Atomic Structure Ch , 9.6, 9.7

Size: px
Start display at page:

Download "Atomic Structure Ch , 9.6, 9.7"

Transcription

1 Ch , 9.6, 9.7

2 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton: µ B = e! 2m e The north and south poles of the magnet are aligned along the direction of µ. µ points in a direction opposite to that of the angular momentum vector L.

3 Magnetic moment of an orbiting electron: Since L is quantized, the magnetic moment µ is also quantized: L = l(l + 1)!, l = 0,1,2... L z = m!, m =!l,!l + 1,...l! µ =! µ B " L µ = l(l + 1)µ B, l = 0,1,2... µ z =!mµ B, m =!l,!l + 1,...l The north an south poles of the magnet are aligned along the direction of µ. µ points in a direction opposite to that of the angular momentum vector L.

4 Magnetic moment of an orbiting electron: A magnetic moment µ interacts with a magnetic field. The resulting potential energy is U =!! µ "! B = µ x B x + µ y B y + µ z B z Consider a beam of atoms passing through a spatially varying field in the z direction:! B = B(z)ez Magnetic force: F =! "U "z = # " $ % "z B(z) & ' ( µ z Since µ z is quantized (2l+1 values), the force is quantized. Hence the atomic beam will separate into 2l+1 parts depending on the quantum number m. If l=0, the atomic beam does not split into parts.

5 Stern-Gerlach experiment: A beam of silver atoms is sent through a spatially variable magnetic field in the z-direction. Silver atoms in the ground state have l=0. Hence no splitting of the beam was expected: F =! "U "z = # " $ % "z B(z) & ' ( µ z In the experiment the beam did split into two components! Conclusion: The magnetic moment must have a contribution from something other than the orbital angular momentum: spin

6 Intrinsic magnetic moment of spinning electron Electron acts like a (quantized) bar magnet that can interact with a magnetic field. The intrinsic magnetic moment due to the electron spin S is Total magnetic moment is thus! µ s =! 2µ B " S! µ =! µ o +! µ s =! µ B " L + 2S ( )

7 Electron spin: The magnitude of an electron s spin is fixed at 3! 2. It is an intrinsic property of the electron: S = s(s + 1)! = 3 2!, s = 1 2 S z = m s!, m =!s,!s + 1,...s =! 1 2!, + 1 2! µ s = s(s + 1)µ B = 3 2 µ B, s = 1 2 µ z =!mµ B, m =!s,!s + 1,...s =! 1 2 µ B, µ State specified by 4 quantum numbers: n,l, m l,m s What are the possible states for n=3?

8 Spin-orbit coupling: In the electron s frame, the nucleus is orbiting around it with orbital angular momentum L. This orbiting charge acts as a current loop which creates a magnetic field: 1 e B = 4! " 0 mc 2 r L 3 The intrinsic magnetic moment of the electron interacts with this field: U = -! µ s! B = 1 8" # 0 e 2 m 2 c 2 r 3 S! L This spin-orbit coupling energy must be included in the energy level structure of the hydrogen atom...

9 Spin-orbit coupling: Atomic Structure U = -! µ s! B = 1 8" # 0 e 2 m 2 c 2 r 3 S! L Define the total angular momentum to be Then J = L + S J 2 = ( L + S)!( L + S) = L 2 + S 2 + 2L!S L! S = 1 ( 2 J 2 " L 2 " S 2 ) Hence the spin-orbit energy can be expressed in terms of the total angular momentum and orbital angular momentum (spin is fixed at s=1/2).

10 Spin-orbit coupling: Atomic Structure Addition of angular momentum: J = L + S Using a vector model of addition we find that J is quantized in the usual manner for angular momentum: J = j( j + 1)!, j = l! s, j = l + s J z = m!, m =! j,! j + 1,...j

11 Spin-orbit coupling: Addition of angular momentum: J = L + S J = j( j + 1)!, j = l! s, j = l + s J z = m!, m =! j,! j + 1,...j Example: l = 0, s = 1 / 2 j = l! s = 1 / 2 j = l + s = 1 / 2 J = j( j + 1)! = 3 4! J z = m!, m =! j,! j + 1,...j What are the possible values of j for l =1? J z =! 1 2!, + 1 2!

12 Spin-orbit coupling: Fine structure of hydrogen The energy level structure of the hydrogen is modified by the spinorbit coupling: U = -! µ s! B = For each value of l > 0 there are two values of j (l+1/2, l-1/2). The energy of the state corresponding to each value of j is different. Energies without fine structure 1 8" # 0 e 2 m 2 c 2 r 3 S! L = 1 16" # 0 e 2 m 2 c 2 r 3 J 2 $ L 2 $ S 2 ( ) Energies with fine structure

13 Spin-orbit coupling: Fine structure of hydrogen The familiar red H-alpha line of hydrogen (or deuterium) is a single line according to the Bohr theory. In reality this line is a closely spaced doublet due to the fine structure splitting.

14 Spin-orbit coupling: Fine structure The well-known sodium doublet arising from the transitions from the 3p levels to 3s occur at wavelengths of nm and nm. What is the spin-orbit coupling energy? ( )!E = hc # hc = hc " # " 2 1 " 1 " 2 " 1 " 2 = 2.13meV

15 Indistinguishable Particles Classical particles are distinguishable by their paths. In quantum mechanics we look at probabilities (square of the wave function). Consider a two particle wave function. The two particles are indistinguishable if the probability distribution does not change when the particles are interchanged:! (r 1,r 2 2 =! (r 2,r 1 2 This implies that! (r 1,r 2 ) = ±! (r 2,r 1 ) Bosons:! (r 1,r 2 ) =! (r 2,r 1 ) Example: photons Fermions:! (r 1,r 2 ) = "! (r 2,r 1 ) Example: electrons

16 Pauli exclusion principle The two-particle wavefunction for fermions must be antisymmetric:! (r 1,r 2 ) =! a (r 1 )! b (r 2 ) "! b (r 1 )! a (r 2 ) in order to satisfy! (r 1,r 2 ) = "! (r 2,r 1 ) Note that if a and b label the same state, then the two particle function is zero. Thus no two fermions can be in the same state (described by the same wave function). This does not apply to bosons. Consequently, no two electrons in an atom can be in a state labeled by the same set of quantum numbers. This is the exclusion principle.

17 Periodic table Atomic Structure By applying the exclusion principle, we can build up the structure of atoms in their ground state: Each state is labeled by 4 quantum numbers: n, l, m l, m s. Only 1 electron is allowed per state (exclusion principle) For each n, there are n-1 values of l. For each l there are 2(2l+1) possible combinations of l, m l, m s. Thus 2(2l+1) electrons can occupy an orbital labeled by l. s orbitals (l=0) can hold 2 electrons. p orbitals (l=1) can hold 6 electrons. d orbitals (l=2) can hold 10 electrons etc We can build up the periodic table by filling in each l orbital as we increase n.

18 Periodic table Electron configuration is specified by n, the letter corresponding to l and a superscript with the number of electrons in the last orbital. Hydrogen: 1 electron: 1s 1 Helium: 2 electrons 1s 2 Write the electron configuration of sodium in its ground state. Atomic Structure Why is 4s filled before 3d? 4s orbital has a small bump near origin and penetrates shielding of core electrons better than 3d orbital, resulting in a larger effective nuclear charge and lower energy.

19 l = 2 (d) l = 3 (f) Noble Gas Halogen Group VI Group V l = 1 (p) 1 2 Group IV l = 0 (s) Group III Alkali n Periodic table

20 Chemical properties of the elements largely determined by the electrons in the outermost shell. Hence elements in a column of the periodic table behave similarly. Ionization energies increase as the electrons are more strongly attracted to the larger positive charge of the nucleus and then decrease due to the shielding effect of filled inner shells. Atomic volume shows the same behaviour for the same reason.

21 X-ray spectra X-rays are emitted when high energy (kev) transitions occur within the inner shells of heavy atoms. When an electron is excited from the K (n=1) shell then another electron from a higher shell drops into this shell, along with the emission of an X- ray photon. The spectral series are labeled by the letter of the final state in the transition.

22 Moseley s law Moseley measured X-ray spectra and deduced a formula for the K α series: E(K! ) = 3ke2 ( Z " 1) 2 8a 0 Moseley s formula accurately determined the atomic number Z of known elements. It also predicted the existence of new elements with Z=43, 61 and 75 that were not known at the time.

23 Moseley s law Atomic Structure A certain element emits x-rays with wavelength nm when it jumps from the L to K shell. What is the atomic number of the element? E(K! ) = hc " = 3ke2 ( Z # 1) 2 8a 0 $ Z = 8hca 0 3ke 2 " + 1 = 42

Atomic Structure. Chapter 8

Atomic Structure. Chapter 8 Atomic Structure Chapter 8 Overview To understand atomic structure requires understanding a special aspect of the electron - spin and its related magnetism - and properties of a collection of identical

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other.

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other. Chapter 7 7. Electron Spin * Fine structure:many spectral lines consist of two separate lines that are very close to each other. ex. H atom, first line of Balmer series n = 3 n = => 656.3nm in reality,

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T Modern Physics 11/16 and 11/19/2018 1 Introduction In Chapter 7, we studied the hydrogen atom. What about other elements, e.g.,

More information

(b) The wavelength of the radiation that corresponds to this energy is 6

(b) The wavelength of the radiation that corresponds to this energy is 6 Chapter 7 Problem Solutions 1. A beam of electrons enters a uniform 1.0-T magnetic field. (a) Find the energy difference between electrons whose spins are parallel and antiparallel to the field. (b) Find

More information

CHAPTER 8 Atomic Physics

CHAPTER 8 Atomic Physics CHAPTER 8 Atomic Physics 8.1 Atomic Structure and the Periodic Table 8.2 Total Angular Momentum 8.3 Anomalous Zeeman Effect What distinguished Mendeleev was not only genius, but a passion for the elements.

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information

Atomic Term Symbols and Energy Splitting. λ=5890 Å

Atomic Term Symbols and Energy Splitting. λ=5890 Å Chemistry 362 Spring 2018 Dr. Jean M. Standard April 18, 2018 Atomic Term Symbols and Energy Splitting 1. Atomic Term Symbols and the Sodium D-Line The sodium D-line is responsible for the familiar orange

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Chapter 9. Atomic structure and atomic spectra

Chapter 9. Atomic structure and atomic spectra Chapter 9. Atomic structure and atomic spectra -The structure and spectra of hydrogenic atom -The structures of many e - atom -The spectra of complex atoms The structure and spectra of hydrogenic atom

More information

Many-Electron Atoms. Thornton and Rex, Ch. 8

Many-Electron Atoms. Thornton and Rex, Ch. 8 Many-Electron Atoms Thornton and Rex, Ch. 8 In principle, can now solve Sch. Eqn for any atom. In practice, -> Complicated! Goal-- To explain properties of elements from principles of quantum theory (without

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Electron Spin Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n,, m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

Mendeleev s Periodic Law

Mendeleev s Periodic Law Mendeleev s Periodic Law Periodic Law When the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically. Mendeleev s Periodic Law allows us to predict what

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Bohr s Correspondence Principle

Bohr s Correspondence Principle Bohr s Correspondence Principle In limit that n, quantum mechanics must agree with classical physics E photon = 13.6 ev 1 n f n 1 i = hf photon In this limit, n i n f, and then f photon electron s frequency

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 8: Alkali metal spectra CHE_P8_M8 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Multi-electron

More information

L z L L. Think of it as also affecting the angle

L z L L. Think of it as also affecting the angle Quantum Mechanics and Atomic Physics Lecture 19: Quantized Angular Momentum and Electron Spin http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last time Raising/Lowering angular momentum

More information

Electron Configurations

Electron Configurations Ch08 Electron Configurations We now understand the orbital structure of atoms. Next we explore how electrons filling that structure change it. version 1.5 Nick DeMello, PhD. 2007-2016 2 Ch08 Putting Electrons

More information

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle Announcements! HW8 : Chap.8 30, 31, 35, 41, 49! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz3: 4/19 (Chap. 6,7,8) *** Course Web Page ** http://highenergy.phys.ttu.edu/~slee/2402/

More information

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment Last Time 3-dimensional quantum states and wave functions Decreasing particle size Quantum dots (particle in box) Course evaluations Thursday, Dec. 10 in class Last HW assignment available : for practice

More information

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS No. of Pages: 6 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE PA266

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

Chapter 8. Periodic Properties of the Elements

Chapter 8. Periodic Properties of the Elements Chapter 8 Periodic Properties of the Elements Mendeleev (1834 1907) Ordered elements by atomic mass. Saw a repeating pattern of properties. Periodic Law When the elements are arranged in order of increasing

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Problem Set 8 Solutions

Problem Set 8 Solutions University of Alabama Department of Physics and Astronomy PH 253 / LeClair Spring 21 Problem Set 8 Solutions 1. Multiplicity of atomic magnetic moments. Calculate the magnetic moments that are possible

More information

Atomic Spectra in Astrophysics

Atomic Spectra in Astrophysics Atomic Spectra in Astrophysics Potsdam University : Wi 2016-17 : Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de Complex Atoms Non-relativistic Schrödinger Equation 02 [ N i=1 ( ) 2 2m e 2 i Ze2 4πǫ

More information

Atomic Spectroscopy II

Atomic Spectroscopy II Applied Spectroscopy Atomic Spectroscopy II Multielectron Atoms Recommended Reading: Banwell And McCash Chapter 5 The Building-Up (aufbau) Principle How do the electrons in multi-electron atoms get distributed

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Old and new quantum theory

Old and new quantum theory Old and new quantum theory Faults of the Bohr model: - gives only position of the lines and not the intensity - does not explain the number of electrons on each orbit - gives innacurate results for atoms

More information

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Up to now we have considered one-electron atoms. Almost all atoms are multiple-electron atoms and their description is more complicated

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The energy of the electron

More information

Terms to Know. 10.Angular quantum number 11.Magnetic quantum number 12.Spin quantum number

Terms to Know. 10.Angular quantum number 11.Magnetic quantum number 12.Spin quantum number Terms to Know 1. Photon 2. Atomic emission spectrum 3. Ground state 4. Atomic orbital 5. Aufbau principle 6. Pauli exclusion principle 7. Hunds rule 8. Electron configuration 9. Principle quantum number

More information

Chapter 5. Atomic spectra

Chapter 5. Atomic spectra Atomic spectra Sommerfelds relativistic model Sommerfeld succeeded partially in explaining fine structure by extending Bohr Theory i) He allowed the possibility of elliptical orbits for the electrons in

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function: Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

More. The Zeeman Effect. Normal Zeeman Effect

More. The Zeeman Effect. Normal Zeeman Effect More The Zeeman Effect As we mentioned in Chapter 3, the splitting of spectral lines when an atom is placed in an external magnetic field was looked for by Faraday, predicted on the basis of classical

More information

More. The Zeeman Effect. Normal Zeeman Effect

More. The Zeeman Effect. Normal Zeeman Effect More The Zeeman Effect As we mentioned in Chapter, the splitting of spectral lines when an atom is placed in an external magnetic field was looked for by Faraday, predicted on the basis of classical theory

More information

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8 From Last Time Philosophical effects in quantum mechanics Interpretation of the wave function: Calculation using the basic premises of quantum

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Materials Science. Atomic Structures and Bonding

Materials Science. Atomic Structures and Bonding Materials Science Atomic Structures and Bonding 1 Atomic Structure Fundamental concepts Each atom consists of a nucleus composed of protons and neutrons which are encircled by electrons. Protons and electrons

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Quantum Mechanics of Atoms

Quantum Mechanics of Atoms Quantum Mechanics of Atoms Your theory is crazy, but it's not crazy enough to be true N. Bohr to W. Pauli Quantum Mechanics of Atoms 2 Limitations of the Bohr Model The model was a great break-through,

More information

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom Announcements! HW7 : Chap.7 18, 20, 23, 32, 37, 38, 45, 47, 53, 57, 60! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz 2 (average: 9), Quiz 3: 4/19 *** Course

More information

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1 Quantum Mechanics and Atomic Physics Lecture 22: Multi-electron Atoms http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last Time Multi-electron atoms and Pauli s exclusion principle Electrons

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom Arrangement of Electrons in Atoms Table of Contents Section 1 The Development of a New Atomic Model Section 2 The Quantum Model of the Atom Section 3 Electron Configurations Section 1 The Development of

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

Chemistry 101 Chapter 11 Modern Atomic Theory

Chemistry 101 Chapter 11 Modern Atomic Theory Chemistry 101 Chapter 11 Modern Atomic Theory Electromagnetic radiation: energy can be transmitted from one place to another by lightmore properly called electromagnetic radiation. Many kinds of electromagnetic

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

Lecture 32: The Periodic Table

Lecture 32: The Periodic Table Lecture 32: The Periodic Table (source: What If by Randall Munroe) PHYS 2130: Modern Physics Prof. Ethan Neil (ethan.neil@colorado.edu) Announcements Homework #9 assigned, due next Wed. at 5:00 PM as usual.

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms Electrons in Atoms From Light to Energy of Electrons in Atom Quantum mechanical description of Atom 1. Principal quantum number: Shell 2. Orientation (shape) of : Subshell 3. Orbitals hold electrons with

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

HL Chemistry. Thursday August 20th Thursday, August 20, 15

HL Chemistry. Thursday August 20th Thursday, August 20, 15 HL Chemistry Thursday August 20th 2015 Agenda Warm Up: Electron Configuration Practice Review Topic 2.2 Electron Configuration and begin Topic 12.1 Atomic Structure Warm Up You have 10 minutes ONLY! GO!

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

Physics 43 Exam 2 Spring 2018

Physics 43 Exam 2 Spring 2018 Physics 43 Exam 2 Spring 2018 Print Name: Conceptual Circle the best answer. (2 points each) 1. Quantum physics agrees with the classical physics limit when a. the total angular momentum is a small multiple

More information

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY Note: For all questions referring to solutions, assume that the solvent is water unless otherwise stated. 1. The nuclide is radioactive and decays by the

More information

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom PHYS 34 Modern Physics Atom III: Angular Momentum and Spin Roadmap for Exploring Hydrogen Atom Today Contents: a) Orbital Angular Momentum and Magnetic Dipole Moment b) Electric Dipole Moment c) Stern

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

Chapter 31 Atomic Physics

Chapter 31 Atomic Physics 100 92 86 100 92 84 100 92 84 98 92 83 97 92 82 96 91 80 96 91 76 95 91 74 95 90 68 95 89 67 95 89 66 94 87 93 86 No. of Students in Range Exam 3 Score Distribution 25 22 20 15 10 10 5 3 2 0 0 0 0 0 0

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1 Physics 102: Lecture 24 Bohr vs. Correct Model of Atom Physics 102: Lecture 24, Slide 1 Plum Pudding Early Model for Atom positive and negative charges uniformly distributed throughout the atom like plums

More information

Chapter 7 The Quantum-Mechanical Model of the Atom

Chapter 7 The Quantum-Mechanical Model of the Atom Chapter 7 The Quantum-Mechanical Model of the Atom Electron Energy electron energy and position are complimentary because KE = ½mv 2 for an electron with a given energy, the best we can do is describe

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

64-311/5: Atomic and Molecular Spectra

64-311/5: Atomic and Molecular Spectra 64-311-Questions.doc 64-311/5: Atomic and Molecular Spectra Dr T Reddish (Room 89-1 Essex Hall) SECTION 1: REVISION QUESTIONS FROM 64-310/14 ε ο = 8.854187817 x 10-1 Fm -1, h = 1.0545766 x 10-34 Js, e

More information

Introduction to Quantum Mechanics Prof. Manoj Kumar Harbola Department of Physics Indian Institute of Technology, Kanpur

Introduction to Quantum Mechanics Prof. Manoj Kumar Harbola Department of Physics Indian Institute of Technology, Kanpur Introduction to Quantum Mechanics Prof. Manoj Kumar Harbola Department of Physics Indian Institute of Technology, Kanpur Lecture - 04 Quantum conditions and atomic structure, electron spin and Pauli exclusion

More information

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity Text Chapter 2, 8 & 9 3.1 Nature of light, elementary spectroscopy. 3.2 The quantum theory and the Bohr atom. 3.3 Quantum mechanics; the orbital concept. 3.4 Electron configurations of atoms 3.5 The periodic

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

Problems with the atomic model?

Problems with the atomic model? Modern Atomic Theory- Electronic Structure of Atoms DR HNIMIR-CH7 Where should (-) electrons be found? Problems with the atomic model? First, a Little About Electromagnetic Radiation- Waves Another Look

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Problems with the Wave Theory of Light (Photoelectric Effect)

Problems with the Wave Theory of Light (Photoelectric Effect) CHEM101 NOTES Properties of Light Found that the wave theory could not work for some experiments e.g. the photovoltaic effect This is because the classic EM view of light could not account for some of

More information

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation. Preview Objectives Properties of Light Wavelength and Frequency The Photoelectric Effect The Hydrogen-Atom Line-Emission Spectrum Bohr Model of the Hydrogen Atom Photon Emission and Absorption Section

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information