Physics at TeV Energy Scale

Size: px
Start display at page:

Download "Physics at TeV Energy Scale"

Transcription

1 Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing

2 I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ = 0, M W = ± GeV, M Z = ± GeV. Renormalizability of the EW gauge theory requires the Lagrangian to be exactly SU(2) U(1) symmetric, while all mass terms MW 2 WµW i iµ, m f ( ψ L ψ R + ψ R ψ L ) break the SU(2) U(1) symmetry, so that they cannot occur in the Lagrangian. In the Lagrangian (equations of motion), all particles are massless. Where do the observed nonvanishing particle masses come from?

3 In quantum field theory, F obs = phys. state F op phys. state asymm. symm. asymm. phys. state = a b 0 asymm. symm. asymm. Observed particle masses can be nozero if the physical ground state is asymmetric. symmetric Lagrangian = asymmetric vacuum spontaneous symmetry breaking (SSB).

4 SM introduces elementary Higgs field φ and Higgs potential V (φ) = µ 2 φ 2 + λ φ 4, λ > 0 to obtain φ 2 = v 2 µ2 λ 0. v = 246 GeV can give the measured values of M W and M Z. Higgs boson H (φ = v + H) is the signal. So far H is not found. LEP direct search bound: m H > GeV. With m t = GeV, LEP precision data m H >/ 182 GeV, 95% CL.

5 In SM, Yukawa coupling y f ψφψ= mf = y f Fermion masses are free parameters in SM. The origin of particle masses: Newton: Einstein: m 0 d 2 x d t 2 = f E = mc 2 = m 0c 2 m 0 c v2 c 2 Static energy: E 0 = m 0 c 2 m 0 =? v 2 is put in by hand. 1 2 m 0v 2 +

6

7

8 SM Higgs sector is not a self-consistent theory. Triviality: Suppose SM is valid when E E max. Summing up all leading logrithm corrections: λ E max 0. inconsistent! There must be a scale of new physics Λ so that E max >/ Λ. Unnaturalness: m 2 H = m2 H0 + δm2 H SM: = δm 2 H = AΛ2, m 2 H0 = BΛ2 [A, B = O(1)] m 2 H = (A + B)Λ2 Possible new physics scale is Λ M P GeV. Then A + B = m2 H M 2 P 10 34, requiring A, B to be of the precision of 34 digits. Unnatural!. Naturalness requires Λ TeV.

9 If there are only presently discovered particles, the cross section of W W W W will increase with the c.m. energy E. When E 1.2 TeV, the cross section will be so large that it violates the conservation of probability (unitarity of S-matrix). So there must be yet undiscovered particle(s) below 1.2 TeV (unitarity bound)! We see that, in EW theory, all masses come from the VEV v 0 breaking SU(2) U(1). EWSBM is not clear yet. Probing EWSBM concerns the understanding of the original of all particle masses. We also see that TeV scale is the scale of discovering new particle(s) or going beyond the SM. Building high energy colliders covering the TeV scale will be able to explore the mechanism of mass generation and/or find out new physics beyond the SM.

10 LHC: II. TeV Colliders 14 TeV pp collider, designed luminosity: yr Ldt = 1034 cm 2 s 1. Advantage: parton colliding energy up to a couple of TeV Sortcoming: large hadronic bkgd LHC: discovery machine

11 ILC: e + e collider (in R&D) Phase I: 200 GeV E 500 GeV (adjustable) Phase II: E 1 TeV Photon collider can be made by means of laser back-scattering. Good for studying Higgs boson. Advantage: small hadronic bkgd Sortcoming: expensive for increasing energy ILC: discovery and precision measurement machine More higher energy colliders are under consideration.

12 III. Examples of New Physics Models SUSY (MSSM) SUSY partners: W ±..., g, q, l ±... Can solve the triviality and fine-tuning problems. Can accommodate SUSY GUT M GUT GeV, and radiative EWSB. Two Higgs doublets = h 0, H 0, A 0, H ±. Two loop = m h LHC coverage: >/ 135 GeV.

13 sparticles not found= SUSY is broken, SUSY breaking mechanism not clear (general description: 105 free parameters). ( ) m 2 H (M 2 M 2 ) λ2 f Λ SUSY SM 16π ln. 2 M SUSY To avoid fine-tuning, M SUSY >/ TeV (low energy SUSY). LHC, ILC: can find sparticles. ILC: can make precision measurement of sparticle masses: δm t, b = 1 GeV, δm χ ±,0 = GeV, δm l, ν = GeV, δm τ, ντ = 0.6 GeV. can test SUSY breaking mechanism.

14 Technicolor (TC) Abandon φ to avoid triviality and fine-tuning. Introduce new strong interactions TC and new fermions to develop ψψ = 0 = v 0. Yukawa interaction is dynamically induced Original QCD-like TC model is ruled out by LEP precision data S paramter too large). Improved models associated with Topcolor (TC2) [Hill (1995);Lane, Eichten (1995), etc]. Consistent with LEP data [Chivukula, Terning (1996); Yue, Kuang, Wang, Li (2000)] Signals: ρ T C, π T C, π t,. Attempt to account for CKM matrix and CP violation [Martin, Lane (2005)].

15 Top Quark Seesaw [Dobrescu,Hill (1998); Chivukula,Dobrescu, Georgi, Hill (1999)] Introduce topcolor group: G tc = SU(3) 1 SU(3) 2 and new strong interaction group G breaking G tc SU(3) QCD. introduce SU2) W -singlet quark χ with proper U(1) Y quantum number. Topcolor causes the bound state scalar ( ) χr t L ϕ = χ R b L ϕ behaves like a Higgs doublet. ϕ = v breaks EW symmetry. Dynamics leads to m t m tχ µ χt µ χχ 174 GeV m H 1 TeV [He, Hill, Tait (2002)].

16 Little Higgs [Arkani-Hamed, Cohen, Georgi, Gregoire, Katz, Kaplan, Nelson, Schmaltz, Wacker, Walker ( )] Strong interaction at Λ TeV forming pseodo Goldstone bosons (PGBs). Heavy states at gf 1 3 TeV Same spin particles cancel quardratic divergences to keep one or two PGBs light, ( GeV), as light Higgs boson(s) φ, φ = v breaks SU(2) U(1) Phenomenology of SU(5)/SO(5) model [Han, Logan,McElrath, Wang (2003); Burdman, Perelstein, Pierce (2002)]

17 Higgsless Model Based on Extra Dimension Higgsless model in 5-dim with broken SU(2) U(1) built by imposing boundary conditions in the 5th-dim [Csaki et al. (2004)] By means of dimension deconstruction Higgsless model can be constructed in 4-dim gauge theories with SU(2) U(1) broken spontaiously by strong dynamics, and boundary condition in the 5thdim can be induced by diagonalizing the mass matrix. Minimal model contains extra W 1 and Z 1 with 400 GeV M W1 1 TeV. Can make S, T, U 0 [He (2004); Chivukula et al. (2005)]. LHC signals: [Tsinghua-MSU (2007)] pp W1 Z 0 W 0 W 0 Z 0, pp W1 jj W 0 Z 0 jj

18 IV. Perspectives of LHC and ILC Expts General No-Lose Probe of New Physics Effects No hint that nature can be described by one of the known models. General no-lose probe is needed. Effective couplings of known particles reflect the effect of new physics. How to measure effective couplings at LHC and ILC?

19 What If Only a Light Higgs Resonance Is Found? Is it a SM Higgs or a Higgs in new physics? Need to test Higgs couplings. Testing gauge couplings of the Higgs boson L HV V eff = g Hγγ HA µν A µν + g (1) HZγ A µνz µ ν H+g (2) HZγ HA µνz µν SM: LHC +g (1) HZZ Z µνz µ ν H+g (2) HZZ HZ µνz µν +g (1) HW W (W µνw + µ ν H + h.c.)+g (2) HW W HW µνw + µν g (i) HV V = 0. [Plehn, Rainwater, Zeppenfeld (2003)] WW fusion at the LHC: pp qq H, H γγ, τ + τ : 1σ (stat.): g (2) HW W 0.1 TeV 1.

20 [Zhang, Kuang, He, Yuan (2003)] W + W + W + W + l + ν l l + ν l 3σ (stat.) : g (1) HW W TeV 1, g (2) HW W 0.15 TeV 1, g (1) HZZ TeV 1, g (2) HZZ TeV 1, g (1) HZγ TeV 1, g (2) HZγ TeV 1, g Hγγ TeV 1.

21 ILC: [Hagiwara, Ishihara, Kamoshita, Kniel (2000)] ILC: e + e HZ, 2σ (stat.): H b b, Z f f: g (i) HZZ, g(i) HZγ TeV 1. [Han, Kuang, Zhang (2005)] γγ colliders: 3σ (stat.) : γγ ZZ 4 jets 500 GeV ILC g Hγγ TeV 1, 1 TeV ILC g Hγγ TeV 1, 3 TeV CLIC g Hγγ TeV 1.

22 What If Not Even a Light Resonance Is Found? Definitely new physics. Unitarity= new particle(s) [probably wide resonance(s)] below 1.2 TeV. EW chiral Lagrangian [Appelquist, Wu (1995)] L eff (W, Z, ϕ) = SM: α i = i=0 L (i) = 14 i=0 (ϕ ± W ± L, ϕ0 Z 0 L). α i O(W, Z, ϕ) Measuring α i can obtain information about nature. A theoretical analysis of the sensitivity of measuring α i [He, Kuang, Yuan (1996)]:

23

24 Monte Carlo simulations: 1σ sensitivities at LHC and ILC: [TESLA TDR] 2-parameter fit: LHC ( Ldt = 100 fb 1 ) : α 4 < or α 4 > 0.011, α 5 < or α 5 > GeV TESLA ( Ldt = 1000 fb 1 ) : α 4 < or α 4 > , α 5 < or α 5 > [2005 International LC Workshop, Stanford] 5-parameter fit: ILC ( Ldt = 1000 fb 1 ) : α 4 < or α 4 > 0.015, α 5 < or α 5 > 0.015, α 6 < or α 6 > 0.035, α 7 < or α 7 > 0.021, α 10 < or α 10 >

25 The measured effective couplings (sensitivity is crucial) reflect certain properties of the nature. Checking what model can lead to the measured effective couplings= clue of finding out the right new physics model. V. SUMMARY EWSBM is not clear. New physics TeV. LHC and LC may explore EWSBM and discover new physics. Signals of known new physics models have been intensively studied. More studies needed. If LHC and LC only find a light Higgs, testing effective Higgs couplings may help to explore new physics. If LHC and LC find not even a light Higgs, studying EW chiral Lagrangian may help to explore new physics. After finding new physics, particle physics will be in exciting new era.! Thanks First Prev Next Last Go Back Full Screen Close Quit

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

New Phenomenology of Littlest Higgs Model with T-parity

New Phenomenology of Littlest Higgs Model with T-parity New Phenomenology of Littlest Higgs Model with T-parity Alexander Belyaev Michigan State University A.B., C.-R. Chen, K. Tobe, C.-P. Yuan hep-ph/0609179 A.B., A. Pukhov, C.-P. Yuan hep-ph/07xxxxx UW-Madison,

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012 How to tell apart non-standard EWSB mechanisms Veronica Sanz CERN and YORK Moriond 2012 In this talk What is standard? EWSB by elementary scalar(s) includes SM and SUSY What is non-standard? EWSB by -composite

More information

Phenomenology for Higgs Searches at the LHC

Phenomenology for Higgs Searches at the LHC Phenomenology for Higgs Searches at the LHC in Composite Higgs Models Margherita Ghezzi Supervisor: dott. Roberto Contino Roma, 21/02/2012 Introduction Standard Model: SU(2) L U(1) Y U(1) Q Higgs mechanism

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

Higgs Physics, after July 2012

Higgs Physics, after July 2012 Higgs Physics, after July 2012 C.-P. Yuan Michigan State University, USA July 10, 2013 @ IHEP July 4, 2012 Scientists at CERN say they've found a new particle consistent with the Standard Model Higgs boson

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

KITP, Dec. 17, Tao Han

KITP, Dec. 17, Tao Han Higgs Couplings & new Physics KITP, Dec. 17, 2012 Tao Han 1 HEPAP Question: What couplings should be measured and to what precision? To uncover new physics 2 1. How badly (likely) we need BSM new physics?

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

The ILC and its complementarity to the LHC

The ILC and its complementarity to the LHC The ILC and its complementarity to the LHC Outline: 1. ILC physics motivation 2. ILC LHC synergy 31 st Johns Hopkins Workshop Heidelberg 2007 3. LHC ILC implications Klaus Desch Universität Bonn The Terascale

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Littlest Higgs model and associated ZH production at high energy e + e collider

Littlest Higgs model and associated ZH production at high energy e + e collider Littlest Higgs model and associated ZH production at high energy e + e collider Chongxing Yue a, Shunzhi Wang b, Dongqi Yu a arxiv:hep-ph/0309113v 17 Oct 003 a Department of Physics, Liaoning Normal University,

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

750GeV diphoton excess and some explanations. Jin Min Yang

750GeV diphoton excess and some explanations. Jin Min Yang 750GeV diphoton excess and some explanations Jin Min Yang ITP, Beijing / TUHEP, Tohoku IPMU, Tokyo U 2016.3.9 Outline 1 Introduction 2 750GeV diphoton excess 3 Some explanations 4 Conclusion & outlook

More information

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University Minimal Flavor Violating Z boson Xing-Bo Yuan Yonsei University Yonsei University, Korea 21 Sep 2015 Outline 1. Standard Model and Beyond 2. Energy Scalar of New Physics Beyond the SM From Naturalness:

More information

Physics at the LHC: from Standard Model to new discoveries

Physics at the LHC: from Standard Model to new discoveries Physics at the LHC: from Standard Model to new discoveries Kirill Melnikov University of Hawaii May 2006 Sendai, June 2006 Physics at the LHC: from Standard Model to new discoveries p. 1/22 Outline Standard

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama) Higgs phenomenology & new physics Shinya KANEMURA (Univ. of Toyama) KEKTH07, Dec. 13. 2007 Content of talk Introduction Electroweak Symmetry Breaking Physics of Higgs self-coupling Self-coupling measurement

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/tapper/lecture.html Reminder Supersymmetry is a theory which postulates a new symmetry between fermions

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Lone Higgs at the LHC. Ken Hsieh. in collaboration with C.-P. Yuan Phys. Rev. D 78, (2008) arxiv:

Lone Higgs at the LHC. Ken Hsieh. in collaboration with C.-P. Yuan Phys. Rev. D 78, (2008) arxiv: in collaboration with C.-P. Yuan Phys. Rev. D 78, 053006 (2008) arxiv:0806.2608 Argonne National Laboratory October 21, 2008 1 Motivation 2 MSSM LHT MUED 3 Bonus Materials 4 Back-up slides MOTIVATION The

More information

Tilman Plehn. Mainz, July 2015

Tilman Plehn. Mainz, July 2015 Testing the Universität Heidelberg Mainz, July 2015 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive

More information

Associated production of the charged Higgs boson and single top quark at the LHC

Associated production of the charged Higgs boson and single top quark at the LHC Associated production of the charged Higgs boson and single top quark at the LHC arxiv:0704.0840v2 [hep-ph] 8 Mar 2008 Yao-Bei Liu 1, Jie-Fen Shen 2 1: Henan Institute of Science and Technology, Xinxiang

More information

CalcHEP2.5: new facilities and future prospects

CalcHEP2.5: new facilities and future prospects CalcHEP2.5: new facilities and future prospects Alexander Belyaev and Alexander Pukhov MSU RAL Southampton Moscow State University http://theory.sinp.msu.ru/~pukhov/calchep.html 1 CalcHEP: old good features

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Top & EW. Tim M.P. Tait. Argonne National Laboratory. (Theory Overview) SLAC Summer Institute SLAC 7/24/2006. Slac Summer Institute, 7/24/06 Tim Tait

Top & EW. Tim M.P. Tait. Argonne National Laboratory. (Theory Overview) SLAC Summer Institute SLAC 7/24/2006. Slac Summer Institute, 7/24/06 Tim Tait Top & EW (Theory Overview) Tim M.P. Tait Argonne National Laboratory Slac Summer Institute, 7/24/06 Tim Tait SLAC Summer Institute SLAC 7/24/2006 Outline Introduction: Why are top & EW measurements so

More information

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs IAS Program on the Future of High Energy Physics Jan 21, 2015 based on arxiv:1311.5928, Hsin-Chia Cheng, Bogdan A. Dobrescu, JG JHEP 1408

More information

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders BSM Physics at + High-Energy e e Colliders Jürgen R. Reuter, DESY J.R.Reuter BSM Physics at High-Energy ee Colliders CLIC 2015, CERN, 28.1.2015 Physics at High-Energy e+ e- Colliders High-energy e+ e-

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

HIGGS + 2 JET PRODUCTION AT THE LHC

HIGGS + 2 JET PRODUCTION AT THE LHC IGGS + 2 JET PRODUCTION AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany Seminar at KITP, Santa Barbara, March 13, 2008 LC goals Vector boson fusion Measurement of iggs couplings jj production

More information

Sreerup Raychaudhuri TIFR

Sreerup Raychaudhuri TIFR The Boson in the Model Sreerup Raychaudhuri TIFR What everyone knows What everyone knows Electroweak interactions are very accurately described by a local SU(2) U(1) gauge theory The gauge symmetry does

More information

Fourth SM Family at the LHC: ATLAS prospects. Saleh SULTANSOY

Fourth SM Family at the LHC: ATLAS prospects. Saleh SULTANSOY Fourth SM Family at the LHC: ATLAS prospects Saleh SULTANSOY TOBB University of Economics and Technology, Ankara, Turkey & AMEA Institute of Physics, Baku, Azerbaijan PDG 2?: S. Sultansoy LHC2FC WG4, 3.2.29

More information

Theoretical Developments Beyond the Standard Model

Theoretical Developments Beyond the Standard Model Theoretical Developments Beyond the Standard Model by Ben Allanach (DAMTP, Cambridge University) Talk outline Bestiary of some relevant models SUSY dark matter Spins and alternatives B.C. Allanach p.1/18

More information

Foundations of Physics III Quantum and Particle Physics Lecture 13

Foundations of Physics III Quantum and Particle Physics Lecture 13 Foundations of Physics III Quantum and Particle Physics Lecture 13 Frank Krauss February 27, 2012 1 Construction of the Standard Model 2 The Standard Model: Tests and status 3 Beyond the Standard Model?

More information

Higgs physics at the LHC

Higgs physics at the LHC Higgs physics at the LHC Kati Lassila-Perini CMS Collaboration Helsinki Institute of Physics Acknowledgements: Atlas colleagues and ATLAS Physics TDR CMS colleagues especially Sasha Nikitenko and Daniel

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions Prospective Study on Muon Colliders Strong Electroweak Symmetry Breaking at Muon Colliders Roberto Casalbuoni Firenze and Geneva Universities with A. Deandrea, S. De Curtis, D. Dominici, R. Gatto and J.F.

More information

Little Higgs at the LHC: Status and Prospects

Little Higgs at the LHC: Status and Prospects Little Higgs at the LHC: Status and Prospects Marco Tonini DESY Theory Group (Hamburg) based on: Reuter/MT, JHEP 1302, 077 (2013) Reuter/MT/de Vries, hep-ph/1307.5010 Reuter/MT/de Vries, DESY-13-123 (in

More information

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013 Outlook Post-Higgs Christopher T. Hill Fermilab UCLA Higgs Workshop March 22, 2013 A dynamical Higgs mechanism was supposed to explain the origin of electroweak mass A dynamical Higgs mechanism was supposed

More information

arxiv:hep-ph/ v1 13 Mar 2002

arxiv:hep-ph/ v1 13 Mar 2002 Higgs couplings at the LHC Dieter Zeppenfeld Department of Physics, University of Wisconsin, Madison, WI 53706, USA (Dated: November 2, 2018) The observation of a SM-like Higgs boson in multiple channels

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

arxiv:hep-ph/ v2 3 Oct 2005

arxiv:hep-ph/ v2 3 Oct 2005 Double Higgs Production and Quadratic Divergence Cancellation in Little Higgs Models with T-Parity Claudio O. Dib Department of Physics, Universidad Técnica Federico Santa María, Valparaíso, Chile Rogerio

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Physics Beyond the Standard Model the Electroweak sector and more...

Physics Beyond the Standard Model the Electroweak sector and more... Physics Beyond the Standard Model the Electroweak sector and more... Tao Han Univ. of Wisconsin - Madison CTEQ Summer School, Madison (June 27, 2004) Physics Beyond the Standard Model the Electroweak sector

More information

Skyrmions in Composite Higgs Models

Skyrmions in Composite Higgs Models Skyrmions in Composite Higgs Models Marc Gillioz Particle Physics & Cosmology December 4, 2012 based on arxiv:1012.5288, 1103.5990, 1111.2047 in collaboration with A. von Manteuffel, P. Schwaller and D.

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Weak boson scattering at the LHC

Weak boson scattering at the LHC Weak boson scattering at the LHC RADCOR 2009 Barbara Jäger University of Würzburg outline weak boson fusion at the LHC: Higgs production at high precision V V jj production @ NLO QCD strongly interacting

More information

Physics Beyond the Standard Model at the LHC

Physics Beyond the Standard Model at the LHC Physics Beyond the Standard Model at the LHC G G Ross, Edinburgh 7th February 2007 The Standard Model as an Effective Field Theory Beyond the Standard Model The LHC as a probe of BSM physics The Standard

More information

Topcolor Models and Scalar Spectrum

Topcolor Models and Scalar Spectrum Topcolor Models and Scalar Spectrum Gustavo Burdman Department of Physics, University of Wisconsin, Madison, WI 53706 ABSTRACT We review the motivation and main aspects of Topcolor models with emphasis

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

Higgs Boson Production at the LHC

Higgs Boson Production at the LHC Higgs Boson Production at the LHC M. Y. Hussein* *Department of Physics, College of Science, University of Bahrain P.O. Box 32038, Kingdom of Bahrain One of the major goals of the Large Hadron Collider

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

Summary: Beyond the Standard Model WG

Summary: Beyond the Standard Model WG Summary: Beyond the Standard Model WG Nobuchika Okada (KEK) on behalf of the BSM conveners: Graham Kribs (IAS/Oregon) N.O. (KEK) Maxim Perelstein (Cornell) Sabine Riemann (DESY) ILC Workshop, Snowmass

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring,

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring, The iggs Scalar V (φ) V (φ) φ 1 φ 2 φ 1 φ 2 φ = ( φ + φ 0 ) unitary gauge ( 1 2 0 ν + ) P529 Spring, 2013 1 Interactions of Gauge interactions: ZZ, ZZ 2, W + W, W + W 2 ϕ 1 2 ( 0 ν + ) (unitary gauge)

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

arxiv:hep-ph/ v3 20 Nov 2003

arxiv:hep-ph/ v3 20 Nov 2003 SLAC PUB 10185 November, 2003 hep-ph/0310039 Top Quarks and Electroweak Symmetry Breaking in Little Higgs Models arxiv:hep-ph/0310039v3 20 Nov 2003 Maxim Perelstein 1 Newman Laboratory for Elementary Particle

More information

Exotic W + W Z Signals at the LHC

Exotic W + W Z Signals at the LHC Exotic W + W Z Signals at the LHC Jared Evans jaevans@ucdavis.edu w/ M.Luty and S.Chang Department of Physics University of California - Davis WCLHC Evans (UCD) WWZ at LHC April 14, 011 1 / 11 Premise

More information

UNPARTICLE PHYSICS. Jonathan Feng UC Irvine. Detecting the Unexpected UC Davis November 2007

UNPARTICLE PHYSICS. Jonathan Feng UC Irvine. Detecting the Unexpected UC Davis November 2007 UNPARTICLE PHYSICS Jonathan Feng UC Irvine Detecting the Unexpected UC Davis 16-17 November 2007 OVERVIEW New physics weakly coupled to SM through heavy mediators Mediators SM CFT Many papers [hep-un]

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

SLHC Physics Impact Albert De Roeck/CERN

SLHC Physics Impact Albert De Roeck/CERN SLHC Physics Impact Albert De Roeck/CERN XXXVII SLAC Summer Institute 1 Today s Lecture Contents Introduction Luminosity upgrade scenario for the LHC machine Physics with the SLHC Other possible upgrades

More information

Bin Yan Peking University

Bin Yan Peking University Determining V tb at e + e Colliders Bin Yan Peking University Aug. 08, 2015 @10th TeV Physics Workshop In collaboration with Qing-Hong Cao, arxiv: 1507.06204 V tb measurements V tb 1 R V tb 2 Vtq 2 q=d,s,b

More information

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 What Shall We Learn from h^3 Measurement Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 The Shape of Things to Come LHC: spin-0, elementary-looking Higgs field This field is

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information