E s 2 2p 2 P 3/2-1s 2 7d 2 D 3/ E E s 2 2p 2 P 3/2-1s 2 7d 2 D 5/ E E s 2 2p 2 P 3/2-1s 2 7s 2 S 1/ E E s 2 2p 2 P 1/2-1s 2 6d 2 D 3/ E E s 2 2p 2 P 1/2-1s 2 6s 2 S 1/ E E s 2 2p 2 P 3/2-1s 2 6d 2 D 3/ E E s 2 2p 2 P 3/2-1s 2 6d 2 D 5/ E E s 2 2p 2 P 3/2-1s 2 6s 2 S 1/ E E

7 s 2 3s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 3s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 3p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 3p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 3p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 3p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 3p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 3d 2 D 3/2-1s 2 10f 2 F 5/ E E s 2 3d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 3d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 3d 2 D 5/2-1s 2 10f 2 F 7/ E E s 2 3d 2 D 5/2-1s 2 10f 2 F 5/ E E s 2 3d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 3p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 3p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 3p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 3p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 3p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 3s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 3d 2 D 3/2-1s 2 9f 2 F 5/ E E s 2 3d 2 D 3/2-1s 2 9p 2 P 3/ E E s 2 3d 2 D 3/2-1s 2 9p 2 P 1/ E E s 2 3d 2 D 5/2-1s 2 9f 2 F 7/ E E s 2 3d 2 D 5/2-1s 2 9f 2 F 5/ E E s 2 3d 2 D 5/2-1s 2 9p 2 P 3/ E E s 2 3p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 3p 2 P 1/2-1s 2 8s 2 S 1/ E E s 2 3p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 3p 2 P 3/2-1s 2 8d 2 D 3/ E E s 2 3p 2 P 3/2-1s 2 8s 2 S 1/ E E s 2 3d 2 D 3/2-1s 2 8f 2 F 5/ E E s 2 3d 2 D 3/2-1s 2 8p 2 P 3/ E E s 2 3d 2 D 3/2-1s 2 8p 2 P 1/ E E s 2 3d 2 D 5/2-1s 2 8f 2 F 5/ E E

8 s 2 3d 2 D 5/2-1s 2 8f 2 F 7/ E E s 2 3d 2 D 5/2-1s 2 8p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 7p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 7p 2 P 1/ E E s 2 3p 2 P 1/2-1s 2 7d 2 D 3/ E E s 2 3p 2 P 3/2-1s 2 7d 2 D 5/ E E s 2 3p 2 P 3/2-1s 2 7d 2 D 3/ E E s 2 3p 2 P 1/2-1s 2 7s 2 S 1/ E E s 2 3p 2 P 3/2-1s 2 7s 2 S 1/ E E s 2 3d 2 D 3/2-1s 2 7f 2 F 5/ E E s 2 3d 2 D 5/2-1s 2 7f 2 F 7/ E E s 2 3d 2 D 3/2-1s 2 7p 2 P 3/ E E s 2 3d 2 D 5/2-1s 2 7f 2 F 5/ E E s 2 3d 2 D 3/2-1s 2 7p 2 P 1/ E E s 2 3d 2 D 5/2-1s 2 7p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 6p 2 P 3/ E E s 2 3s 2 S 1/2-1s 2 6p 2 P 1/ E E s 2 3p 2 P 1/2-1s 2 6d 2 D 3/ E E s 2 3p 2 P 3/2-1s 2 6d 2 D 5/ E E s 2 3p 2 P 3/2-1s 2 6d 2 D 3/ E E s 2 3p 2 P 1/2-1s 2 6s 2 S 1/ E E s 2 3p 2 P 3/2-1s 2 6s 2 S 1/ E E s 2 3d 2 D 3/2-1s 2 6f 2 F 5/ E E s 2 3d 2 D 5/2-1s 2 6f 2 F 7/ E E s 2 3d 2 D 5/2-1s 2 6f 2 F 5/ E E s 2 3d 2 D 3/2-1s 2 6p 2 P 3/ E E s 2 3d 2 D 3/2-1s 2 6p 2 P 1/ E E s 2 3d 2 D 5/2-1s 2 6p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 4p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 4p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 4p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 4p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 4p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 4d 2 D 3/2-1s 2 10f 2 F 5/ E E

9 s 2 4d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 4d 2 D 5/2-1s 2 10f 2 F 7/ E E s 2 4d 2 D 5/2-1s 2 10f 2 F 5/ E E s 2 4d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 4d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 4f 2 F 5/2-1s 2 10g 2 G 7/ E E s 2 4f 2 F 5/2-1s 2 10d 2 D 5/ E E s 2 4f 2 F 5/2-1s 2 10d 2 D 3/ E E s 2 4f 2 F 7/2-1s 2 10g 2 G 9/ E E s 2 4f 2 F 7/2-1s 2 10d 2 D 5/ E E s 2 4f 2 F 7/2-1s 2 10g 2 G 7/ E E s 2 4s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 4p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 4p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 4p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 4p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 4p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 4d 2 D 3/2-1s 2 9f 2 F 5/ E E s 2 4d 2 D 5/2-1s 2 9f 2 F 7/ E E s 2 4d 2 D 5/2-1s 2 9f 2 F 5/ E E s 2 4d 2 D 3/2-1s 2 9p 2 P 3/ E E s 2 4d 2 D 3/2-1s 2 9p 2 P 1/ E E s 2 4f 2 F 5/2-1s 2 9g 2 G 7/ E E s 2 4d 2 D 5/2-1s 2 9p 2 P 3/ E E s 2 4f 2 F 5/2-1s 2 9d 2 D 5/ E E s 2 4f 2 F 5/2-1s 2 9d 2 D 3/ E E s 2 4f 2 F 7/2-1s 2 9g 2 G 9/ E E s 2 4f 2 F 7/2-1s 2 9g 2 G 7/ E E s 2 4f 2 F 7/2-1s 2 9d 2 D 5/ E E s 2 4s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 4p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 4p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 4p 2 P 3/2-1s 2 8d 2 D 3/ E E s 2 4p 2 P 1/2-1s 2 8s 2 S 1/ E E

10 s 2 4p 2 P 3/2-1s 2 8s 2 S 1/ E E s 2 4d 2 D 3/2-1s 2 8f 2 F 5/ E E s 2 4d 2 D 5/2-1s 2 8f 2 F 7/ E E s 2 4d 2 D 5/2-1s 2 8f 2 F 5/ E E s 2 4d 2 D 3/2-1s 2 8p 2 P 3/ E E s 2 4f 2 F 5/2-1s 2 8g 2 G 7/ E E s 2 4d 2 D 3/2-1s 2 8p 2 P 1/ E E s 2 4f 2 F 5/2-1s 2 8d 2 D 5/ E E s 2 4f 2 F 5/2-1s 2 8d 2 D 3/ E E s 2 4f 2 F 7/2-1s 2 8g 2 G 9/ E E s 2 4f 2 F 7/2-1s 2 8g 2 G 7/ E E s 2 4d 2 D 5/2-1s 2 8p 2 P 3/ E E s 2 4f 2 F 7/2-1s 2 8d 2 D 5/ E E s 2 4s 2 S 1/2-1s 2 7p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 7p 2 P 1/ E E s 2 4p 2 P 1/2-1s 2 7d 2 D 3/ E E s 2 4p 2 P 3/2-1s 2 7d 2 D 5/ E E s 2 4p 2 P 3/2-1s 2 7d 2 D 3/ E E s 2 4p 2 P 1/2-1s 2 7s 2 S 1/ E E s 2 4p 2 P 3/2-1s 2 7s 2 S 1/ E E s 2 4d 2 D 3/2-1s 2 7f 2 F 5/ E E s 2 4d 2 D 5/2-1s 2 7f 2 F 7/ E E s 2 4d 2 D 5/2-1s 2 7f 2 F 5/ E E s 2 4f 2 F 5/2-1s 2 7g 2 G 7/ E E s 2 4f 2 F 5/2-1s 2 7d 2 D 5/ E E s 2 4f 2 F 7/2-1s 2 7g 2 G 9/ E E s 2 4d 2 D 3/2-1s 2 7p 2 P 3/ E E s 2 4f 2 F 7/2-1s 2 7g 2 G 7/ E E s 2 4f 2 F 5/2-1s 2 7d 2 D 3/ E E s 2 4f 2 F 7/2-1s 2 7d 2 D 5/ E E s 2 4d 2 D 3/2-1s 2 7p 2 P 1/ E E s 2 4d 2 D 5/2-1s 2 7p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 6p 2 P 3/ E E s 2 4s 2 S 1/2-1s 2 6p 2 P 1/ E E s 2 4p 2 P 1/2-1s 2 6d 2 D 3/ E E s 2 4p 2 P 3/2-1s 2 6d 2 D 5/ E E s 2 4p 2 P 3/2-1s 2 6d 2 D 3/ E E

11 s 2 4p 2 P 1/2-1s 2 6s 2 S 1/ E E s 2 4d 2 D 3/2-1s 2 6f 2 F 5/ E E s 2 4d 2 D 5/2-1s 2 6f 2 F 7/ E E s 2 4d 2 D 5/2-1s 2 6f 2 F 5/ E E s 2 4f 2 F 5/2-1s 2 6g 2 G 7/ E E s 2 4f 2 F 7/2-1s 2 6g 2 G 9/ E E s 2 4f 2 F 7/2-1s 2 6g 2 G 7/ E E s 2 4p 2 P 3/2-1s 2 6s 2 S 1/ E E s 2 4f 2 F 5/2-1s 2 6d 2 D 5/ E E s 2 4f 2 F 5/2-1s 2 6d 2 D 3/ E E s 2 4f 2 F 7/2-1s 2 6d 2 D 5/ E E s 2 4d 2 D 3/2-1s 2 6p 2 P 3/ E E s 2 4d 2 D 3/2-1s 2 6p 2 P 1/ E E s 2 4d 2 D 5/2-1s 2 6p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 5p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 5p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 5p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 5p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 5p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 5d 2 D 3/2-1s 2 10f 2 F 5/ E E s 2 5d 2 D 5/2-1s 2 10f 2 F 7/ E E s 2 5d 2 D 5/2-1s 2 10f 2 F 5/ E E s 2 5d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 5f 2 F 5/2-1s 2 10g 2 G 7/ E E s 2 5d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 5f 2 F 5/2-1s 2 10d 2 D 5/ E E s 2 5f 2 F 5/2-1s 2 10d 2 D 3/ E E s 2 5f 2 F 7/2-1s 2 10g 2 G 9/ E E s 2 5f 2 F 7/2-1s 2 10g 2 G 7/ E E s 2 5d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 5f 2 F 7/2-1s 2 10d 2 D 5/ E E s 2 5g 2 G 7/2-1s 2 10f 2 F 7/ E E s 2 5g 2 G 7/2-1s 2 10f 2 F 5/ E E s 2 5g 2 G 9/2-1s 2 10f 2 F 7/ E E s 2 5s 2 S 1/2-1s 2 9p 2 P 3/ E E

12 s 2 5s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 5p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 5p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 5p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 5p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 5p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 5d 2 D 3/2-1s 2 9f 2 F 5/ E E s 2 5d 2 D 5/2-1s 2 9f 2 F 7/ E E s 2 5d 2 D 5/2-1s 2 9f 2 F 5/ E E s 2 5f 2 F 5/2-1s 2 9g 2 G 7/ E E s 2 5f 2 F 5/2-1s 2 9d 2 D 5/ E E s 2 5d 2 D 3/2-1s 2 9p 2 P 3/ E E s 2 5f 2 F 7/2-1s 2 9g 2 G 9/ E E s 2 5f 2 F 5/2-1s 2 9d 2 D 3/ E E s 2 5f 2 F 7/2-1s 2 9g 2 G 7/ E E s 2 5f 2 F 7/2-1s 2 9d 2 D 5/ E E s 2 5d 2 D 3/2-1s 2 9p 2 P 1/ E E s 2 5g 2 G 7/2-1s 2 9f 2 F 7/ E E s 2 5g 2 G 7/2-1s 2 9f 2 F 5/ E E s 2 5g 2 G 9/2-1s 2 9f 2 F 7/ E E s 2 5d 2 D 5/2-1s 2 9p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 5p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 5p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 5p 2 P 3/2-1s 2 8d 2 D 3/ E E s 2 5p 2 P 1/2-1s 2 8s 2 S 1/ E E s 2 5p 2 P 3/2-1s 2 8s 2 S 1/ E E s 2 5d 2 D 3/2-1s 2 8f 2 F 5/ E E s 2 5d 2 D 5/2-1s 2 8f 2 F 7/ E E s 2 5d 2 D 5/2-1s 2 8f 2 F 5/ E E s 2 5f 2 F 5/2-1s 2 8g 2 G 7/ E E s 2 5f 2 F 7/2-1s 2 8g 2 G 9/ E E s 2 5f 2 F 5/2-1s 2 8d 2 D 5/ E E s 2 5f 2 F 7/2-1s 2 8g 2 G 7/ E E s 2 5f 2 F 5/2-1s 2 8d 2 D 3/ E E s 2 5g 2 G 7/2-1s 2 8f 2 F 7/ E E

13 s 2 5f 2 F 7/2-1s 2 8d 2 D 5/ E E s 2 5g 2 G 7/2-1s 2 8f 2 F 5/ E E s 2 5g 2 G 9/2-1s 2 8f 2 F 7/ E E s 2 5d 2 D 3/2-1s 2 8p 2 P 3/ E E s 2 5d 2 D 3/2-1s 2 8p 2 P 1/ E E s 2 5d 2 D 5/2-1s 2 8p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 7p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 7p 2 P 1/ E E s 2 5p 2 P 1/2-1s 2 7d 2 D 3/ E E s 2 5p 2 P 3/2-1s 2 7d 2 D 5/ E E s 2 5p 2 P 3/2-1s 2 7d 2 D 3/ E E s 2 5d 2 D 3/2-1s 2 7f 2 F 5/ E E s 2 5d 2 D 5/2-1s 2 7f 2 F 7/ E E s 2 5d 2 D 5/2-1s 2 7f 2 F 5/ E E s 2 5f 2 F 5/2-1s 2 7g 2 G 7/ E E s 2 5f 2 F 7/2-1s 2 7g 2 G 9/ E E s 2 5f 2 F 7/2-1s 2 7g 2 G 7/ E E s 2 5p 2 P 1/2-1s 2 7s 2 S 1/ E E s 2 5f 2 F 5/2-1s 2 7d 2 D 5/ E E s 2 5g 2 G 7/2-1s 2 7f 2 F 7/ E E s 2 5f 2 F 5/2-1s 2 7d 2 D 3/ E E s 2 5f 2 F 7/2-1s 2 7d 2 D 5/ E E s 2 5g 2 G 7/2-1s 2 7f 2 F 5/ E E s 2 5g 2 G 9/2-1s 2 7f 2 F 7/ E E s 2 5d 2 D 3/2-1s 2 7p 2 P 3/ E E s 2 5p 2 P 3/2-1s 2 7s 2 S 1/ E E s 2 5d 2 D 5/2-1s 2 7p 2 P 3/ E E s 2 5d 2 D 3/2-1s 2 7p 2 P 1/ E E s 2 6s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 6s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 6p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 6p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 6p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 6p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 6p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 6d 2 D 3/2-1s 2 10f 2 F 5/ E E s 2 6d 2 D 5/2-1s 2 10f 2 F 7/ E E

14 s 2 6d 2 D 5/2-1s 2 10f 2 F 5/ E E s 2 6f 2 F 5/2-1s 2 10g 2 G 7/ E E s 2 6f 2 F 5/2-1s 2 10d 2 D 5/ E E s 2 6f 2 F 7/2-1s 2 10g 2 G 9/ E E s 2 6f 2 F 7/2-1s 2 10g 2 G 7/ E E s 2 6f 2 F 5/2-1s 2 10d 2 D 3/ E E s 2 6f 2 F 7/2-1s 2 10d 2 D 5/ E E s 2 6g 2 G 7/2-1s 2 10f 2 F 7/ E E s 2 6d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 6g 2 G 7/2-1s 2 10f 2 F 5/ E E s 2 6g 2 G 9/2-1s 2 10f 2 F 7/ E E s 2 6d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 6d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 6s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 6s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 6p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 6p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 6p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 6p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 6d 2 D 3/2-1s 2 9f 2 F 5/ E E s 2 6d 2 D 5/2-1s 2 9f 2 F 7/ E E s 2 6d 2 D 5/2-1s 2 9f 2 F 5/ E E s 2 6f 2 F 5/2-1s 2 9g 2 G 7/ E E s 2 6f 2 F 7/2-1s 2 9g 2 G 9/ E E s 2 6f 2 F 7/2-1s 2 9g 2 G 7/ E E s 2 6f 2 F 5/2-1s 2 9d 2 D 5/ E E s 2 6p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 6f 2 F 5/2-1s 2 9d 2 D 3/ E E s 2 6g 2 G 7/2-1s 2 9f 2 F 7/ E E s 2 6f 2 F 7/2-1s 2 9d 2 D 5/ E E s 2 6g 2 G 7/2-1s 2 9f 2 F 5/ E E s 2 6g 2 G 9/2-1s 2 9f 2 F 7/ E E s 2 6d 2 D 3/2-1s 2 9p 2 P 3/ E E s 2 6d 2 D 3/2-1s 2 9p 2 P 1/ E E s 2 6d 2 D 5/2-1s 2 9p 2 P 3/ E E s 2 5s 2 S 1/2-1s 2 6p 2 P 3/ E E

15 s 2 5s 2 S 1/2-1s 2 6p 2 P 1/ E E s 2 6s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 6s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 5p 2 P 1/2-1s 2 6d 2 D 3/ E E s 2 5p 2 P 3/2-1s 2 6d 2 D 5/ E E s 2 5p 2 P 3/2-1s 2 6d 2 D 3/ E E s 2 6p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 6p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 6p 2 P 3/2-1s 2 8d 2 D 3/ E E s 2 5d 2 D 3/2-1s 2 6f 2 F 5/ E E s 2 5d 2 D 5/2-1s 2 6f 2 F 7/ E E s 2 5d 2 D 5/2-1s 2 6f 2 F 5/ E E s 2 5f 2 F 5/2-1s 2 6g 2 G 7/ E E s 2 5f 2 F 7/2-1s 2 6g 2 G 9/ E E s 2 5f 2 F 7/2-1s 2 6g 2 G 7/ E E s 2 5f 2 F 5/2-1s 2 6d 2 D 5/ E E s 2 5g 2 G 7/2-1s 2 6f 2 F 7/ E E s 2 5g 2 G 7/2-1s 2 6f 2 F 5/ E E s 2 5g 2 G 9/2-1s 2 6f 2 F 7/ E E s 2 5f 2 F 7/2-1s 2 6d 2 D 5/ E E s 2 5f 2 F 5/2-1s 2 6d 2 D 3/ E E s 2 6d 2 D 3/2-1s 2 8f 2 F 5/ E E s 2 6d 2 D 5/2-1s 2 8f 2 F 7/ E E s 2 6d 2 D 5/2-1s 2 8f 2 F 5/ E E s 2 6f 2 F 5/2-1s 2 8g 2 G 7/ E E s 2 6f 2 F 7/2-1s 2 8g 2 G 9/ E E s 2 6f 2 F 7/2-1s 2 8g 2 G 7/ E E s 2 6f 2 F 5/2-1s 2 8d 2 D 5/ E E s 2 6g 2 G 7/2-1s 2 8f 2 F 7/ E E s 2 6f 2 F 5/2-1s 2 8d 2 D 3/ E E s 2 6g 2 G 7/2-1s 2 8f 2 F 5/ E E s 2 6f 2 F 7/2-1s 2 8d 2 D 5/ E E s 2 6g 2 G 9/2-1s 2 8f 2 F 7/ E E s 2 6p 2 P 1/2-1s 2 8s 2 S 1/ E E s 2 5d 2 D 3/2-1s 2 6p 2 P 3/ E E s 2 6d 2 D 3/2-1s 2 8p 2 P 3/ E E

16 s 2 6d 2 D 5/2-1s 2 8p 2 P 3/ E E s 2 5d 2 D 5/2-1s 2 6p 2 P 3/ E E s 2 6d 2 D 3/2-1s 2 8p 2 P 1/ E E s 2 6p 2 P 3/2-1s 2 8s 2 S 1/ E E s 2 5d 2 D 3/2-1s 2 6p 2 P 1/ E E s 2 5p 2 P 1/2-1s 2 6s 2 S 1/ E E s 2 5p 2 P 3/2-1s 2 6s 2 S 1/ E E s 2 7s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 7s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 7p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 7p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 7p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 7d 2 D 3/2-1s 2 10f 2 F 5/ E E s 2 7d 2 D 5/2-1s 2 10f 2 F 7/ E E s 2 7d 2 D 5/2-1s 2 10f 2 F 5/ E E s 2 7p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 7f 2 F 5/2-1s 2 10g 2 G 7/ E E s 2 7f 2 F 7/2-1s 2 10g 2 G 9/ E E s 2 7f 2 F 7/2-1s 2 10g 2 G 7/ E E s 2 7f 2 F 5/2-1s 2 10d 2 D 5/ E E s 2 7f 2 F 5/2-1s 2 10d 2 D 3/ E E s 2 7g 2 G 7/2-1s 2 10f 2 F 7/ E E s 2 7f 2 F 7/2-1s 2 10d 2 D 5/ E E s 2 7g 2 G 7/2-1s 2 10f 2 F 5/ E E s 2 7g 2 G 9/2-1s 2 10f 2 F 7/ E E s 2 7p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 7d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 7d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 7d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 7s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 7s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 7p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 7p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 7p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 7d 2 D 3/2-1s 2 9f 2 F 5/ E E s 2 7d 2 D 5/2-1s 2 9f 2 F 7/ E E s 2 7d 2 D 5/2-1s 2 9f 2 F 5/ E E

17 s 2 7f 2 F 5/2-1s 2 9g 2 G 7/ E E s 2 7f 2 F 7/2-1s 2 9g 2 G 9/ E E s 2 7f 2 F 7/2-1s 2 9g 2 G 7/ E E s 2 7f 2 F 5/2-1s 2 9d 2 D 5/ E E s 2 7g 2 G 7/2-1s 2 9f 2 F 7/ E E s 2 7g 2 G 7/2-1s 2 9f 2 F 5/ E E s 2 7f 2 F 5/2-1s 2 9d 2 D 3/ E E s 2 7g 2 G 9/2-1s 2 9f 2 F 7/ E E s 2 7f 2 F 7/2-1s 2 9d 2 D 5/ E E s 2 7d 2 D 3/2-1s 2 9p 2 P 3/ E E s 2 7p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 7d 2 D 5/2-1s 2 9p 2 P 3/ E E s 2 7d 2 D 3/2-1s 2 9p 2 P 1/ E E s 2 7p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 6s 2 S 1/2-1s 2 7p 2 P 3/ E E s 2 6s 2 S 1/2-1s 2 7p 2 P 1/ E E s 2 6p 2 P 1/2-1s 2 7d 2 D 3/ E E s 2 6p 2 P 3/2-1s 2 7d 2 D 5/ E E s 2 6p 2 P 3/2-1s 2 7d 2 D 3/ E E s 2 6d 2 D 3/2-1s 2 7f 2 F 5/ E E s 2 6d 2 D 5/2-1s 2 7f 2 F 7/ E E s 2 6d 2 D 5/2-1s 2 7f 2 F 5/ E E s 2 6f 2 F 5/2-1s 2 7g 2 G 7/ E E s 2 6f 2 F 7/2-1s 2 7g 2 G 9/ E E s 2 6f 2 F 7/2-1s 2 7g 2 G 7/ E E s 2 6g 2 G 7/2-1s 2 7f 2 F 7/ E E s 2 6f 2 F 5/2-1s 2 7d 2 D 5/ E E s 2 6g 2 G 9/2-1s 2 7f 2 F 7/ E E s 2 6g 2 G 7/2-1s 2 7f 2 F 5/ E E s 2 6f 2 F 7/2-1s 2 7d 2 D 5/ E E s 2 6f 2 F 5/2-1s 2 7d 2 D 3/ E E s 2 6d 2 D 3/2-1s 2 7p 2 P 3/ E E s 2 6d 2 D 5/2-1s 2 7p 2 P 3/ E E s 2 6d 2 D 3/2-1s 2 7p 2 P 1/ E E s 2 6p 2 P 1/2-1s 2 7s 2 S 1/ E E s 2 6p 2 P 3/2-1s 2 7s 2 S 1/ E E

18 s 2 8s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 8s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 8p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 8p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 8p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 8d 2 D 3/2-1s 2 10f 2 F 5/ E E s 2 8d 2 D 5/2-1s 2 10f 2 F 7/ E E s 2 8d 2 D 5/2-1s 2 10f 2 F 5/ E E s 2 8f 2 F 5/2-1s 2 10g 2 G 7/ E E s 2 8f 2 F 7/2-1s 2 10g 2 G 9/ E E s 2 8f 2 F 7/2-1s 2 10g 2 G 7/ E E s 2 8f 2 F 5/2-1s 2 10d 2 D 5/ E E s 2 8g 2 G 7/2-1s 2 10f 2 F 7/ E E s 2 8g 2 G 7/2-1s 2 10f 2 F 5/ E E s 2 8g 2 G 9/2-1s 2 10f 2 F 7/ E E s 2 8f 2 F 7/2-1s 2 10d 2 D 5/ E E s 2 8f 2 F 5/2-1s 2 10d 2 D 3/ E E s 2 8d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 8d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 8d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 8p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 8p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 7s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 7s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 7p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 7p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 7p 2 P 3/2-1s 2 8d 2 D 3/ E E s 2 7d 2 D 3/2-1s 2 8f 2 F 5/ E E s 2 7d 2 D 5/2-1s 2 8f 2 F 7/ E E s 2 7d 2 D 5/2-1s 2 8f 2 F 5/ E E s 2 7f 2 F 5/2-1s 2 8g 2 G 7/ E E s 2 7f 2 F 7/2-1s 2 8g 2 G 9/ E E s 2 7f 2 F 7/2-1s 2 8g 2 G 7/ E E s 2 7g 2 G 7/2-1s 2 8f 2 F 7/ E E s 2 7f 2 F 5/2-1s 2 8d 2 D 5/ E E s 2 7g 2 G 9/2-1s 2 8f 2 F 7/ E E s 2 7g 2 G 7/2-1s 2 8f 2 F 5/ E E

19 s 2 7f 2 F 7/2-1s 2 8d 2 D 5/ E E s 2 7f 2 F 5/2-1s 2 8d 2 D 3/ E E s 2 7d 2 D 3/2-1s 2 8p 2 P 3/ E E s 2 7d 2 D 5/2-1s 2 8p 2 P 3/ E E s 2 7d 2 D 3/2-1s 2 8p 2 P 1/ E E s 2 7p 2 P 1/2-1s 2 8s 2 S 1/ E E s 2 7p 2 P 3/2-1s 2 8s 2 S 1/ E E s 2 8s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 8s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 8p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 8p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 8p 2 P 3/2-1s 2 9d 2 D 3/ E E s 2 8d 2 D 3/2-1s 2 9f 2 F 5/ E E s 2 8d 2 D 5/2-1s 2 9f 2 F 7/ E E s 2 8d 2 D 5/2-1s 2 9f 2 F 5/ E E s 2 8f 2 F 5/2-1s 2 9g 2 G 7/ E E s 2 8f 2 F 7/2-1s 2 9g 2 G 9/ E E s 2 8f 2 F 7/2-1s 2 9g 2 G 7/ E E s 2 8g 2 G 7/2-1s 2 9f 2 F 7/ E E s 2 8f 2 F 5/2-1s 2 9d 2 D 5/ E E s 2 8g 2 G 9/2-1s 2 9f 2 F 7/ E E s 2 8g 2 G 7/2-1s 2 9f 2 F 5/ E E s 2 8f 2 F 7/2-1s 2 9d 2 D 5/ E E s 2 8f 2 F 5/2-1s 2 9d 2 D 3/ E E s 2 8d 2 D 3/2-1s 2 9p 2 P 3/ E E s 2 8d 2 D 5/2-1s 2 9p 2 P 3/ E E s 2 8d 2 D 3/2-1s 2 9p 2 P 1/ E E s 2 8p 2 P 1/2-1s 2 9s 2 S 1/ E E s 2 8p 2 P 3/2-1s 2 9s 2 S 1/ E E s 2 9s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 9s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 9p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 9p 2 P 3/2-1s 2 10d 2 D 5/ E E s 2 9p 2 P 3/2-1s 2 10d 2 D 3/ E E s 2 9d 2 D 3/2-1s 2 10f 2 F 5/ E E s 2 9d 2 D 5/2-1s 2 10f 2 F 7/ E E s 2 9d 2 D 5/2-1s 2 10f 2 F 5/ E E

20 s 2 9f 2 F 5/2-1s 2 10g 2 G 7/ E E s 2 9f 2 F 7/2-1s 2 10g 2 G 9/ E E s 2 9f 2 F 7/2-1s 2 10g 2 G 7/ E E s 2 9g 2 G 7/2-1s 2 10f 2 F 7/ E E s 2 9f 2 F 5/2-1s 2 10d 2 D 5/ E E s 2 9g 2 G 9/2-1s 2 10f 2 F 7/ E E s 2 9g 2 G 7/2-1s 2 10f 2 F 5/ E E s 2 9f 2 F 7/2-1s 2 10d 2 D 5/ E E s 2 9f 2 F 5/2-1s 2 10d 2 D 3/ E E s 2 9d 2 D 3/2-1s 2 10p 2 P 3/ E E s 2 9d 2 D 5/2-1s 2 10p 2 P 3/ E E s 2 9d 2 D 3/2-1s 2 10p 2 P 1/ E E s 2 9p 2 P 1/2-1s 2 10s 2 S 1/ E E s 2 9p 2 P 3/2-1s 2 10s 2 S 1/ E E s 2 6s 2 S 1/2-1s 2 6p 2 P 3/ E E s 2 6s 2 S 1/2-1s 2 6p 2 P 1/ E E s 2 7s 2 S 1/2-1s 2 7p 2 P 3/ E E s 2 7s 2 S 1/2-1s 2 7p 2 P 1/ E E s 2 6p 2 P 1/2-1s 2 6d 2 D 3/ E E s 2 8s 2 S 1/2-1s 2 8p 2 P 3/ E E s 2 8s 2 S 1/2-1s 2 8p 2 P 1/ E E s 2 6p 2 P 3/2-1s 2 6d 2 D 5/ E E s 2 6p 2 P 3/2-1s 2 6d 2 D 3/ E E s 2 9s 2 S 1/2-1s 2 9p 2 P 3/ E E s 2 7p 2 P 1/2-1s 2 7d 2 D 3/ E E s 2 9s 2 S 1/2-1s 2 9p 2 P 1/ E E s 2 7p 2 P 3/2-1s 2 7d 2 D 5/ E E s 2 10s 2 S 1/2-1s 2 10p 2 P 3/ E E s 2 10s 2 S 1/2-1s 2 10p 2 P 1/ E E s 2 8p 2 P 1/2-1s 2 8d 2 D 3/ E E s 2 8p 2 P 3/2-1s 2 8d 2 D 5/ E E s 2 9p 2 P 1/2-1s 2 9d 2 D 3/ E E s 2 9p 2 P 3/2-1s 2 9d 2 D 5/ E E s 2 10p 2 P 1/2-1s 2 10d 2 D 3/ E E s 2 10p 2 P 3/2-1s 2 10d 2 D 5/ E E

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX

Energy Levels, Oscillator Strengths, and Transition Probabilities of Ni XIX and Cu XX Optics and Photonics Journal, 2014, 4, 54-89 Published Online March 2014 in SciRes. http://www.scirp.org/journal/opj http://dx.doi.org/10.4236/opj.2014.43008 Energy Levels, Oscillator Strengths, and Transition

More information

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion EJTP 3, No. 11 (2006) 111 122 Electronic Journal of Theoretical Physics Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion A. Farrag Physics Department,Faculty of Science, Cairo University,

More information

Gain Coefficient Calculation for Short Wave Laser Emission from Sodium like Co

Gain Coefficient Calculation for Short Wave Laser Emission from Sodium like Co Optics and Photonics Journal, 2013, 3, 369-378 Published Online December 2013 (http://www.scirp.org/journal/opj) http://dx.doi.org/10.4236/opj.2013.38058 Gain Coefficient Calculation for Short Wave Laser

More information

Energy levels and radiative rates for Ne-like ions from Cu to Ga

Energy levels and radiative rates for Ne-like ions from Cu to Ga Pramana J. Phys. (2017) 89:79 DOI 10.1007/s12043-017-1469-x Indian Academy of Sciences Energy levels and radiative rates for Ne-like ions from Cu to Ga NARENDRA SINGH and SUNNY AGGARWAL Department of Physics,

More information

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM PROF. SULTANA N. NAHAR Astronomy, Ohio State U, Columbus, Ohio, USA Email: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q APAS 50. Internal Processes in Gases. Fall 999. Transition Probabilities and Selection Rules. Correspondence between Classical and Quantum Mechanical Transition Rates According to the correspondence principle

More information

Oscillator strengths and E1 radiative rates for Ca-like titanium, Ti III

Oscillator strengths and E1 radiative rates for Ca-like titanium, Ti III Int. J. New. Hor. Phys. 2, No. 1, 25-31 (2015) 25 International Journal of New Horizons in Physics http://dx.doi.org/10.12785/ijnhp/020105 Oscillator strengths and E1 radiative rates for Ca-like titanium,

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

charges q r p = q 2mc 2mc L (1.4) ptles µ e = g e

charges q r p = q 2mc 2mc L (1.4) ptles µ e = g e APAS 5110. Atomic and Molecular Processes. Fall 2013. 1. Magnetic Moment Classically, the magnetic moment µ of a system of charges q at positions r moving with velocities v is µ = 1 qr v. (1.1) 2c charges

More information

Relativistic Calculations for Be-like Iron

Relativistic Calculations for Be-like Iron Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 468 472 Chinese Physical Society Vol. 50, No. 2, August 15, 2008 Relativistic Calculations for Be-like Iron YANG Jian-Hui, 1 LI Ping, 2, ZHANG Jian-Ping,

More information

Fine structure in hydrogen - relativistic effects

Fine structure in hydrogen - relativistic effects LNPhysiqueAtomique016 Fine structure in hydrogen - relativistic effects Electron spin ; relativistic effects In a spectrum from H (or from an alkali), one finds that spectral lines appears in pairs. take

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Atomic Physics 3 rd year B1

Atomic Physics 3 rd year B1 Atomic Physics 3 rd year B1 P. Ewart Lecture notes Lecture slides Problem sets All available on Physics web site: http:www.physics.ox.ac.uk/users/ewart/index.htm Atomic Physics: Astrophysics Plasma Physics

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS QUANTUM MECHANICS SECOND EDITION G. ARULDHAS Formerly, Professor and Head of Physics and Dean, Faculty of Science University of Kerala New Delhi-110001 2009 QUANTUM MECHANICS, 2nd Ed. G. Aruldhas 2009

More information

Oscillator Strengths and Lifetimes for the P XIII Spectrum

Oscillator Strengths and Lifetimes for the P XIII Spectrum Spectral Analysis Reviews, 016,, 1-10 Published Online January 016 in SciRes. http://www.scirp.org/journal/sar http://dx.doi.org/10.36/sar.016.1001 Oscillator Strengths and Lifetimes for the P XIII Spectrum

More information

6.1 Nondegenerate Perturbation Theory

6.1 Nondegenerate Perturbation Theory 6.1 Nondegenerate Perturbation Theory Analytic solutions to the Schrödinger equation have not been found for many interesting systems. Fortunately, it is often possible to find expressions which are analytic

More information

Atomic and molecular physics Revision lecture

Atomic and molecular physics Revision lecture Atomic and molecular physics Revision lecture Answer all questions Angular momentum J`2 ` J z j,m = j j+1 j,m j,m =m j,m Allowed values of mgo from j to +jin integer steps If there is no external field,

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the THE ASTROPHYSICAL JOURNAL, 530:1091È1104, 2000 February 20 ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. ELECTRON COLLISION EXCITATION OF FINE-STRUCTURE LEVELS IN S

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

A.1 Alkaline atoms in magnetic fields

A.1 Alkaline atoms in magnetic fields 164 Appendix the Kohn, virial and Bertrand s theorem, with an original approach. Annex A.4 summarizes elements of the elastic collisions theory required to address scattering problems. Eventually, annex

More information

Is Gravitational Radiation a Radiation of the Same Level as Electromagnetic Radiation?

Is Gravitational Radiation a Radiation of the Same Level as Electromagnetic Radiation? Journal of Modern Physics, 2014, 5, 1397-1401 Published Online September 2014 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/10.4236/jmp.2014.515140 Is Gravitational Radiation a Radiation

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

Atomic Data for Lowly-Charged Tungsten Ions

Atomic Data for Lowly-Charged Tungsten Ions Atomic Data for Lowly-Charged Tungsten Ions Patrick Palmeri patrick.palmeri@umons.ac.be ADAS 2012 (Cadarache, France) 1 Outline Introduction HFR+CPOL Method Results: W 0, W 3-5+ Conclusions & Perspectives

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

FINE STRUCTURE RADIATIVE TRANSITIONS IN C II AND C III USING THE BREIT PAULI R-MATRIX METHOD SULTANA N. NAHAR

FINE STRUCTURE RADIATIVE TRANSITIONS IN C II AND C III USING THE BREIT PAULI R-MATRIX METHOD SULTANA N. NAHAR Atomic Data and Nuclear Data Tables, 80, (2002) p.205-234. ISSN: 0092-640x ISSN (electronic): 1090-2090 doi:10.1006/adnd.2002.0879 2002 Elsevier Inc. All rights reserved. http://www.elsevier.com/wps/find/homepage.cws_home

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Bohr-Coster diagrams for multiply ionized states of light elements in the range Z--10 to 20

Bohr-Coster diagrams for multiply ionized states of light elements in the range Z--10 to 20 Pramhn.a-J. Phys., Vol. 29, No. 3, September 1987, pp. 253-260. Printed in India. Bohr-Coster diagrams for multiply ionized states of light elements in the range Z--10 to 20 LAKSH'MI NATARAJAN, A V TANKHIWALE

More information

arxiv: v1 [physics.atom-ph] 2 Dec 2015

arxiv: v1 [physics.atom-ph] 2 Dec 2015 J. Phys. B: At. Mol. Opt. Phys. arxiv:1512.657v1 [physics.atom-ph] 2 Dec 215 Theoretical investigation of spectroscopic properties of W 26+ in EBIT plasma V. Jonauskas, A. Kynienė, P. Rynkun, S. Kučas,

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Electron Spin Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n,, m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Hyperfine effects in atomic physics are due to the interaction of the atomic electrons with the electric and magnetic multipole

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

An Introduction to Hyperfine Structure and Its G-factor

An Introduction to Hyperfine Structure and Its G-factor An Introduction to Hyperfine Structure and Its G-factor Xiqiao Wang East Tennessee State University April 25, 2012 1 1. Introduction In a book chapter entitled Model Calculations of Radiation Induced Damage

More information

Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates

Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates Bulg. J. Phys. 44 (2017) 76 83 Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates P. Danev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Allowed and forbidden transition parameters for Fe XXII Sultana N. Nahar *

Allowed and forbidden transition parameters for Fe XXII Sultana N. Nahar * Atomic Data and Nuclear Data Tables, 96, (2010), p.26 51. ISSN: 0092-640x/0092-640X doi:10.1016/j.adt.2009.09.001 2009 Elsevier Inc. All rights reserved. http://www.elsevier.com/wps/find/homepage.cws_home

More information

Dirac-Hartree-Fock code (DHF). To run the code:./dhf <na.in. Walter Johnson, "Atomic structure theory"

Dirac-Hartree-Fock code (DHF). To run the code:./dhf <na.in. Walter Johnson, Atomic structure theory Page Lecture Dirac-Hartree-Fock code. Second-order perturbation theory and running second-order code. Atomic calculations and the search for the variation of the fine-structure constant. Dirac-Hartree-Fock

More information

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam Physics 624, Quantum II -- Final Exam Please show all your work on the separate sheets provided (and be sure to include your name). You are graded on your work on those pages, with partial credit where

More information

Oscillator strengths and transition probabilities of O II

Oscillator strengths and transition probabilities of O II At. Data Nucl. Data Tables Vol. 96(6):863-877 (2010) ISSN: (print 0092-640X)(online 1090-2090) doi: 10.1016/j.adt.2010.07.002 This is a peer reviewed pre-print version of the following article: Oscillator

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium 0. Physics and Chemistry of the Interstellar Medium Pierre Hily-Blant Master2 Lecture, LAOG pierre.hilyblant@obs.ujf-grenoble.fr, Office 53 2012-2013 Pierre Hily-Blant (Master2) The ISM 2012-2013 1 / 220

More information

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway 1 The Rigorous Calculation of Molecular Properties to Chemical Accuracy T. Helgaker, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University of Oslo, Norway S. Coriani,

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

and for absorption: 2π c 3 m 2 ˆɛˆk,j a pe i k r b 2( nˆk,j +1 February 1, 2000

and for absorption: 2π c 3 m 2 ˆɛˆk,j a pe i k r b 2( nˆk,j +1 February 1, 2000 At the question period after a Dirac lecture at the University of Toronto, somebody in the audience remarked: Professor Dirac, I do not understand how you derived the formula on the top left side of the

More information

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

α particles, β particles, and γ rays. Measurements of the energy of the nuclear .101 Applied Nuclear Physics (Fall 004) Lecture (1/1/04) Nuclear ecays References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap 4. A nucleus in an excited state is unstable

More information

Academic Editor: Joseph Reader Received: 21 December 2016; Accepted:19 January 2017; Published: 27 January 2017

Academic Editor: Joseph Reader Received: 21 December 2016; Accepted:19 January 2017; Published: 27 January 2017 atoms Article JJ2LSJ Transformation and Unique Labeling for Energy Levels Gediminas Gaigalas 1, *, Charlotte Froese Fischer 2, Pavel Rynkun 1 and Per Jönsson 3 1 Institute of Theoretical Physics and Astronomy,

More information

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms Copyright c 2017 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms 1. Introduction The Zeeman effect concerns the interaction of atomic systems with

More information

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS No. of Pages: 6 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE PA266

More information

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T Modern Physics 11/16 and 11/19/2018 1 Introduction In Chapter 7, we studied the hydrogen atom. What about other elements, e.g.,

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

α particles, β particles, and γ rays. Measurements of the energy of the nuclear .101 Applied Nuclear Physics (Fall 006) Lecture (1/4/06) Nuclear Decays References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap 4. A nucleus in an excited state is unstable

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

(8) Atomic Physics (1½l, 1½p)

(8) Atomic Physics (1½l, 1½p) 10390-716(8) Atomic Physics (1½l, 1½p) 2018 Course summary: Multi-electron atoms, exclusion principle, electrostatic interaction and exchange degeneracy, Hartree model, angular momentum coupling: L-S and

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

TitleAnalytical Expression of the Hartre Author(s) Mukoyama, Takeshi; Yasui, Jun Citation Bulletin of the Institute for Chemi University (1992), 70(4): 385-391 Issue Date 1992-11-30 URL http://hdl.handle.net/2433/77474

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Computational Workshop: Running R-matrix Codes for Atomic Processes

Computational Workshop: Running R-matrix Codes for Atomic Processes Computational Workshop: Running R-matrix Codes for Atomic Processes - Prof. Sultana N. Nahar Astronomy, Ohio State U, Columbus, Ohio, USA Emails, Web: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity Text Chapter 2, 8 & 9 3.1 Nature of light, elementary spectroscopy. 3.2 The quantum theory and the Bohr atom. 3.3 Quantum mechanics; the orbital concept. 3.4 Electron configurations of atoms 3.5 The periodic

More information

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity 1) Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnetic radiation is MHz. A) 50 B) 20 C)

More information

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015 Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015 Next review time for the exam: December 2nd between 14:00-16:00 in my room. (This info is also available on the course homepage.) Examinator:

More information

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY ; Electronic mail:

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY ; Electronic mail: JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY 2003 Quasirelativistic theory for the magnetic shielding constant. I. Formulation of Douglas Kroll Hess transformation for the magnetic field

More information

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, USA Vienna, Austria, Dec

More information

Physics 221A Fall 2018 Notes 24 Fine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 2018 Notes 24 Fine Structure in Hydrogen and Alkali Atoms Copyright c 2018 by Robert G. Littlejohn Physics 221A Fall 2018 Notes 24 Fine Structure in Hydrogen and Alkali Atoms 1. Introduction In these notes we consider the fine structure of hydrogen-like and alkali

More information

Physics of Condensed Matter I

Physics of Condensed Matter I Physics of Condensed Matter I 1100-4INZ`PC Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl Summary of the lecture 1. Quantum mechanics 2. Optical transitions 3. Lasers 4. Optics 5. Molecules 6. Properties

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Atomic Spectroscopy II

Atomic Spectroscopy II Applied Spectroscopy Atomic Spectroscopy II Multielectron Atoms Recommended Reading: Banwell And McCash Chapter 5 The Building-Up (aufbau) Principle How do the electrons in multi-electron atoms get distributed

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

URL: / /49/18/ Publisher: IOP. This document has been downloaded from MUEP (http://muep.mah.se).

URL: / /49/18/ Publisher: IOP. This document has been downloaded from MUEP (http://muep.mah.se). This is an author produced version of a paper published in Journal of Physics B: Atomic, Molecular and Optical Physics. This paper has been peer-reviewed but does not include the final publisher proof-corrections

More information

arxiv:astro-ph/ v1 10 Jul 2002

arxiv:astro-ph/ v1 10 Jul 2002 1 arxiv:astro-ph/0207225v1 10 Jul 2002 Abstract. Ab initio calculations including relativistic effects employing the Breit-Pauli R-matrix (BPRM) method are reported for fine structure energy levels and

More information

Calculation of the Isotope Shifts on 5S 1/2 4D 3/2,5/2 Transitions of 87,88 Sr +

Calculation of the Isotope Shifts on 5S 1/2 4D 3/2,5/2 Transitions of 87,88 Sr + Commun. Theor. Phys. (Beijing, China) 37 (22) pp 76 7 c International Academic Publishers Vol. 37, No. 6, June 5, 22 Calculation of the Isotope Shifts on 5S /2 4D 3/2,5/2 Transitions of 87,88 Sr + LI Yong,,2

More information

Development of atomic theory

Development of atomic theory Development of atomic theory The chapter presents the fundamentals needed to explain and atomic & molecular structures in qualitative or semiquantitative terms. Li B B C N O F Ne Sc Ti V Cr Mn Fe Co Ni

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems 1 Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems T. Helgaker Centre for Theoretical and Computational Chemistry, Department of

More information

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz) The Development of Quantum Mechanics Early physicists used the properties of electromagnetic radiation to develop fundamental ideas about the structure of the atom. A fundamental assumption for their work

More information

Zeeman effect - Wikipedia, the free encyclopedia

Zeeman effect - Wikipedia, the free encyclopedia Zeeman effect From Wikipedia, the free encyclopedia The Zeeman effect (IPA: [ˈzeːmɑn], in English sometimes pronounced /ˈzeɪmən/) is the splitting of a spectral line into several components in the presence

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

On the Heisenberg and Schrödinger Pictures

On the Heisenberg and Schrödinger Pictures Journal of Modern Physics, 04, 5, 7-76 Published Online March 04 in SciRes. http://www.scirp.org/ournal/mp http://dx.doi.org/0.436/mp.04.5507 On the Heisenberg and Schrödinger Pictures Shigei Fuita, James

More information

CORE-POLARIZATION EFFECTS FOR THE STARK BROADENING OF PB III SPECTRAL LINES: PREDICTIONS AND REGULARITIES

CORE-POLARIZATION EFFECTS FOR THE STARK BROADENING OF PB III SPECTRAL LINES: PREDICTIONS AND REGULARITIES International Core-polarization Science Press, Effects ISSN: 2229-3159 for the Stark Broadening of Pb III Spectral Lines: Predictions and Regularities RESEARCH ARTICLE CORE-POLARIZATION EFFECTS FOR THE

More information

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s.

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. Lecture 9 Title: - coupling Page- It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. For large Z atoms,

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information