Higgs physics as a probe of electroweak baryogenesis

Size: px
Start display at page:

Download "Higgs physics as a probe of electroweak baryogenesis"

Transcription

1 Higgs physics as a probe of electroweak baryogenesis Eibun Senaha IPMU, May 27, 205.

2 Outline Introduction! Review of electroweak baryogenesis (EWBG)! Real singlet-extended SM (rsm)! Electroweak phase transition (EWPT) & sphaleron decoupling condition! Impact on the hhh coupling! Summary

3 Higgs and cosmology Higgs boson was discovered. ATLAS+CMS combined Higgs mass [PRL4,9803 (205)] m H = ± 0.24 GeV = ± 0.2(stat.) ± 0.(syst.) GeV What is the implications of Higgs physics for cosmology? - cosmic baryon asymmetry EW baryogenesis - dark matter inert Higgs, Higgs portal etc. - inflation Higgs inflation - etc We discuss EW baryogenesis in light of recent LHC data.

4 Higgs and cosmology Higgs boson was discovered. ATLAS+CMS combined Higgs mass [PRL4,9803 (205)] m H = ± 0.24 GeV = ± 0.2(stat.) ± 0.(syst.) GeV What is the implications of Higgs physics for cosmology? - cosmic baryon asymmetry EW baryogenesis - dark matter inert Higgs, Higgs portal etc. - inflation Higgs inflation - etc We discuss EW baryogenesis in light of recent LHC data.

5 Baryon Asymmetry of the Universe (BAU) Our Universe is baryon-asymmetric. CMB = n B n =(6.047 ± 0.074) 0 0, BBN = n B n =( ) 0 0 (95% CL). [PDG204] Sakharov criteria ( 67) BAU must arise () Baryon number (B) violation (2) C and CP violation (3) Out of equilibrium - After inflation - Before Big-Bang Nucleosynthesis (T O() MeV).

6 Many possibilities [Shaposhnikov, J.Phys.Conf.Ser.7:02005,2009.]. GUT baryogenesis. 2. GUT baryogenesis after preheating. 3. Baryogenesis from primordial black holes. 4. String scale baryogenesis. 5. Affleck-Dine (AD) baryogenesis. 6. Hybridized AD baryogenesis. 7. No-scale AD baryogenesis. 8. Single field baryogenesis. 9. Electroweak (EW) baryogenesis. 0. Local EW baryogenesis.. Non-local EW baryogenesis. 2. EW baryogenesis at preheating. 3. SUSY EW baryogenesis. 4. String mediated EW baryogenesis. 5. Baryogenesis via leptogenesis. 6. Inflationary baryogenesis. 7. Resonant leptogenesis. 8. Spontaneous baryogenesis. 9. Coherent baryogenesis. 20. Gravitational baryogenesis. 2. Defect mediated baryogenesis. 22. Baryogenesis from long cosmic strings. 23. Baryogenesis from short cosmic strings. 24. Baryogenesis from collapsing loops. 25. Baryogenesis through collapse of vortons. 26. Baryogenesis through axion domain walls. 27. Baryogenesis through QCD domain walls. 28. Baryogenesis through unstable domain walls. 29. Baryogenesis from classical force. 30. Baryogenesis from electrogenesis. 3. B-ball baryogenesis. 32. Baryogenesis from CPT breaking. 33. Baryogenesis through quantum gravity. 34. Baryogenesis via neutrino oscillations. 35. Monopole baryogenesis. 36. Axino induced baryogenesis. 37. Gravitino induced baryogenesis. 38. Radion induced baryogenesis. 39. Baryogenesis in large extra dimensions. 40. Baryogenesis by brane collision. 4. Baryogenesis via density fluctuations. 42. Baryogenesis from hadronic jets. 43. Thermal leptogenesis. 44. Nonthermal leptogenesis.

7 Many possibilities [Shaposhnikov, J.Phys.Conf.Ser.7:02005,2009.]. GUT baryogenesis. 2. GUT baryogenesis after preheating. 3. Baryogenesis from primordial black holes. 4. String scale baryogenesis. 5. Affleck-Dine (AD) baryogenesis. 6. Hybridized AD baryogenesis. 7. No-scale AD baryogenesis. 8. Single field baryogenesis. 9. Electroweak (EW) baryogenesis. 0. Local EW baryogenesis.. Non-local EW baryogenesis. 2. EW baryogenesis at preheating. 3. SUSY EW baryogenesis. 4. String mediated EW baryogenesis. 5. Baryogenesis via leptogenesis. 6. Inflationary baryogenesis. 7. Resonant leptogenesis. 8. Spontaneous baryogenesis. 9. Coherent baryogenesis. 20. Gravitational baryogenesis. 2. Defect mediated baryogenesis. 22. Baryogenesis from long cosmic strings. 23. Baryogenesis from short cosmic strings. 24. Baryogenesis from collapsing loops. 25. Baryogenesis through collapse of vortons. 26. Baryogenesis through axion domain walls. 27. Baryogenesis through QCD domain walls. 28. Baryogenesis through unstable domain walls. 29. Baryogenesis from classical force. 30. Baryogenesis from electrogenesis. 3. B-ball baryogenesis. 32. Baryogenesis from CPT breaking. 33. Baryogenesis through quantum gravity. 34. Baryogenesis via neutrino oscillations. 35. Monopole baryogenesis. 36. Axino induced baryogenesis. 37. Gravitino induced baryogenesis. 38. Radion induced baryogenesis. 39. Baryogenesis in large extra dimensions. 40. Baryogenesis by brane collision. 4. Baryogenesis via density fluctuations. 42. Baryogenesis from hadronic jets. 43. Thermal leptogenesis. 44. Nonthermal leptogenesis.

8 Many possibilities [Shaposhnikov, J.Phys.Conf.Ser.7:02005,2009.]. GUT baryogenesis. 2. GUT baryogenesis after preheating. 3. Baryogenesis from primordial black holes. 4. String scale baryogenesis. 5. Affleck-Dine (AD) baryogenesis. 6. Hybridized AD baryogenesis. 7. No-scale AD baryogenesis. 8. Single field baryogenesis. 9. Electroweak (EW) baryogenesis. 0. Local EW baryogenesis.. Non-local EW baryogenesis. 2. EW baryogenesis at preheating. 3. SUSY EW baryogenesis. 4. String mediated EW baryogenesis. 5. Baryogenesis via leptogenesis. 6. Inflationary baryogenesis. 7. Resonant leptogenesis. 8. Spontaneous baryogenesis. 9. Coherent baryogenesis. 20. Gravitational baryogenesis. 2. Defect mediated baryogenesis. 22. Baryogenesis from long cosmic strings. 23. Baryogenesis from short cosmic strings. 24. Baryogenesis from collapsing loops. 25. Baryogenesis through collapse of vortons. 26. Baryogenesis through axion domain walls. 27. Baryogenesis through QCD domain walls. 28. Baryogenesis through unstable domain walls. 29. Baryogenesis from classical force. 30. Baryogenesis from electrogenesis. 3. B-ball baryogenesis. 32. Baryogenesis from CPT breaking. 33. Baryogenesis through quantum gravity. 34. Baryogenesis via neutrino oscillations. 35. Monopole baryogenesis. 36. Axino induced baryogenesis. 37. Gravitino induced baryogenesis. 38. Radion induced baryogenesis. 39. Baryogenesis in large extra dimensions. 40. Baryogenesis by brane collision. 4. Baryogenesis via density fluctuations. 42. Baryogenesis from hadronic jets. 43. Thermal leptogenesis. 44. Nonthermal leptogenesis. Electroweak baryogenesis (EWBG) Higgs physics. st scenario that we can verify or falsify with experimental data.

9 Electroweak baryogenesis B violation: anomalous process! [Kuzmin, Rubakov, Shaposhnikov, PLB55,36 ( 85) ] Sakharov s criteria C violation: chiral gauge interaction! 0 $ X i=,2,3 (3q i L + l i L) (LH fermions) CP violation: CKM matrix and other complex phases in the beyond the SM! Out of equilibrium: st -order EW phase transition (EWPT) with expanding bubble walls +,--%."/0'()*+% average bubble radius O(0 6 )m [Carrington, Kapusta, PRD47, ( 93) 5304]!"#$%&'()*+% " BAU can arise by the growing bubbles.

10 EW Baryogenesis mechanism symmetric phase H: Hubble constant broken phase f, f $ f, f CP

11 EW Baryogenesis mechanism symmetric phase H: Hubble constant broken phase () f, f $ f, f CP () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b =0 + n R b n R b =0 =0

12 EW Baryogenesis mechanism symmetric phase H: Hubble constant broken phase () (2) f, f $ f, f CP () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 changed + n R b n R b n B =0

13 EW Baryogenesis mechanism symmetric phase H: Hubble constant broken phase (3) () (2) f, f $ f, f CP () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 + n R b n R b n B =0 (3) If (b) B <H the BAU can survive. changed

14 EW Baryogenesis mechanism symmetric phase How do we test this scenario? H: Hubble constant broken phase (3) () (2) f, f $ f, f CP () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 + n R b n R b n B =0 (3) If (b) B <H the BAU can survive. changed

15 EW Baryogenesis mechanism symmetric phase H: Hubble constant How do we test this scenario? -> cannot redo EWPT in lab. exp. So, test Sakharov criteria instead. broken phase (3) () (2) f, f $ f, f CP () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 + n R b n R b n B =0 (3) If (b) B <H the BAU can survive. changed

16 EW Baryogenesis mechanism symmetric phase H: Hubble constant How do we test this scenario? -> cannot redo EWPT in lab. exp. So, test Sakharov criteria instead. broken phase (3) () (2) f, f $ f, f CP probe by collider physics Higgs physics etc () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 + n R b n R b n B =0 (3) If (b) B <H the BAU can survive. changed

17 EW Baryogenesis mechanism symmetric phase H: Hubble constant How do we test this scenario? -> cannot redo EWPT in lab. exp. So, test Sakharov criteria instead. broken phase (3) () (2) f, f $ f, f CP probe by CPV physics EDMs, B decays etc probe by collider physics Higgs physics etc () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 + n R b n R b n B =0 (3) If (b) B <H the BAU can survive. changed

18 EW Baryogenesis mechanism symmetric phase H: Hubble constant How do we test this scenario? -> cannot redo EWPT in lab. exp. So, test Sakharov criteria instead. broken phase (3) () (2) f, f $ f, f CP probe by CPV physics EDMs, B decays etc Relevant particles are light (<TeV) probe by collider physics Higgs physics etc () Asymmetries arise ( CPV) but no BAU. n B = n L b n L b (2) LH part changes ( sphaleron) -> BAU n B = n L b n L b + n R b n R b =0 =0 =0 + n R b n R b n B =0 (3) If (b) B <H the BAU can survive. changed

19 (b) B <H B-changing rate in the broken phase is (b) B (T ) (prefactor)e E sph/t Esph Energy sphaleron instanton E sph is proportional to the Higgs VEV - 0 Ncs E sph / v(t ) Veff what we need is large Higgs VEV after the EWPT EWPT has to be strong st order!! (b) B (T C) <H(T C ) v C T C & 0 v C T>Tc T=Tc T<Tc (GeV)

20 (b) B <H B-changing rate in the broken phase is (b) B (T ) (prefactor)e E sph/t E sph Esph Energy sphaleron instanton E sph is proportional to the Higgs VEV - 0 B = 3 N CS Ncs E sph / v(t ) Veff what we need is large Higgs VEV after the EWPT EWPT has to be strong st order!! (b) B (T C) <H(T C ) v C T C & 0 v C T>Tc T=Tc T<Tc (GeV)

21 How do we get st -order EWPT? st(2nd) order PT = discontinuities in st(2nd) derivatives of free energy 2 nd order PT st order PT

22 How do we get st -order EWPT? st(2nd) order PT = discontinuities in st(2nd) derivatives of free energy 2 nd order PT st order PT st -order PT Negative contributions in V eff.

23 How do we get st -order EWPT? st(2nd) order PT = discontinuities in st(2nd) derivatives of free energy 2 nd order PT st order PT st -order PT Negative contributions in V eff. From where?

24 Origins of the negative contributions in V eff. 2 representative cases.

25 Origins of the negative contributions in V eff. 2 representative cases.. Thermal loop driven case e.g. SM, MSSM. doublet Higgs thermal boson loop V (boson) ('; T ) 3 T (m2 (')) 3/2 2 Tg 3 ' 3 = m 2 =g 2 ' 2 2

26 Origins of the negative contributions in V eff. 2 representative cases.. Thermal loop driven case e.g. SM, MSSM. doublet Higgs thermal boson loop V (boson) ('; T ) 3 T (m2 (')) 3/2 2 Tg 3 ' 3 = m 2 =g 2 ' 2 2 [N.B.] If m 2 (') =g 2 ' 2 + M 2 ' M 2,no ' 3 term!!

27 Origins of the negative contributions in V eff. 2 representative cases.. Thermal loop driven case e.g. SM, MSSM. doublet Higgs thermal boson loop V (boson) ('; T ) 3 T (m2 (')) 3/2 2 Tg 3 ' 3 = m 2 =g 2 ' 2 2 Typical signals Deviations of hgg and/or hγγ and/or hhh couplings [N.B.] If m 2 (') =g 2 ' 2 + M 2 ' M 2,no ' 3 term!!

28 Origins of the negative contributions in V eff. 2 representative cases.. Thermal loop driven case e.g. SM, MSSM. doublet Higgs thermal boson loop V (boson) ('; T ) 3 T (m2 (')) 3/2 2 Tg 3 ' 3 = m 2 =g 2 ' 2 2 Typical signals Deviations of hgg and/or hγγ and/or hhh couplings [N.B.] If m 2 (') =g 2 ' 2 + M 2 ' M 2,no ' 3 term!! 2. Tree driven case e.g. rsm, NMSSM. singlet Higgs V 0 3 µ HS ' 2 H' S + µ S ' 3 S 3 M(µ HS,µ S )(' 2 H + ' 2 S) 3/2

29 Origins of the negative contributions in V eff. 2 representative cases.. Thermal loop driven case e.g. SM, MSSM. doublet Higgs thermal boson loop V (boson) ('; T ) 3 T (m2 (')) 3/2 2 Tg 3 ' 3 = m 2 =g 2 ' 2 2 Typical signals Deviations of hgg and/or hγγ and/or hhh couplings [N.B.] If m 2 (') =g 2 ' 2 + M 2 ' M 2,no ' 3 term!! 2. Tree driven case e.g. rsm, NMSSM. singlet Higgs V 0 3 µ HS ' 2 H' S + µ S ' 3 S 3 M(µ HS,µ S )(' 2 H + ' 2 S) 3/2 can be negative!

30 Origins of the negative contributions in V eff. 2 representative cases.. Thermal loop driven case e.g. SM, MSSM. doublet Higgs thermal boson loop V (boson) ('; T ) 3 T (m2 (')) 3/2 2 Tg 3 ' 3 = m 2 =g 2 ' 2 2 Typical signals Deviations of hgg and/or hγγ and/or hhh couplings [N.B.] If m 2 (') =g 2 ' 2 + M 2 ' M 2,no ' 3 term!! 2. Tree driven case e.g. rsm, NMSSM. singlet Higgs V 0 3 µ HS ' 2 H' S + µ S ' 3 S 3 M(µ HS,µ S )(' 2 H + ' 2 S) 3/2 can be negative! Typical signals Deviations of HVV and/or Hff and/or hhh couplings.

31 Current status of EWBG

32 Current status of EWBG - SM EWBG was excluded. No st -order PT for m h =25 GeV. [Kajantie at al, PRL77,2887 ( 96); Rummukainen et al, NPB532,283 ( 98); Csikor et al, PRL82, 2 ( 99); Aoki et al, PRD60,0300 ( 99). Laine et al, NPB73,80( 99)]

33 Current status of EWBG - SM EWBG was excluded. No st -order PT for m h =25 GeV. v C T C & not satisfied [Kajantie at al, PRL77,2887 ( 96); Rummukainen et al, NPB532,283 ( 98); Csikor et al, PRL82, 2 ( 99); Aoki et al, PRD60,0300 ( 99). Laine et al, NPB73,80( 99)]

34 Current status of EWBG - SM EWBG was excluded. No st -order PT for m h =25 GeV. v C T C & not satisfied [Kajantie at al, PRL77,2887 ( 96); Rummukainen et al, NPB532,283 ( 98); Csikor et al, PRL82, 2 ( 99); Aoki et al, PRD60,0300 ( 99). Laine et al, NPB73,80( 99)] - MSSM EWBG was excluded. light stop scenario is inconsistent with LHC data [D. Curtin, P. Jaiswall, P. Meade., JHEP08(202)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, (202); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, (203)]

35 Current status of EWBG - SM EWBG was excluded. No st -order PT for m h =25 GeV. v C T C & not satisfied [Kajantie at al, PRL77,2887 ( 96); Rummukainen et al, NPB532,283 ( 98); Csikor et al, PRL82, 2 ( 99); Aoki et al, PRD60,0300 ( 99). Laine et al, NPB73,80( 99)] - MSSM EWBG was excluded. light stop scenario is inconsistent with LHC data v C T C & not satisfied [D. Curtin, P. Jaiswall, P. Meade., JHEP08(202)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, (202); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, (203)]

36 Current status of EWBG - SM EWBG was excluded. No st -order PT for m h =25 GeV. v C T C & not satisfied [Kajantie at al, PRL77,2887 ( 96); Rummukainen et al, NPB532,283 ( 98); Csikor et al, PRL82, 2 ( 99); Aoki et al, PRD60,0300 ( 99). Laine et al, NPB73,80( 99)] - MSSM EWBG was excluded. light stop scenario is inconsistent with LHC data v C T C & not satisfied [D. Curtin, P. Jaiswall, P. Meade., JHEP08(202)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, (202); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, (203)] - Not enough data to exclude other models (2HDM, NMSSM etc). Anyway, collider test of EWBG will be done based on the sphaleron decoupling condition, v C & T C

37 What s next? - No benchmark scenario. - Colored particles (squarks) may not play a role in realizing strong st -order PT. (due to severe LHC bounds) - EWPT may be simply described by extended Higgs sector. SM + SU(2) n-tuplet Higgs, n=,2,3, [N.B.] CP violation comes from (chargino, neutralino)-sector which would not be relevant in studying EWPT. (bosons are more important than fermions) We will consider a simple case, SM+SU(2) singlet Higgs.

38 Electroweak phase transition in the real singlet-extended SM (rsm) in collaboration with Kaori Fuyuto (Nagoya U) Ref. Phys.Rev.D90, 0505 (204), [arxiv: ]

39 Toward Higgs precision (Higgcision) - Higgs sector will be clarified with better accuracy at the coming LHC and ILC. [arxiv: , M. Peskin] - Theoretical uncertainties in the EWBG calculation also have to be minimized. In the literature, v C T C > is usually used. But, r.h.s depends on Higgs mass In this talk, we evaluate this condition more precisely, and study its impact on Higgs phenomenology. SM case sph =.6 (m h = 25 GeV)

40 Toward Higgs precision (Higgcision) - Higgs sector will be clarified with better accuracy at the coming LHC and ILC. [arxiv: , M. Peskin] - Theoretical uncertainties in the EWBG calculation also have to be minimized. But, r.h.s depends on Higgs mass In this talk, we evaluate this condition more precisely, and study its impact on Higgs phenomenology. SM case sph =.6 (m h = 25 GeV)

41 Toward Higgs precision (Higgcision) - Higgs sector will be clarified with better accuracy at the coming LHC and ILC. [arxiv: , M. Peskin] - Theoretical uncertainties in the EWBG calculation also have to be minimized. v C T C > sph must be used. But, r.h.s depends on Higgs mass In this talk, we evaluate this condition more precisely, and study its impact on Higgs phenomenology. SM case sph =.6 (m h = 25 GeV)

42 Real singlet-extended SM (rsm) Particle content: SM + S: (,,0) - simple extension of the SM - MSSM extended models have singlet Higgs (e.g., NMSSM) Higgs potential: V 0 = µ 2 HH H + H (H H) 2 + µ HS H HS + HS 2 H HS 2 + µ 3 SS + m2 S 2 S2 + µ0 S 3 S3 + S 4 S4, Scalar fields: H(x) = p 2 G + (x) v + h(x)+ig 0 (x), S(x) =v S + s(x).

43 Real singlet-extended SM (rsm) Particle content: SM + S: (,,0) - simple extension of the SM - MSSM extended models have singlet Higgs (e.g., NMSSM) Higgs potential: V 0 = µ 2 HH H + H (H H) 2 + µ HS H HS + HS 2 H HS 2 + µ 3 SS + m2 S 2 S2 + µ0 S 3 S3 + S 4 S4, Scalar fields: H(x) = p 2 G + (x) v + h(x)+ig 0 (x), S(x) =v S + s(x). H-S mixings are important to have strong st -order PT.

44 Minimization = v apple µ 2 H + H v 2 + µ HS v S + HS 2 v2 S =0, = v S apple µ 3 S v S + m 2 S + µ 0 Sv S + S v 2 S + µ HS 2 v 2 v S + HS 2 v2 =0, Mass matrix: M 2 H = 2 h s M 2 H h s 2 H v 2 µ HS v + HS vv S µ µ HS v + HS vv 3 S S v S + µ 0 S v S +2 S vs 2 µ HS 2 v 2 v S!, which can be diagonalized by h s = cos sin sin cos H H 2 2 [ /4, /4]

45 Minimization = v apple µ 2 H + H v 2 + µ HS v S + HS 2 v2 S =0, = v S apple µ 3 S v S + m 2 S + µ 0 Sv S + S v 2 S + µ HS 2 v 2 v S + HS 2 v2 =0, Mass matrix: M 2 H = 2 h s M 2 H h s 2 H v 2 µ HS v + HS vv S µ µ HS v + HS vv 3 S S v S + µ 0 S v S +2 S vs 2 µ HS 2 v 2 v S!, which can be diagonalized by h s = cos sin 25 GeV Higgs sin H cos H 2 2 [ /4, /4]

46 Vacuum structure - Shape of the T=0 Higgs potential in an example. - Vacuum structure is complex. EW vac. is not always global.

47 Vacuum structure EW vacuum - Shape of the T=0 Higgs potential in an example. - Vacuum structure is complex. EW vac. is not always global.

48 Vacuum structure EW vacuum - Shape of the T=0 Higgs potential in an example. - Vacuum structure is complex. EW vac. is not always global.

49 Vacuum structure ' S various vacua: [Funakubo, Tao, Toyoda, PTP4, ( 05) 369] EW : v 6= 0, v S 6=0, I:v =0, v S 6=0, II : v 6= 0, v S =0, SYM : v = v S =0 I SYM EW (v, v S ) II ' Global min. condition: V (EW) (v, v S ) <V(', ' S ) For example, V 0 = V (I) 0 (0, v S) V (EW) 0 (v, v S ) = H 4 v4 + µ HS 4 v2 v S + HS 4 v2 v 2 S + µ3 S 2 ( v S v S ) V 0 has to be positive. µ 0 S v S = 2 S 6 ( v3 S v 3 S) apple µ 0 S ± S 4 ( v4 S v 4 S). q µ 02 S 4 S m 2 S However, V 0 < 0 would occur if v S gets large. (small S) [NOTE]: Relatively large v S is needed for type-b EWPT (see later)

50 Higgs couplings Higgs-gauge bosons L HVV = v (cos H sin H 2 ) 2m 2 W W + µ W µ + m 2 ZZ µ Z µ, Higgs-fermions L Yukawa = X f m f v (cos H sin H 2 ) ff. Normalized couplings: apple V = g H VV g SM hv V = cos, apple F = g H ff g SM hff = cos. We collectively denote apple apple V = apple F

51 Higgs couplings Higgs-gauge bosons L HVV = v (cos H sin H 2 ) 2m 2 W W + µ W µ + m 2 ZZ µ Z µ, Higgs-fermions L Yukawa = X f m f v (cos H sin H 2 ) ff. Normalized couplings: apple V = g H VV g SM hv V = cos, apple F = g H ff g SM hff = cos. We collectively denote apple apple V = apple F

52 Higgs couplings Higgs-gauge bosons L HVV = v (cos H sin H 2 ) 2m 2 W W + µ W µ + m 2 ZZ µ Z µ, Higgs-fermions L Yukawa = X f m f v (cos H sin H 2 ) ff. Normalized couplings: apple V = g H VV g SM hv V = cos, apple F = g H ff g SM hff = cos. We collectively denote apple apple V = apple F

53 LHC constraints κ f Constraints from 25 GeV Higgs CMS Observed 68% CL 95% CL 99.7% CL SM Higgs fb (8 TeV) + 5. fb (7 TeV) κ V - Direct/Indirect searches put some constraints on the 2nd Higgs mass and coupling. 2 C' sin Direct search of 2nd Higgs - - CMS up to 5. fb (7 TeV) + up to 9.7 fb (8 TeV) Obs., Obs., Obs., Β new Β new Β new = 0.0 = 0.2 = 0.5 Γ = Γ SM (Β new = 0.5) µ h(25) Exp., Β new = 0.0 Exp., Β new = 0.2 Exp., Β new = 0.5 =.00 ± m H [GeV] Signal strength of the 2nd Higgs µ 0 = C 02 ( B new )

54 LHC constraints κ f Constraints from 25 GeV Higgs CMS Observed 68% CL 95% CL 99.7% CL SM Higgs fb (8 TeV) + 5. fb (7 TeV) prediction of rsm κ V - Direct/Indirect searches put some constraints on the 2nd Higgs mass and coupling. 2 C' sin Direct search of 2nd Higgs - - CMS up to 5. fb (7 TeV) + up to 9.7 fb (8 TeV) Obs., Obs., Obs., Β new Β new Β new = 0.0 = 0.2 = 0.5 Γ = Γ SM (Β new = 0.5) µ h(25) Exp., Β new = 0.0 Exp., Β new = 0.2 Exp., Β new = 0.5 =.00 ± m H [GeV] Signal strength of the 2nd Higgs µ 0 = C 02 ( B new )

55 Effective potential To discuss EWPT, we use the effective potential. V e (' H, ' S,T)=V 0 (' H, ' S )+V (' H, ' S )+V (' H, ' S,T)+V daisy (' H, ' S,T). where V (' H, ' S )= X i V (' H, ' S,T)= X i with V daisy (' H, ' S,T)= n i m 4 i (' H, ' S ) 64 2 n i T I B,F I B,F (a 2 )= X j n j T 2 h Z 0 ln m2 i (' H, ' S ) µ 2 c i m 2 i (' H, ' S ), n H = n H2 = n G 0 =, n G ± =2, n W =2 3, n Z =3, n t = n b = 4N c, T 2 dx x 2 ln e p x 2 +a 2, M 2 j (' H, ' S,T) 3/2 m 2 j(' H, ' S ) 3/2i,,

56 Patterns of EWPT Diverse patterns of the phase transitions. [K.Funakubo, S. Tao, F. Toyoda., PTP4,369 (2005)] B A: SYM I EW B: SYM I EW C: SYM II EW D: SYM EW I A D EW C SYM II Type B Before EW symmetry breaking, singlet develops a VEV. Difference between type A and type B: barrier exists in type B, no barrier in type A

57 Type-B PT ' S ' = z cos, ' S = z sin + v S EW : (v, v S ) I 0 :(0, v S ) I 0 z EW ' V (z, ; T )=c 0 + c z + c 2 z 2 c 3 z 3 + c 4 z 4! T =TC c 4 z 2 (z z C ) 2. v C T C = z C T C c = Ec 4 s c h(µ HS + HS v S )c 2 /2+(µ 0 S /3+ S v S )s 2 i /T C ( H c 4 + HS s 2 c 2 + S s 4 )/2 To get the strong st -order PT, numerator and/or denominator Size of v S is constrained by the vacuum stability EWPT is reduced to the SM-like as! 0( v S! v S ). type B > type A

58 Type-B PT ' S ' = z cos, ' S = z sin + v S EW : (v, v S ) I 0 :(0, v S ) I 0 z EW ' V (z, ; T )=c 0 + c z + c 2 z 2 c 3 z 3 + c 4 z 4! T =TC c 4 z 2 (z z C ) 2. v C T C = z C T C c = Ec 4 s c h(µ HS + HS v S )c 2 /2+(µ 0 S /3+ S v S )s 2 i /T C ( H c 4 + HS s 2 c 2 + S s 4 )/2 To get the strong st -order PT, numerator and/or denominator Size of v S is constrained by the vacuum stability EWPT is reduced to the SM-like as! 0( v S! v S ). type B > type A

59 Type-B PT ' S ' = z cos, ' S = z sin + v S EW : (v, v S ) I 0 :(0, v S ) I 0 z EW ' V (z, ; T )=c 0 + c z + c 2 z 2 c 3 z 3 + c 4 z 4! T =TC c 4 z 2 (z z C ) 2. v C T C = z C T C c = Ec 4 s c h(µ HS + HS v S )c 2 /2+(µ 0 S /3+ S v S )s 2 i /T C ( H c 4 + HS s 2 c 2 + S s 4 )/2 To get the strong st -order PT, numerator and/or denominator Size of v S is constrained by the vacuum stability EWPT is reduced to the SM-like as! 0( v S! v S ). type B > type A

60 Type-B PT ' S ' = z cos, ' S = z sin + v S EW : (v, v S ) I 0 :(0, v S ) I 0 z EW ' V (z, ; T )=c 0 + c z + c 2 z 2 c 3 z 3 + c 4 z 4! T =TC c 4 z 2 (z z C ) 2. v C T C = z C T C c = thermal loop origin Ec 4 s c To get the strong st -order PT, h(µ HS + HS v S )c 2 /2+(µ 0 S /3+ S v S )s 2 i /T C ( H c 4 + HS s 2 c 2 + S s 4 )/2 numerator and/or denominator Size of v S is constrained by the vacuum stability EWPT is reduced to the SM-like as! 0( v S! v S ). type B > type A

61 Type-B PT ' S ' = z cos, ' S = z sin + v S EW : (v, v S ) I 0 :(0, v S ) I 0 z EW ' V (z, ; T )=c 0 + c z + c 2 z 2 c 3 z 3 + c 4 z 4! T =TC c 4 z 2 (z z C ) 2. v C T C = z C T C c = thermal loop origin Ec 4 s c To get the strong st -order PT, tree origin h(µ HS + HS v S )c 2 /2+(µ 0 S /3+ S v S )s 2 i /T C ( H c 4 + HS s 2 c 2 + S s 4 )/2 numerator and/or denominator Size of v S is constrained by the vacuum stability EWPT is reduced to the SM-like as! 0( v S! v S ). type B > type A

62 Strong st order PT m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV apple ' 0.9 is mixing angle between H and S. larger gives strong st -order PT. (v C /T C > for > 3 deg.)

63 Strong st order PT m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV v S (T C ) apple ' 0.9 is mixing angle between H and S. larger gives strong st -order PT. (v C /T C > for > 3 deg.)

64 Strong st order PT m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV v S (T C ) apple ' 0.9 EW vacuum is metastable is mixing angle between H and S. larger gives strong st -order PT. (v C /T C > for > 3 deg.)

65 Sphaleron decoupling condition After the EWPT, the sphaleron process has to be decoupled. (b) B (T ) (prefactor)e E sph/t <H(T ).66 g T 2 /m P g massless dof, (SM) m P Planck mass.22x0 9 GeV E sph =4 ve/g 2 (g 2 : SU(2) gauge coupling), v(t ) T > g apple ln N 2ln 4 E(T ) T 00 GeV + sph (T ), - Sphaleron energy gives the dominant effect. - We evaluate E(Tc), (Tc).

66 Sphaleron decoupling condition After the EWPT, the sphaleron process has to be decoupled. (b) B (T ) (prefactor)e E sph/t <H(T ).66 g T 2 /m P g massless dof, (SM) m P Planck mass.22x0 9 GeV E sph =4 ve/g 2 (g 2 : SU(2) gauge coupling), v(t ) T > g apple ln N 2ln 4 E(T ) T 00 GeV + sph (T ), - Sphaleron energy gives the dominant effect. - We evaluate E(Tc), (Tc).

67 Sphaleron decoupling condition m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV conventional criterion apple '

68 Sphaleron decoupling condition m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV conventional criterion apple ' (T C )= (.2-.3)

69 Sphaleron decoupling condition m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV conventional criterion (T C )= (.2-.3)

70 Sphaleron decoupling condition m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV conventional criterion (T C )= (.2-.3)

71 Sphaleron decoupling condition m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV conventional criterion (T C )= (.2-.3)

72 Sphaleron decoupling condition m H2 = 70 GeV, v S = 90 GeV, µ 0 S = 30 GeV, µ HS = 80 GeV conventional criterion (T C )= (.2-.3) - v C /T C > (T C ) is satisfied for > 5 deg.

73 hhh coupling - We may see a remnant of st-order EWPT by measuring Higgs self-coupling. Veff! T>Tc! 0 T=Tc T<Tc (GeV)! v C /T C -> hhh e.g., 2HDM [Kanemura, Okada, E.S., PLB606,(2005)36] (T C ) determines the minimum deviation of hhh.

74 hhh coupling hhh coupling in the SM. SM H H H = 3m2 H v m2 H 32 2 v 2 + X i=w,z,t,b n i m 4 i 2 2 m 2 H v The dominant one-loop correction comes from top loop hhh coupling in the rsm. rsm,tree H H H =6 apple rsm H H H = rsm,tree H H H + rsm,loop H H H, Hvc 3 + µ HS 2 s c 2 + HS 2 s c (vs + v S c )+ µ 0 S 3 + Sv S s 3, rsm,loop H H H = c 3 3 H + c S + c s 3 2 S + s 3 3 S, Larger gives the larger deviation from the SM value. (To have strong st order PT, ( HS,µ HS ) have to be large.)

75 H H H contours in (m H2, apple) plane % 30% % 0.85 v C /T C > (T C ) % EW vacuum is not global [GeV] H H H ' 6% for apple ' 0.97 and 60 GeV. m H2. 69 GeV, H H H ' 27% for apple ' 0.95, and 63 GeV. m H2. 76 GeV.

76 H H H contours in (m H2, apple) plane % 30% % 0.85 v C /T C > (T C ) % EW vacuum is not global [GeV] H H H ' 6% for apple ' 0.97 and 60 GeV. m H2. 69 GeV, H H H ' 27% for apple ' 0.95, and 63 GeV. m H2. 76 GeV.

77 H H H contours in (m H2, apple) plane % 30% % 0.85 v C /T C > (T C ) % EW vacuum is not global If v C T C > [GeV] H H H ' 6% for apple ' 0.97 and 60 GeV. m H2. 69 GeV, H H H ' 27% for apple ' 0.95, and 63 GeV. m H2. 76 GeV.

78 H H H contours in (m H2, apple) plane % 30% % 0.85 v C /T C > (T C ) % EW vacuum is not global [GeV] If 72 v C T C > H H H ' 6% for apple ' 0.97 and 60 GeV. m H2. 69 GeV, H H H ' 27% for apple ' 0.95, and 63 GeV. m H2. 76 GeV.

79 H H H contours in (m H2, apple) plane % 30% % 0.85 v C /T C > (T C ) % EW vacuum is not global [GeV] If 72 v C T C > 82 H H H ' 6% for apple ' 0.97 and 60 GeV. m H2. 69 GeV, H H H ' 27% for apple ' 0.95, and 63 GeV. m H2. 76 GeV.

80 [arxiv: , M. Peskin] Higgs coupling LHC/ILC can probe EWBG-favored region.

81 e events surviving the event selection before the mass criteria and angular cuts a malized to the number hhh of expected coupling events after at the full LHC event selection. The ttx c s t t( lepton) and t tγ, while Others includes c cγγ, b bγ j, b bjjand jjγγ. Projected limit on the total HH yield (events) s ATL-PHYS-PUB ATLAS Simulation Preliminary - = 4 TeV: 3000 fb Exp. 95% CLs ± σ ± 2 σ λ / λ SM 8: 95% CLs limit (dashed line) on the size of[ilc an additional white paper, HH contribution ] summ hhh/ hhh = 3%

82 Summary In the light of LHC data, MSSM EWBG was excluded. Other models are still viable. As a simple example, we have discussed the EW phase transition and sphaleron decoupling condition in SM+S. v C /T C > (.-.2) in the typical cases. We also studied the deviation of the hhh coupling from the SM value based on the improved sphaleron decoupling condition. The deviation is greater than that based on the conventional criterion v C /T C >. -> hhh

83 Backup

84 apple vs. H H H 50 SM H HH HHH SM H HH HHH = rsm Smaller gives larger HHH.

85 apple vs. H H H 50 SM H HH HHH SM H HH HHH = rsm (v C /T C =.2 > (T C )=.9) Smaller gives larger HHH.

86 apple vs. H H H SM H HH HHH SM H HH HHH = rsm (v C /T C =4.59 > (T C )=.9) (v C /T C =.2 > (T C )=.9) Smaller gives larger HHH.

87 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV)

88 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV)

89 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV) excluded

90 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV) excluded

91 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV) excluded no significant deviation

92 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV) excluded no significant deviation

93 Benchmark points Z2-symmetric S S2 S3 S4 H-S mixing parameters λ HS λ HS,µ HS λ HS,µ HS µ HS PT type D B B B m H2 [GeV] α [degrees] v S [GeV] µ HS [GeV] µ S [GeV] κ λ H H H [%] log 0 (Λ/GeV) below GUT scale excluded no significant deviation

94 light stop scenario m 2 t (') ' y2 t sin 2 2 MSSM EWBG ' 2 (m 2 q L m 2 t R, A t µ/ tan 2 ' 0) Strong st -order EWPT is driven by the light stop with a mass below 20 GeV. [M. Carena et al, NPB82, (2009) 243]. Prediction: (gg -> H -> VV)/ (gg -> H -> VV) SM (2-3) t t t

95 light stop scenario m 2 t (') ' y2 t sin 2 2 MSSM EWBG ' 2 (m 2 q L m 2 t R, A t µ/ tan 2 ' 0) Strong st -order EWPT is driven by the light stop with a mass below 20 GeV. [M. Carena et al, NPB82, (2009) 243]. Prediction: (gg -> H -> VV)/ (gg -> H -> VV) SM (2-3) t t t Confronting this scenario with LHC data, MSSM EWBG is ruled out at greater than 98% CL (ma> TeV), at least 90% CL for light value of ma (~300 GeV) [D. Curtin, P. Jaiswall, P. Meade., JHEP08(202)005] σ(gg -> H -> VV) is inconsistent.

96 light stop scenario m 2 t (') ' y2 t sin 2 MSSM EWBG Strong st ~ ~ ~ ~ ~ ~ W b χ / t -order EWPT is driven by the light 500 stop with a 0 c χ 0 b f f χ 0 t / t / t mass below 20 t χ 0 t production, t Status: ICHEP 204 GeV. [M. Carena et al, NPB82, (2009) 243]. 2 ' 2 (m 2 q L m 2 t R, A t µ/ tan 2 ' 0) 0 t W b χ L [ ], 2L [ ] - ~ 0 t χ Prediction: (gg -> H -> VV)/ (gg c 0L [ ] - 0 b f f χ 0L [ ], L [ ] 350 -> H -> VV) SM - (2-3) [GeV] m χ ATLAS Preliminary ~ t t χ ~ t t χ ~ t t χ ~ Observed limits All limits at 95% CL - L int = 20 fb 0L [406.22] L [ ] 2L [ ] Expected limits s=8 TeV - = 4.7 fb L int 0L [ ] L [ ] 2L [ ] s=7 TeV t m ~ L int t < m b /m c + m χ 0 c χ = 20.3 fb 0 - m ~ t < m b + m W + m χ 0 m ~ t < m t +m χ 0 t b f f χ 0 t 50 0 L int W b χ 0 = 20.3 fb - - = 4.7 fb L int - = 20 fb L int m~ t [GeV] Confronting this scenario with LHC data, MSSM EWBG is ruled out at greater than 98% CL (ma> TeV), at least 90% CL for light value of ma (~300 GeV) [D. Curtin, P. Jaiswall, P. Meade., JHEP08(202)005] σ(gg -> H -> VV) is inconsistent.

97 light stop scenario m 2 t (') ' y2 t sin 2 MSSM EWBG Strong st ~ ~ ~ ~ ~ ~ W b χ / t -order EWPT is driven by the light 500 stop with a 0 c χ 0 b f f χ 0 t / t / t mass below 20 t χ 0 t production, t Status: ICHEP 204 GeV. [M. Carena et al, NPB82, (2009) 243]. 2 ' 2 (m 2 q L m 2 t R, A t µ/ tan 2 ' 0) 0 t W b χ L [ ], 2L [ ] - ~ 0 t χ Prediction: (gg -> H -> VV)/ (gg c 0L [ ] - 0 b f f χ 0L [ ], L [ ] 350 -> H -> VV) SM - (2-3) [GeV] m χ ATLAS Preliminary ~ t t χ ~ t t χ ~ t t χ ~ Observed limits All limits at 95% CL - L int = 20 fb 0L [406.22] L [ ] 2L [ ] Expected limits s=8 TeV - = 4.7 fb L int 0L [ ] L [ ] 2L [ ] s=7 TeV t m ~ L int t < m b /m c + m χ 0 c χ = 20.3 fb 0 - m ~ t < m b + m W + m χ 0 m ~ t < m t +m χ 0 t b f f χ 0 t 50 0 L int W b χ 0 = 20.3 fb - - = 4.7 fb L int - = 20 fb L int m~ t [GeV] Confronting this scenario with LHC data, MSSM EWBG is ruled out at greater than 98% CL (ma> TeV), at least 90% CL for light value of ma (~300 GeV) [D. Curtin, P. Jaiswall, P. Meade., JHEP08(202)005] σ(gg -> H -> VV) is inconsistent. v C & not satisfied T C

98 4 Higgs doublets+singlets-extended MSSM Strong st -order EWPT is driven by the charged Higgs bosons. 400 hγγ 400 hhh m Φ ± [GeV] v c /T c =.0 µ γγ =0.78 strong st -order EWPT m Φ ± [GeV] % v c /T c =.0 +40% +30% strong st -order EWPT +20% λ hhh λ hhh SM =+0% m Φ 0[GeV] m Φ 0[GeV] If the EWPT is strong st order, [S. Kanemura, E.S., T. Shindou, T. Yamada, JHEP05 (203) 066] - μγγ is reduced by more than 20%, - hhh coupling is enhanced by more than 20%.

99 4 Higgs doublets+singlets-extended MSSM Strong st -order EWPT is driven by the charged Higgs bosons. 400 hγγ 400 hhh m Φ ± [GeV] v c /T c =.0 µ γγ =0.78 strong st -order EWPT m Φ ± [GeV] % µ +30% 340 γγ =.7 ± 0.27 (ATLAS) 320 µ 300 γγ = % strong st -order EWPT v c /T c =.0 +20% 0.23 (CMS) λ hhh λ hhh SM =+0% m Φ 0[GeV] m Φ 0[GeV] If the EWPT is strong st order, [S. Kanemura, E.S., T. Shindou, T. Yamada, JHEP05 (203) 066] - μγγ is reduced by more than 20%, - hhh coupling is enhanced by more than 20%.

100 Singlino-driven EWBG in the NMSSM [K. Cheung, TJ. Hou, JS. Lee, E.S., PLB70 (202) 88] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-singlino int

101 Singlino-driven EWBG in the NMSSM [K. Cheung, TJ. Hou, JS. Lee, E.S., PLB70 (202) 88] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-singlino int

102 Singlino-driven EWBG in the NMSSM [K. Cheung, TJ. Hou, JS. Lee, E.S., PLB70 (202) 88] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-singlino int [GeV] m ~ Sbottom pair production, b ATLAS - Ldt = 20. fb, All limits at 95% CL s=8 TeV b 0 Observed limit (± - CDF 2.65 fb - D0 5.2 fb - ATLAS 2.05 fb, SUSY theory Expected limit (± exp ) s=7 TeV ) ~ b 0 b forbidden [GeV] m b ~

103 Singlino-driven EWBG in the NMSSM [K. Cheung, TJ. Hou, JS. Lee, E.S., PLB70 (202) 88] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-singlino int [GeV] m ~ Sbottom pair production, b ATLAS - Ldt = 20. fb, All limits at 95% CL s=8 TeV b 0 Observed limit (± - CDF 2.65 fb - D0 5.2 fb - ATLAS 2.05 fb, SUSY theory Expected limit (± exp ) s=7 TeV ) ~ b 0 b forbidden [GeV] m b ~ This specific scenario is disfavored by sbottom searches.

104 Singlino-driven EWBG in the NMSSM [K. Cheung, TJ. Hou, JS. Lee, E.S., PLB70 (202) 88] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-singlino int [GeV] m ~ Sbottom pair production, b ATLAS - Ldt = 20. fb, All limits at 95% CL s=8 TeV b 0 Observed limit (± - CDF 2.65 fb - D0 5.2 fb - ATLAS 2.05 fb, SUSY theory Expected limit (± exp ) s=7 TeV ) ~ b 0 b forbidden [GeV] m b ~ This specific scenario is disfavored by sbottom searches. However, successful scenario still remain, e.g. bino-driven scenario.

105 Z -ino-driven EWBG in the UMSSM [E.S., PRD88, (203)] " Strong st -order EWPT is driven by the doublet-singlet mixing effects. " CP-violation relevant to the BAU comes from Higgsino-Z -ino int. " BAU can be explained if the Higgsino and Z -ino are nearly degenerate. " Predictions: g HVV =( ) and light leptophobic Z (<25 GeV)

106 Z -ino-driven EWBG in the UMSSM [E.S., PRD88, (203)] " Strong st -order EWPT is driven by the doublet-singlet mixing effects. " CP-violation relevant to the BAU comes from Higgsino-Z -ino int. " BAU can be explained if the Higgsino and Z -ino are nearly degenerate. " Predictions: g HVV =( ) and light leptophobic Z (<25 GeV)

107 Z -ino-driven EWBG in the UMSSM [E.S., PRD88, (203)] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-Z -ino int. BAU can be explained if the Higgsino and Z -ino are nearly degenerate. Predictions: g HVV =( ) and light leptophobic Z (<25 GeV)

108 Z -ino-driven EWBG in the UMSSM [E.S., PRD88, (203)] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-Z -ino int BAU can be explained if the Higgsino and Z -ino are nearly degenerate. Predictions: g HVV =( ) and light leptophobic Z (<25 GeV)

109 Z -ino-driven EWBG in the UMSSM [E.S., PRD88, (203)] Strong st -order EWPT is driven by the doublet-singlet mixing effects. CP-violation relevant to the BAU comes from Higgsino-Z -ino int BAU can be explained if the Higgsino and Z -ino are nearly degenerate. Predictions: g HVV =( ) and light leptophobic Z (<25 GeV)

110 Experimental constraints on light leptophobic Z Electroweak precision tests (see e.g. Umeda,Cho,Hagiwara, PRD58 (998) 5008) -> In our case, no constraint since Z-Z mixing is assumed to be small. All dijet-mass searches at Tevatron/LHC are limited to M jj >200 GeV. Z boson (<200 GeV) is constrained by the UA2 experiment. UA2 bounds on m Z UA2 Collaborations,NPB400: (993) 3 M. Buckley et al,prd83:503 (20) ~ UA g ffz fl,r µ f L,R Z µ 0 I,,,,I,,,H I,, M~/(GeV) Fig. 5. Excluded region to 90% for Z. ~q, (excluded region is hatched). The branching ratio is given as a fraction of standard model branching ratio. The solid line shows a branching ratio of for Z ~c~qwhilst the dashed line shows a branching ratio of 0.7.

111 Sphaleron s (sphaleros) ready to fall [F.R.Klinkhamer and N.S.Manton, PRD30, 222 (984)] Energy sphaleron vacuum NCS = vacuum NCS = 0

112 Sphaleron in the SU(2) gauge-higgs system L gauge+higgs = 4 F a µ F aµ +(D µ ) D µ V ( ) F a µ = µ A a A a µ + g 2 abc A b µa c, D µ = µ ig 2 A a µ 2 a, V( )= v We consider the static classical solution. E = d 3 x 4 F a ijf a ij +(D i ) D i + v 2 2 2, A 0 =0. Since lim x E = finite, A and must have the form of the vacuum configurations at x = : i A i (x) = iu(, )U (, ), g 2 (x) = U(, ) 0 v/ 2 where U(, ) such that S 2 SU(2) S 3.U( =0, )=.,

113 where Noncontractible loop parameter familiy U(µ,, ) (µ [0, ]) with finite E. [S S 2 S 3 ] U(µ,, ) = U(µ, +, )=U(µ,, +2 ), for µ, U(0,, ) = U(,, )=, U(µ, 0, )=, vacuum (µ,, ) S 3, U(µ,, ) is noncontractible since 3(SU(2)) Z. Energy sphaleron µ = /2 µ = vacuum NCS = saddle point = maximum energy along the least energy path -> =π/2 vacuum µ =0 vacuum -> =0,π. NCS = 0 U(µ,, )= eiµ (cos µ i sin µ cos ) e i sin µ sin e i sin µ sin e iµ (cos µ + i sin µ cos ).

114 Ansatz Let us consider the configuration space spanned by the following: A i (µ, x) = (µ, x) = U(µ,, ) i g 2 iu(µ,, )U (µ,, ), 0 v/ 2 in the limit of r = x = this space are. The most highest symmetry configurations in A i (µ, r,, ) = i g 2 f(r) i U(µ,, )U (µ,, ), (µ, r,, ) = v 2 ( h(r)) 0 e iµ cos µ + h(r)u(µ,, ) 0. µ = /2 saddle point configuration (spahaleron) cf. µ = 0, vacuum configuration

115 Change the variable r = x 2 to. Energy functional E sph = 4 v g 2 0 d 4 df d (f f 2 ) dh d 2 + h 2 ( f) 2 + 4g (h 2 ) 2 4 v g 2 E, where = g 2 vr. Equations of motion for the sphaleron d d d 2 d f( ) = 2 f( )( f( ))( 2f( )) h2 ( )( f( )), 2 dh( ) = 2h( )( f( )) 2 + (h 2 ( ) )h( ) d g 2 2 with the boundary conditions lim 0 f( )=0, lim 0 h( )=0, lim f( )=, lim h( )=.

116 Higgs couplings Table 9.. Summary of expected accuracies g i /g i for model independent determinations of the Higgs boson couplings. The theory errors are F i /F i =0.%. Fortheinvisiblebranchingratio,thenumbersquotedare95% confidence upper limits. Ô s (GeV) ILC(250) ILC(500) ILC(000) ILC(LumUp) L(fb ) % 8.4 % 4.0 % 2.4 % gg 6.4 % 2.3 %.6 % 0.9 % WW 4.8 %. %. % 0.6 % ZZ.3 %.0 %.0 % 0.5 % t t 4 % 3. %.9 % b b 5.3 %.6 %.3 % 0.7 % % 2.3 %.6 % 0.9 % c c 6.8 % 2.8 %.8 %.0 % µ + µ 9% 9% 6 % 0 % T (h) 2 % 4.9 % 4.5 % 2.3 % hhh 83 % 2 % 3 % BR(invis.) < 0.9 % < 0.9 % < 0.9 % < 0.4 % ILC can probe EWBG-favored region.

117 Measurement of hhh hhh can be measured by double Higgs productions. At linear collider: Higgsstrahlung e - e + Z Z h h λhhh h e- e + Z Z h h e - e+ Z Z h h e - e + W h W ν e h λ hhh h ν e e - e + WW-fusion W W W ν e h h ν e e e - + W W ν h e h ν e

118 e- Production cross sections Z Z * h * h e + hhh λhhh = λ SM hhh ( + κ), h FIG. 6: The full cross section of e e (γ(+)γ(+)) hh p GeV (left) and m h =60GeV(right). [E.Asakawa, D.Harada, S.Kanemura, Y.Okada, K.Tsumura, PRD82(200)5002] For s TeV, production cross section is O(0.)fb For s>tev, WW-fusion is also important. FIG. 7: The cross sections of e + e hhν ν process at th

Electroweak baryogenesis as a probe of new physics

Electroweak baryogenesis as a probe of new physics Electroweak baryogenesis as a probe of new physics Eibun Senaha (Nagoya U) HPNP25@Toyama U. February 3, 25 Outline Introduction Overview of electroweak baryogenesis (EWBG) Current status EWBG in SUSY models

More information

Electroweak Baryogenesis

Electroweak Baryogenesis Electroweak Baryogenesis Eibun Senaha (KIAS) Feb. 13, 2013 HPNP2013 @U. of Toyama Outline Motivation Electroweak baryogenesis (EWBG) sphaleron decoupling condition strong 1 st order EW phase transition

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

Electroweak Baryogenesis and the triple Higgs boson coupling

Electroweak Baryogenesis and the triple Higgs boson coupling Electroweak Baryogenesis and te triple Higgs boson coupling Eibun Senaa (Grad. Univ. Advanced Studies, KEK) Mar. 18-22, 2005, LCWS 05 @Stanford U. in collaboration wit Sinya Kanemura (Osaka U) Yasuiro

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Higgs Physics and Cosmology

Higgs Physics and Cosmology Higgs Physics and Cosmology Koichi Funakubo Department of Physics, Saga University 1 This year will be the year of Higgs particle. The discovery of Higgs-like boson will be reported with higher statistics

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

m H = ± 0.24GeV

m H = ± 0.24GeV m H = 125.09 ± 0.24GeV Y B n B s =(8.59 ± 0.11) 10 11 n B = n b n b( b) : n b s : W = g 2 2/4 (s) B ( W T ) 4 =0.1 1.0 (b) B T 4 e E sph/t E sph : v(t ) v v C T T C v C T C V e (T ) T>T C T = T C T

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

LHC Signals of (MSSM) Electroweak Baryogenesis

LHC Signals of (MSSM) Electroweak Baryogenesis LHC Signals of (MSSM) Electroweak Baryogenesis David Morrissey Department of Physics, University of Michigan Michigan Center for Theoretical Physics (MCTP) With: Csaba Balázs, Marcela Carena, Arjun Menon,

More information

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ ) Hidden Sector Baryogenesis Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/0608188) and w/ B.D and Louis Leblond (hepth/0703278) Basic Issue low-energy interactions seem to preserve baryon

More information

Implications of an extra U(1) gauge symmetry

Implications of an extra U(1) gauge symmetry Implications of an extra U(1) gauge symmetry Motivations 400 LEP2 (209 GeV) Higgsstrahlung Cross Section A (string-motivated) model σ(e + e - -> ZH) (fb) 350 300 250 200 150 100 50 H 1 H 2 Standard Model

More information

Electroweak Baryogenesis in Non-Standard Cosmology

Electroweak Baryogenesis in Non-Standard Cosmology Electroweak Baryogenesis in Non-Standard Cosmology Universität Bielefeld... KOSMOLOGIETAG 12... Related to works in colloboration with M. Carena, A. Delgado, A. De Simone, M. Quirós, A. Riotto, N. Sahu,

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

Higgs Couplings and Electroweak Phase Transition

Higgs Couplings and Electroweak Phase Transition Higgs Couplings and Electroweak Phase Transition Maxim Perelstein, Cornell! ACFI Workshop, Amherst MA, September 17, 2015 Based on:! Andrew Noble, MP, 071018, PRD! Andrey Katz, MP, 1401.1827, JHEP ElectroWeak

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

Electroweak Baryogenesis and Higgs Signatures

Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) 1/27 Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) with Aaron Pierce arxiv:1110.0482 with David Morrissey and Aaron Pierce arxiv:1203.2924 Second MCTP Spring Symposium

More information

The Origin of Matter. Koichi Funakubo Dept. Physics Saga University. NASA Hubble Space Telescope NGC 4911

The Origin of Matter. Koichi Funakubo Dept. Physics Saga University. NASA Hubble Space Telescope NGC 4911 The Origin of Matter Koichi Funakubo Dept. Physics Saga University NASA Hubble Space Telescope NGC 4911 fundamental theory of elementary particles Local Quantum Field Theory causality relativistic quantum

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS A New Look at the Electroweak Baryogenesis in the post-lhc Era. W. Huang, J. S,Y. Zhang, JHEP 1303 (2013) 164 J. S,Y. Zhang, Phys. Rev. Lett. 111 (2013) 091801 W. Huang, ZF. Kang, J. S, PW. Wu, JM. Yang,

More information

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 What Shall We Learn from h^3 Measurement Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 The Shape of Things to Come LHC: spin-0, elementary-looking Higgs field This field is

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Testing the Electroweak Baryogenesis at the LHC and CEPC

Testing the Electroweak Baryogenesis at the LHC and CEPC Testing the Electroweak Baryogenesis at the LHC and CEPC Fa Peng Huang based on the works of arxiv : 1511.xxxxx with Xinmin Zhang, Xiaojun Bi, PeiHong Gu and PengFei Yin and Phy.Rev.D92, 075014(2015)(arXiv

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Higgs Portal & Cosmology: Theory Overview

Higgs Portal & Cosmology: Theory Overview Higgs Portal & Cosmology: Theory Overview M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Higgs Portal WS May 2014! 1 The Origin of Matter Baryons Cosmic Energy Budget Dark Matter

More information

Higgs Boson Couplings as a Probe of New Physics

Higgs Boson Couplings as a Probe of New Physics Higgs Boson Couplings as a Probe of New Physics Kei Yagyu Based on S. Kanemura, K. Tsumura, KY, H. Yokoya, PRD90, 075001 (2014) S. Kanemura, M. Kikuchi, and KY, PLB731, 27 (2014) S. Kanemura, M. Kikuchi,

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Peter Winslow Based on: PRD 91, 035018 (2015) (arxiv:1407.5342) S. Profumo, M. Ramsey-Musolf, C. Wainwright, P. Winslow arxiv:1510.xxxx

More information

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex Making baryons at the electroweak phase transition Stephan Huber, University of Sussex UK BSM '07 Liverpool, March 2007 Why is it interesting? There are testable consequences: New particles (scalars?!)

More information

Electroweak phase transition with two Higgs doublets near the alignment limit

Electroweak phase transition with two Higgs doublets near the alignment limit Electroweak phase transition with two Higgs doublets near the alignment limit Jérémy Bernon The Hong Kong University of Science and Technology Based on 1712.08430 In collaboration with Ligong Bian (Chongqing

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Koji TSUMURA (NTU à Nagoya U.)

Koji TSUMURA (NTU à Nagoya U.) Koji TSUMURA (NTU à Nagoya U.) Toyama mini WS 20-21/2/2012 S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D80 015017 (2009) Outline The

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Higgs Boson: from Collider Test to SUSY GUT Inflation

Higgs Boson: from Collider Test to SUSY GUT Inflation Higgs Boson: from Collider Test to SUSY GUT Inflation Hong-Jian He Tsinghua University String-2016, Tsinghua, Beijing, August 5, 2016 String Theory Supergravity,GUT Effective Theory: SM, + eff operators

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Looking through the Higgs portal with exotic Higgs decays

Looking through the Higgs portal with exotic Higgs decays Looking through the Higgs portal with exotic Higgs decays Jessie Shelton University of Illinois, Urbana-Champaign Unlocking the Higgs Portal (U. Mass. Amherst) May 1, 2014 A light SM-like Higgs is narrow

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes Stefano Profumo California Institute of Technology TAPIR Theoretical AstroPhysics Including Relativity Kellogg Rad Lab Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

More information

Electroweak baryogenesis after LHC8

Electroweak baryogenesis after LHC8 Electroweak baryogenesis after LHC8 Stephan Huber, University of Sussex Mainz, Germany August 2014 Moduli-induced baryogenesis [arxiv:1407.1827] WIMPy baryogenesis [arxiv:1406.6105] Baryogenesis by black

More information

Electroweak Baryogenesis A Status Report

Electroweak Baryogenesis A Status Report Electroweak Baryogenesis A Status Report Thomas Konstandin Odense, August 19, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Standard Cosmology time temperature Standard Cosmology

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Status of low energy SUSY models confronted with the 125 GeV Higgs data Status of low energy SUSY models confronted with the 5 GeV Higgs data Junjie Cao On behalf of my collaborators J. M. Yang, et al Based on our works arxiv: 7.3698, 6.3865, 3.3694,.58,.439 junjiec@itp.ac.cn

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012 Koji TSUMURA (NTU Nagoya U.) @ KEK 16-18/2/2012 Outline: -Two-Higgs-doublet model -Leptophilic Higgs boson S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K.

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Based on arxiv:1806.04689 with A Dasgupta, S K Kang (SeoulTech) Debasish Borah Indian Institute of Technology

More information

The Inert Doublet Matter

The Inert Doublet Matter 55 Zakopane, June. 2015 The Inert Doublet Matter Maria Krawczyk University of Warsaw In coll. with I. Ginzburg, K. Kanishev, D.Sokolowska, B. Świeżewska, G. Gil, P.Chankowski, M. Matej, N. Darvishi, A.

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

Baryogenesis via mesino oscillations

Baryogenesis via mesino oscillations 1 Baryogenesis via mesino oscillations AKSHAY GHALSASI, DAVE MCKEEN, ANN NELSON JOHNS HOPKINS SEP 29 2015 arxiv:1508.05392 The one minute summary 2 Mesino a bound state of colored scalar and quark Model

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

Secrets of the Higgs Boson

Secrets of the Higgs Boson Secrets of the Higgs Boson M. E. Peskin February 2015 Only four years ago, in the fall of 2011, it was a popular theme for discussion among particle physicists that the Higgs boson did not exist. Searches

More information

Baryogenesis via mesino oscillations

Baryogenesis via mesino oscillations Baryogenesis via mesino oscillations AKSHAY GHALSASI, DAVE MCKEEN, ANN NELSON arxiv:1508.05392 The one minute summary 2 Mesino a bound state of colored scalar and quark Model analogous to Kaon system Mesinos

More information

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama) Higgs phenomenology & new physics Shinya KANEMURA (Univ. of Toyama) KEKTH07, Dec. 13. 2007 Content of talk Introduction Electroweak Symmetry Breaking Physics of Higgs self-coupling Self-coupling measurement

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf Electroweak Phase Transition, Scalar Dark Matter, & the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Leptogenesis in Higgs triplet model

Leptogenesis in Higgs triplet model Leptogenesis in Higgs triplet model S. Scopel Korea Institute of Advanced Study (KIAS) Seoul (Korea) Dark Side of the Universe, Madrid,, 20-24 24 June 2006 Introduction Non-zero neutrino masses and mixing

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University Baryon-Dark Matter Coincidence Bhaskar Dutta Texas A&M University Based on work in Collaboration with Rouzbeh Allahverdi and Kuver Sinha Phys.Rev. D83 (2011) 083502, Phys.Rev. D82 (2010) 035004 Miami 2011

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014 Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS4, 4/8/4 Introduc)on We discovered a Standard Model (SM) like Higgs boson at mh=5 GeV. This is not the end of the story.

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Testing Electroweak Phase Transition at Future Colliders

Testing Electroweak Phase Transition at Future Colliders Testing Electroweak Phase Transition at Future Colliders Maxim Perelstein, Cornell Hong Kong IAS Conference, January 19, 2016 Based on: Andrew Noble, MP, 071018, PRD Andrey Katz, MP, 1401.1827, JHEP Katz,

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

Radiative natural SUSY with mixed axion-higgsino CDM

Radiative natural SUSY with mixed axion-higgsino CDM Radiative natural SUSY with mixed axion-higgsino CDM Howie Baer University of Oklahoma ``The imagination of nature is far, far greater than that of man : a data-driven approach to where SUSY might be hiding

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

/18. Toshinori Matsui KIAS. Probing the first order electroweak phase transi5on by measuring gravita5onal waves in scalar extension models

/18. Toshinori Matsui KIAS. Probing the first order electroweak phase transi5on by measuring gravita5onal waves in scalar extension models Probing the first order electroweak phase transi5on by measuring gravita5onal waves in scalar extension models Toshinori Matsui KIAS Collaborators: Katsuya Hashino 1, Mitsuru Kakizaki 1, Shinya Kanemura

More information