UPGRADI G THE TWO-PHASE THERMOHYDRAULIC MODEL FOR THE FULL-SCOPE SIMULATOR OF PAKS UCLEAR POWER PLA T

Size: px
Start display at page:

Download "UPGRADI G THE TWO-PHASE THERMOHYDRAULIC MODEL FOR THE FULL-SCOPE SIMULATOR OF PAKS UCLEAR POWER PLA T"

Transcription

1 UPGRADI G THE TWO-PHASE THERMOHYDRAULIC MODEL FOR THE FULL-SCOPE SIMULATOR OF PAKS UCLEAR POWER PLA T Gabor Hazi Jozsef Pales Endre Vegh Janos S. Janosy Simulator Laboratory MTA KFKI Atomic Energy Research Institute Konkoly Th , Budapest, 1121, Hungary gah@aeki.kfki.hu, palesj@aeki.kfki.hu, vegh@aeki.kfki.hu, jjs@aeki.kfki.hu KEYWORDS Thermohydraulics, nuclear power plant simulation. ABSTRACT The upgrade of the full-scope simulator of Paks Nuclear Power Plant (NPP) started in As a major part of this activity, the original two-phase thermohydraulic module (SMABRE) was replaced by our own development: the two-phase-flow module called RETINA. The validity of the new module was demonstrated by a number of transient calculations comparing the simulation results obtained by the new module with the ones produced by the original module. In the paper we briefly review the replacement procedure with a focus on the differences between old and new thermohydraulic modules. Some simulations results are shown to give some insight on the validation process. I TRODUCTIO The full-scope training simulator of Paks Nuclear Power Plant has been in service since In the last two decades practically each element of the simulator has been upgraded, replaced because of the rapid development of the computer techniques making the solution of a great amount of earlier unsolvable problems possible. Moreover, the requirements against the simulator have also been changed. Originally the simulator was used only for training of the operating personnel of the Paks Nuclear Power Plant, but in the last decade it was also utilized as a "test bed" for new systems prior their installation on the real plant. Changes, however, have not touched two fundamental modules of the simulator viz. the neutron-kinetics and the two-phase thermohydraulics models. Recently, the introduction of new fuel assemblies and consequently the intermediate cores with mixed fuel at the plant gave motivation to take another big step and replace both modules with our codes of own development - in order to simulate better the 3D processes in the core. Since the simulator plays a crucial role in the life of the power plant such a change needs to be carefully planned, and what is more important, the results obtained by the new modules have to be generally accepted by the operating personnel and the authority. In this paper we focus on the replacement procedure of the two-phase thermohydraulic module of the simulator. The features of the old and new thermohydraulic models are briefly introduced with a focus on differences between them and some simulations results obtained by both modules are presented, too, in order to demonstrate the validity of the new module. THE REPLACEME T PROCEDURE Since the Paks full-scope simulator is a real-time system, each module of the simulator is managed by a scheduler program. It calls various models sequentially taking into account that all modules have to finish their calculation within 0.2 sec. The communication between modules (coupling between models) is clearly defined through the simulator database. Therefore, from computational point of view we just had to follow the basic concepts used for each module of the simulator during the replacement process. The basic idea was to change the old and new thermohydraulic modules in two steps. In the first step, the nodalization (spatial discretization) of the plant remains the same and we have to demonstrate that utilizing the new module we can obtain practically the same results than we had before using the original module. In the paper we shall focus on this step. In the second step the nodalization of the system will be refined and we have to demonstrate that the simulation results are still reasonable for this new nodalization, too. In these steps, we are going to use the old neutronkinetic module of the simulator, so in a third, final step we are going to replace the neuron-kinetic module of the system, too. Using this strategy, significant changes can happen only in a specific subsystem, which has the same environment than its predecessor. Therefore the identification of the source of a problem encountered during the test procedure is straightforward. To test the vitality of the new thermohydraulic module a list of transient calculations have been performed and then compared with simulation results obtained by the old code. The list covers a wide variety of physics so it includes such as turbine load rejection, pump and Proceedings 23rd European Conference on Modelling and Simulation ECMS Javier Otamendi, Andrzej Bargiela, José Luis Montes, Luis Miguel Doncel Pedrera (Editors) ISBN: / ISBN: (CD)

2 turbine trip transients, small- and large-break loss of coolant accidents. SMABRE A D RETI A: THE PAST A D THE FUTURE The full-scope real-time simulator of Paks NPP originally had a two-phase flow module called SMABRE. This code was developed to simulate various two-phase flow transients up to the complexity of socalled SMAll-BREak loss of coolant accidents (LOCA). Nevertheless, as the training simulator in Paks was getting involved more and more into the life of the plant, its scope had to be extended up to the complexity of severe accidents including for instance, the simulation of rapidly evolving large-break LOCAs (Végh et al., 1994; Végh et al., 1995). It turned out that the extension of the code in such directions is not straightforward at all. More and more specific models had to be implemented around the original module making finally the original code somewhat messy. This fact has given us a strong motivation recently, when the refinement of the nodalization of the system became necessary, to replace the whole code to a new one called RETINA. RETINA was developed in our institute in Since it differs very significantly from SMABRE in many respect, it was a quite challenging task to achieve practically the same simulation results with this code than we had before with the use of SMABRE. Let us briefly summarize the major differences between SMABRE and RETINA. Details are given in (Házi et al., 2001; Miettinen, 1999) Differences in models and governing equations Although the same governing equations were implemented in both codes, there are significant differences in the models used to describe interfacial mass, heat and momentum transfer. To be more specific, both models use a five-equation approach (Ishii, 1974; Wallis, 1969), that is two mass and two energy conservation equations are solved for the individual phases (water and steam). The momentum conservation equation is solved for the mixture and it is supplemented by a drift-flux model in order to be able to simulate mechanical non-equilibrium between phases (different gas and liquid velocities) (Zuber and Findlay, 1969). The original drift-flux model of RETINA was quite different from the one implemented in the code SMABRE. However, our first experiences have shown that the use of the original model leads to very significant differences between the solutions obtained by both codes. This fact forced us to change the drift-flux model of RETINA to a simpler one, close to a model used in SMABRE. The governing equations need to be supplemented by closure relations, which calculate the interfacial mass and energy transfers in order to close the equation system. There are significantly different closure relations in these codes. Closure relations are needed for interfacial mass transfer (evaporation and condensation) and interfacial energy transfer (heat transfer between phases). The equation system is also need to be supplemented with models, which take into account heat and momentum transfer between the individual phases and heat structures (walls). Practically, the same models were implemented in both codes for modeling wall friction (Blasius correlation), but all other models differ somewhat in the codes. Originally some standard evaporation and condensation models were implemented in SMABRE, but as the times passed by and the simulation scope of SMABRE was extended, more and more specific models had to be introduced into the old code in order to satisfy the new simulation requirements. Furthermore, models used in a certain part of the NPP (e.g. in the pressurizer) were quite different from the ones used in another part (e.g. in the steam generators). This fact made difficult to make any changes to the nodalization of the system, which has became necessary recently. In RETINA the modeling of evaporation and condensation is in strong relation with interfacial heat transfer models. Basically, correlation for mass transfer between phases were derived rigorously from interfacial heat transfer models making consistent the interfacial mass and energy transfers. In case of SMABRE such relation is not transparent in some of the evaporation and condensation models. In RETINA the interfacial heat transfer models use a simple concept driving back any meta-stable liquid or gas to equilibrium (saturation) with a calculated relaxation time. Using such model, large volumes like the pressurizer or the steam generators of the NPP did not require special treatment. On the other hand, the calculation of the relaxation time proved to be inadequate in some nodes of the nodalization (e.g. at the sprinkler of the pressurizer) and the model had to be tuned somewhat with an additional relaxation parameter. The implementation of the heat transfer modeling between heat structures and individual phases differs significantly in the codes, although some models used in specific flow regimes have the same origin. As an example we mention Chen s model (Chen, 1966) used to calculate heat transfer in sub-cooled boiling region. Although this model appears in both codes, it is utilized in a quite different manner resulting in some differences in the heat transfer characteristics of the two codes. The calculation of critical two-phase flow is another example where differences are relevant. This model leads to different break flow characteristics and as a consequence, one might expect that simulation results obtained by the two codes can be significantly different when a loss of coolant accident is simulated.

3 Differences in the numerical approach RETINA and SMABRE use significantly different numerical approaches. Although both codes use similar spatial discretization procedure and staggered grid arrangement for pressure and velocities, their time marching schemes are different. While SMABRE applies a kind of sequential solver, RETINA uses fully implicit time discretization, calculating the Jacobian problem by automatic derivative functions. The application of a fully implicit solver has some drawbacks. In general, an implicit solver needs some iterations to find the solution of the problem in question; and using large time steps for a very fast transient, one might encounter convergence problems, because of the overestimation of the elements of Jacobian matrix. Originally, RETINA used automatic step size control to avoid divergence of the solution and the number of iterations used in each time step was controlled by the norm of the corrections used in each iteration. This strategy proved to be inappropriate for a real-time application. Therefore the time step was finally set to 0.2 sec and the number of iteration in each time step was limited to one. As it will be demonstrated, the code is still able to calculate any relevant problem with reasonable accuracy - even using such a strict limitation. SIMULATIO RESULTS The new thermohydraulic model has been tested by performing 10 reference calculations with SMABRE (Bürger et al., 2008) and repeating these calculations by RETINA. The environment of the codes was the same, namely the full-scope simulator of Paks NPP. Practically, we had performed a run with SMABRE and than changing the thermohydraulic module, we repeated the calculations using the same initial condition with RETINA. Results obtained by the code were monitored by the Instructors system of the simulator. At the beginning of this procedure we had to obtain a steady state with RETINA with a prescribed accuracy (differences had to be less than 2% for each relevant physical variable) using SMABRE results as reference. In Fig. 1 the results obtained by initiating 1 st turbine trip of the NPP are shown. On the left (from 0 to roughly 25 minutes) and on the right (from 25-50minutes) the results of RETINA and SMABRE can be seen, respectively. The plot shows the pressure of the pressurizer, the position of the turbine control valve, the pressure of the steam collectors on the lost and working side, the water level and pressure of the 2 nd steam generator. In this scenario the failure of the turbine control valve causes an immediate turbine trip. Since the steam collectors are connected, therefore the pressure is rapidly increases in both sides, until it reaches the activation pressure of the collector blow-down valve (48 bar). The blow-down suddenly decreases the pressure of the steam generators, which leads to intensive boiling and the swelling of the water level. Fig. 1 Simulation results obtained by RETINA (left) and SMABRE (right) for turbine trip. In Fig. 2 the simulation results of tripping three pumps are shown - plotting some relevant quantities, i.e. the reactor power, the water level and pressure of the pressurizer, pressure of the steam collector, and the water levels of the 1 st and 2 nd steam generator. The test scenario is as follows: Due to power failure, the primary circulating pumps stop in the 2 nd, 4 th, and 6 th loops. The flow rate decreases in the core and the coolant adsorbes more heat from the fuel increasing the pressure in the primary circuit. Accordingly, the reactor control system reduces the power level by ~40% and as a consequence the pressure falls down again to the nominal value. Fig. 2 Simulation results obtained by RETINA (left) and SMABRE (right) for the trip of three main pumps. Finally, in Fig. 3 the results of the calculations obtained by both codes for the opening of the pressurizer's safety valve can be seen. The relevant quantities shown in the figure are the following: pressurizer pressure, flow through the safety valve, level of the pressurizer, pressure above the zone, pressure of the relief tank and the water level in the containment. In this test the pressurizer safety valve opens and the pressurizer starts to blow-down into the relief tank. The pressure rapidly increases in the relief tank until its

4 rupture plate breaks and the coolant blows-down to the containment. Fig. 3 Simulation results obtained by RETINA (left) and SMABRE (right) for opening of the pressurizer's safety valve. As it can be seen, the results of RETINA are practically the same than that of SMABRE for each of these transients. No relevant differences can be observed in the physical parameters, although the codes are quite different considering their models and numerical approaches. CO CLUSIO Although the change of a physical model in a simulator may seem to be a straightforward task, our experiences show that such a work can bring serious challenges depending on the complexity of the modeling problem. The replacement of the two-phase thermohydraulic module of the real-time full-scope simulator of Paks NPP has been briefly reviewed in this paper. In spite of the fact that there are significant differences between the implementation of the new and old modules considering their models and numerical methods, the results obtained by the new module are in good agreement with the ones obtained by the old one. However, it should not be so surprising, since the underlying physics addressed by both codes are the same. Therefore the good agreement is partially due to the facts that the numerical approaches together with the models used in the codes are describing reasonable well the real physics. From another point of view, it is also a result of the control system, which drives both models in the same way as far as their output remains accurate enough. REFERE CES Bürger Gné, Házi G., Páles J., Végh E. Simulator Reconstruction: Machine and Thermohydrualic System Exchange. Technical report, Simulator Laboratory, KFKI Atomic Energy Research Institute, (in Hungarian) (2007). Chen J.C., A correlation for boiling heat transfer to saturated fluids in vertical flow, I&EC Process Design and Development, 5, 322, (1966) Ishii M., Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, France, (1974) Házi G., Mayer G., Farkas I., Makovi P., El-Kafas A.A., Simulation of a Small Loss of Coolant Accident by using Retina V1.0D Code Annals of uclear Energy, 28, No.16, Miettinen J., A Thermohydraulic Model SMABRE for Light Water Reactor Simulations, Helsinki, University of Technology, Espoo, Finland, (1999) Végh E., Hegyi Gy., Hegedűs Cs., Hózer Z., Jánosy J. S., Kereszturi A., Simulation of the rod ejection accident in the Paks Full-scale Simulator. XI. Annual Simulators Conference, 26, No. 3 (1994). Végh E., Jánosy J.S., Hózer Z., Different LOCA scenarios in the Paks Full-scale simulator. Simulators International XII., 27, No.3 (1995). Wallis G.B., One-Dimensional Two-Phase Flow, McGraw Hill, 2nd Edition, New York, (1979) Zuber N., Findlay J., "Average Volumetric Concentration in Two-Phase Systems," Trans ASME Jul Ht Transfer, 87, 453, (1969) AUTHOR BIOGRAPHIES GÁBOR HÁZI was born in Budapest, Hungary and obtained his B.Sc. in Kando College in 1992 and M.Sc. in electrical engineering at Technical University of Budapest in He holds a PhD in nuclear engineering from the Technical University of Budapest. He has been working for KFKI Atomic Energy Research Institute since He is now leading a small research group in the field of theoretical thermohydraulics. His address is : gah@aeki.kfki.hu. JÓZSEF PÁLES was born in Hungary. He studied information technology on Pannon University and obtained his M.Sc. degree in He has been working at the Simulator Development Department for the Hungarian Academy of Sciences KFKI Atomic Energy Research Institute since His address is : palesj@aeki.kfki.hu. E DRE VÉGH was born in 1938 at Szombathely, Hungary. He is an electrical engineer, has been working in the KFKI Atomic Energy Research Institute since In the period of he was the head of the Simulator Development Department, and he was responsible for the acceptance tests of the Paks Full-scope Simulator in In this simulator he was responsible for the upgrading with severe accident models, for the replacement of the outdated control room interface with

5 a new one, and for the development of a new Instructor System. His address: vegh@aeki.kfki.hu. JÁ OS S. JÁ OSY got his MSc in Nuclear engineering in 1973 and in Computerized control in He participated in the Paks Full-scope Simulator project in 1988 and is the head of Simulator Department since His address is jjs@aeki.kfki.hu.

Estimation of accidental environmental release based on containment measurements

Estimation of accidental environmental release based on containment measurements Estimation of accidental environmental release based on containment measurements Péter Szántó, Sándor Deme, Edit Láng, Istvan Németh, Tamás Pázmándi Hungarian Academy of Sciences Centre for Energy Research,

More information

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS Michel GONNET and Michel CANAC FRAMATOME Tour Framatome. Cedex 16, Paris-La

More information

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg SADE Project SADE produces more reliable answers to safety requirements

More information

Evaluating the Safety of Digital Instrumentation and Control Systems in Nuclear Power Plants

Evaluating the Safety of Digital Instrumentation and Control Systems in Nuclear Power Plants Evaluating the Safety of Digital Instrumentation and Control Systems in Nuclear Power Plants John Thomas With many thanks to Francisco Lemos for the nuclear expertise provided! System Studied: Generic

More information

Department of Engineering and System Science, National Tsing Hua University,

Department of Engineering and System Science, National Tsing Hua University, 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) The Establishment and Application of TRACE/CFD Model for Maanshan PWR Nuclear Power Plant Yu-Ting

More information

Safety Analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3

Safety Analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3 International Conference Nuclear Energy for New Europe 23 Portorož, Slovenia, September 8-11, 23 http://www.drustvo-js.si/port23 Safety Analysis of Loss of Flow Transients in a Typical Research Reactor

More information

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical:

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical: 20 Xenon: A Fission Product Poison Many fission products absorb neutrons. Most absorption cross-sections are small and are not important in short-term operation. Xenon- has a cross-section of approximately

More information

SIMULATION OF LEAKING FUEL RODS

SIMULATION OF LEAKING FUEL RODS SIMULATION OF LEAKING FUEL RODS Zoltán Hózer KFKI Atomic Energy Research Institute P.O.B. 49, H-1525 Budapest, Hungary Hozer@sunserv.kfki.hu Abstract The behaviour of failed fuel rods includes several

More information

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Author: Yann Périn Organisation: GRS Introduction In a nuclear reactor core, different fields of physics

More information

SEQUENTIAL ESTIMATION OF THE STEADY-STATE VARIANCE IN DISCRETE EVENT SIMULATION

SEQUENTIAL ESTIMATION OF THE STEADY-STATE VARIANCE IN DISCRETE EVENT SIMULATION SEQUENTIAL ESTIMATION OF THE STEADY-STATE VARIANCE IN DISCRETE EVENT SIMULATION Adriaan Schmidt Institute for Theoretical Information Technology RWTH Aachen University D-5056 Aachen, Germany Email: Adriaan.Schmidt@rwth-aachen.de

More information

Analysis and interpretation of the LIVE-L6 experiment

Analysis and interpretation of the LIVE-L6 experiment Analysis and interpretation of the LIVE-L6 experiment A. Palagin, A. Miassoedov, X. Gaus-Liu (KIT), M. Buck (IKE), C.T. Tran, P. Kudinov (KTH), L. Carenini (IRSN), C. Koellein, W. Luther (GRS) V. Chudanov

More information

Sensitivity Analyses of the Peach Bottom Turbine Trip 2 Experiment

Sensitivity Analyses of the Peach Bottom Turbine Trip 2 Experiment International Conference Nuclear Energy for New Europe 2003 Portorož, Slovenia, September 8-11, 2003 http://www.drustvo-js.si/port2003 Sensitivity Analyses of the Peach Bottom Turbine Trip 2 Experiment

More information

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow

Department of Energy Fundamentals Handbook. THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 Fluid Flow Department of Energy Fundamentals Handbook THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW, Module 3 REFERENCES REFERENCES Streeter, Victor L., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, ISBN 07-062191-9.

More information

IMPROVED EVALUATION OF RECOVERY BOILER WATER CIRCULATION DESIGN WITH THE HELP OF STATE-OF-THE- ART CFD-BASED HEAT FLUX DATA

IMPROVED EVALUATION OF RECOVERY BOILER WATER CIRCULATION DESIGN WITH THE HELP OF STATE-OF-THE- ART CFD-BASED HEAT FLUX DATA IMPROVED EVALUATION OF RECOVERY BOILER WATER CIRCULATION DESIGN WITH THE HELP OF STATE-OF-THE- ART CFD-BASED HEAT FLUX DATA Antti Sirainen a, Jukka Röppänen b, Viljami Maakala b, Jari Lappalainen c, Esa

More information

CFD analysis of the transient flow in a low-oil concentration hydrocyclone

CFD analysis of the transient flow in a low-oil concentration hydrocyclone CFD analysis of the transient flow in a low-oil concentration hydrocyclone Paladino, E. E. (1), Nunes, G. C. () and Schwenk, L. (1) (1) ESSS Engineering Simulation and Scientific Software CELTA - Rod SC-41,

More information

Steam Condensation Induced Water Hammer Phenomena, a theoretical study

Steam Condensation Induced Water Hammer Phenomena, a theoretical study Steam Condensation Induced Water Hammer Phenomena, a theoretical study Imre Ferenc Barna and György Ézsöl Hungarian Academy of Sciences, KFKI Atomic Energy Research Institute(AEKI) Thermohydraulic Laboratory

More information

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D A. Grahn, S. Kliem, U. Rohde Forschungszentrum Dresden-Rossendorf, Institute

More information

Ph.D. Dissertation. Khaled Sayed Mahmoud. Department of Nuclear Techniques Institute of Nuclear Techniques Budapest University of Technology

Ph.D. Dissertation. Khaled Sayed Mahmoud. Department of Nuclear Techniques Institute of Nuclear Techniques Budapest University of Technology NUMERICAL MODELING OF REACTIVITY EXCURSION ACCIDENTS IN SMALL LIGHT WATER REACTORS Ph.D. Dissertation Khaled Sayed Mahmoud Department of Nuclear Techniques Institute of Nuclear Techniques Budapest University

More information

Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction

Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction Dr. P. Akimov, Dr. M. Hartmann, L. Obereisenbuchner Fluid Dynamics Stuttgart, May 24, 2012 Content

More information

Modeling and Identification of a Nuclear Reactor with Temperature Effects and Xenon Poisoning

Modeling and Identification of a Nuclear Reactor with Temperature Effects and Xenon Poisoning Modeling and Identification of a uclear Reactor with Temperature Effects and Xenon Poisoning Attila Gábor, Csaba Fazekas, Gábor Szederkényi and Katalin M. Hangos Process Control Research Group, Computer

More information

Applied Nuclear Science Educational, Training & Simulation Systems

Applied Nuclear Science Educational, Training & Simulation Systems WWW.NATS-USA.COM Applied Nuclear Science Educational, Training & Simulation Systems North American Technical Services Bridging Technology With The Latest in Radiation Detection Systems & Training Solutions

More information

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Gitesh Patel, Vesa Tanskanen, Juhani Hyvärinen LUT School of Energy Systems/Nuclear Engineering, Lappeenranta

More information

Tritium Control and Safety

Tritium Control and Safety Tritium Control and Safety Brad Merrill Fusion Safety Program 1 st APEX Electronic Meeting, February 6, 2003 Presentation Outline Temperature & tritium control approach TMAP model of solid wall AFS/Flibe

More information

Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry

Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry M. Dzodzo 1), A. Ruggles 2), B. Woods 3), U. Rohatgi 4), N.

More information

CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing

CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing 24/05/01 CANDU Safety - #3 - Nuclear Safety Characteristics.ppt Rev. 0 vgs 1 What Makes A Safe Nuclear Design?

More information

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit ABSTRACT Peter Hermansky, Marian Krajčovič VUJE, Inc. Okružná

More information

DECISION TREE BASED QUALITATIVE ANALYSIS OF OPERATING REGIMES IN INDUSTRIAL PRODUCTION PROCESSES *

DECISION TREE BASED QUALITATIVE ANALYSIS OF OPERATING REGIMES IN INDUSTRIAL PRODUCTION PROCESSES * HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 35., pp. 95-99 (27) DECISION TREE BASED QUALITATIVE ANALYSIS OF OPERATING REGIMES IN INDUSTRIAL PRODUCTION PROCESSES * T. VARGA, F. SZEIFERT, J.

More information

Chapter 8. Design of Pressurizer and Plant Control

Chapter 8. Design of Pressurizer and Plant Control Nuclear Systems Design Chapter 8. Design of Pressurizer and Plant Control Prof. Hee Cheon NO 8.1 Sizing Problem of Pressurizer and Plant Control 8.1.1 Basic Plant Control Basic Control Scheme I : to maintain

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

INVERSE PROBLEM AND CALIBRATION OF PARAMETERS

INVERSE PROBLEM AND CALIBRATION OF PARAMETERS INVERSE PROBLEM AND CALIBRATION OF PARAMETERS PART 1: An example of inverse problem: Quantification of the uncertainties of the physical models of the CATHARE code with the CIRCÉ method 1. Introduction

More information

12 Moderator And Moderator System

12 Moderator And Moderator System 12 Moderator And Moderator System 12.1 Introduction Nuclear fuel produces heat by fission. In the fission process, fissile atoms split after absorbing slow neutrons. This releases fast neutrons and generates

More information

RELAP5 to TRACE model conversion for a Pressurized Water Reactor

RELAP5 to TRACE model conversion for a Pressurized Water Reactor RELAP5 to TRACE model conversion for a Pressurized Water Reactor Master s thesis Federico López-Cerón Nieto Department of Physics Division of Subatomic and Plasma Physics Chalmers University of Technology

More information

CFX SIMULATION OF A HORIZONTAL HEATER RODS TEST

CFX SIMULATION OF A HORIZONTAL HEATER RODS TEST CFX SIMULATION OF A HORIZONTAL HEATER RODS TEST Hyoung Tae Kim, Bo Wook Rhee, Joo Hwan Park Korea Atomic Energy Research Institute 150 Dukjin-Dong, Yusong-Gu, Daejon 305-353, Korea kht@kaeri.re.kr Abstract

More information

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis

A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A Hybrid Deterministic / Stochastic Calculation Model for Transient Analysis A. Aures 1,2, A. Pautz 2, K. Velkov 1, W. Zwermann 1 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Boltzmannstraße

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

ATLAS Facility Description Report

ATLAS Facility Description Report KAERI/TR-3754/2009 기술보고서 ATLAS Facility Description Report ATLAS 실험장치기술보고서 한국원자력연구원 제출문 한국원자력연구원장귀하 본보고서를 2009 연도 APR1400/OPR1000 핵심사고열수력종합 효과실험 과제의기술보고서로제출합니다. 2009. 4. 주저자 : 강경호공저자 : 문상기박현식조석최기용 ATLAS

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP5/PARCS v2.7

Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP5/PARCS v2.7 Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.10-18 (011) ARTICLE Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP/PARCS v. Agustín ABARCA,

More information

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS Dean Wang April 30, 2015 24.505 Nuclear Reactor Physics Outline 2 Introduction and Background Coupled T-H/Neutronics Safety Analysis Numerical schemes

More information

Combining probability and possibility to respect the real state of knowledge on uncertainties in the evaluation of safety margins

Combining probability and possibility to respect the real state of knowledge on uncertainties in the evaluation of safety margins Combining probability and possibility to respect the real state of knowledge on uncertainties in the evaluation of safety margins 3/7/9 ENBIS conference, St Etienne Jean BACCOU, Eric CHOJNACKI (IRSN, France)

More information

ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS

ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS T. Kozlowski, R. M. Miller, T. Downar School of Nuclear Engineering Purdue University United States

More information

Developments and Applications of TRACE/CFD Model of. Maanshan PWR Pressure Vessel

Developments and Applications of TRACE/CFD Model of. Maanshan PWR Pressure Vessel Developments and Applications of TRACE/CFD Model of Maanshan PWR Pressure Vessel Yu-Ting Ku 1, Yung-Shin Tseng 1, Jung-Hua Yang 1 Shao-Wen Chen 2, Jong-Rong Wang 2,3, and Chunkuan Shin 2,3 1 : Department

More information

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt IDEAL MODELS OF REACTORS A. Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Thermodynamic state, conversion degree, extent of reaction, classification of chemical reactors,

More information

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART Mathieu Hursin and Thomas Downar University of California Berkeley, USA mhursin@nuc.berkeley.edu,downar@nuc.berkeley.edu ABSTRACT During the past

More information

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation VVER-1000 Reflooding Scenario Simulation with MELCOR 1.8.6 Code in Comparison with MELCOR 1.8.3 Simulation Jiří Duspiva Nuclear Research Institute Řež, plc. Nuclear Power and Safety Division Dept. of Reactor

More information

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING

HIGH TEMPERATURE THERMAL HYDRAULICS MODELING HIGH TEMPERATURE THERMAL HYDRAULICS MODELING OF A MOLTEN SALT: APPLICATION TO A MOLTEN SALT FAST REACTOR (MSFR) P. R. Rubiolo, V. Ghetta, J. Giraud, M. Tano Retamales CNRS/IN2P3/LPSC - Grenoble Workshop

More information

Identification of the primary circuit dynamics in a pressurized water nuclear power plant

Identification of the primary circuit dynamics in a pressurized water nuclear power plant Identification of the primary circuit dynamics in a pressurized water nuclear power plant Csaba Fazekas Gábor Szederkényi Katalin M. Hangos Process Control Research Group, Systems and Control Laboratory,

More information

Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian Uncertainty Quantification

Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian Uncertainty Quantification Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian Uncertainty Quantification The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

VISIMIX TURBULENT. TACKLING SAFETY PROBLEMS OF STIRRED REACTORS AT THE DESIGN STAGE.

VISIMIX TURBULENT. TACKLING SAFETY PROBLEMS OF STIRRED REACTORS AT THE DESIGN STAGE. VISIMIX TURBULENT. TACKLING SAFETY PROBLEMS OF STIRRED REACTORS AT THE DESIGN STAGE. This example demonstrates usage of the VisiMix software to provide an Inherently Safer Design of the process based on

More information

Applied Reactor Technology and Nuclear Power Safety, 4A1627; 4 cp. Course Description

Applied Reactor Technology and Nuclear Power Safety, 4A1627; 4 cp. Course Description Applied Reactor Technology and Nuclear Power Safety, 4A1627; 4 cp Course Objectives Course Description The purpose of the course is to provide a general knowledge on the physical processes that take place

More information

MNRSIM: An Interactive Visual Model which Links Thermal Hydraulics, Neutron Production and other Phenomena. D. Gilbert, Wm. J. Garland, T.

MNRSIM: An Interactive Visual Model which Links Thermal Hydraulics, Neutron Production and other Phenomena. D. Gilbert, Wm. J. Garland, T. MNRSIM: An Interactive Visual Model which Links Thermal Hydraulics, Neutron Production and other Phenomena D. Gilbert, Wm. J. Garland, T. Ha McMaster University, Hamilton Ontario, CANADA 6th International

More information

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS Deokjung Lee and Thomas J. Downar School of Nuclear Engineering

More information

Calculating equation coefficients

Calculating equation coefficients Fluid flow Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

VERIFICATION AND VALIDATION OF ONE DIMENSIONAL MODELS USED IN SUBCOOLED FLOW BOILING ANALYSIS

VERIFICATION AND VALIDATION OF ONE DIMENSIONAL MODELS USED IN SUBCOOLED FLOW BOILING ANALYSIS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 VERIFICATION

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING CODE-TO-CODE VERIFICATION OF COBRA-TF AND TRACE ADRIAN MICHAEL LEANDRO SPRING 2016 A thesis submitted

More information

Interactivity-Compatibility. TA Hydronic College Training

Interactivity-Compatibility. TA Hydronic College Training Interactivity-Compatibility TA Hydronic College Training Hydraulic interactivity B Both valves are open. What becomes the flow if one of these valves is closed? p AB A H Head [ft] 140.00 120.00 100.00

More information

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields. G Zigh and J Solis U.S. Nuclear Regulatory Commission CFD4NRS2010 A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields G Zigh and J Solis U.S. Nuclear Regulatory Commission Abstract JA Fort Pacific Northwest National

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Omar S. Al-Yahia, Taewoo Kim, Daeseong Jo School of Mechanical Engineering, Kyungpook National University

More information

ME-662 CONVECTIVE HEAT AND MASS TRANSFER

ME-662 CONVECTIVE HEAT AND MASS TRANSFER ME-66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India LECTURE- INTRODUCTION () March 7, 00 / 7 LECTURE- INTRODUCTION

More information

A METHOD TO PREVENT SEVERE POWER AND FLOW OSCILLATIONS IN BOILING WATER REACTORS

A METHOD TO PREVENT SEVERE POWER AND FLOW OSCILLATIONS IN BOILING WATER REACTORS A METHOD TO PREVENT SEVERE POWER AND FLOW OSCILLATIONS IN BOILING WATER REACTORS Yousef M. Farawila Farawila et al., Inc. Nuclear@Farawila.com ABSTRACT This paper introduces a new method for preventing

More information

Fundamentals of Heat Transfer (Basic Concepts)

Fundamentals of Heat Transfer (Basic Concepts) Fundamentals of Heat Transfer (Basic Concepts) 1 Topics to be covered History Thermodynamics Heat transfer Thermodynamics versus Heat Transfer Areas and Applications of Heat Transfer Heat Transfer problems

More information

BEST-ESTIMATE METHODOLOGY

BEST-ESTIMATE METHODOLOGY BEST-ESTIMATE METHODOLOGY CONTENT Recall of LB LOCA evaluation method EDF methodology presentation Principles DRM applied to LB LOCA CATHARE GB Key parameters PCT95 PCT DRM BE methodology feedback LB LOCA

More information

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each.

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. NE 161 Midterm Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. 1. Which would have a higher mass flow rate out of a 1 ft 2 break, a. 200 psia subcooled water

More information

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow:

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow: Two-Fluid Model 41 If I have seen further it is by standing on the shoulders of giants. Isaac Newton, 1675 3 Two-Fluid Model Simple isothermal two-fluid two-phase models for stratified flow: Mass and momentum

More information

Transient Reactor Test Loop (TRTL) Model Development

Transient Reactor Test Loop (TRTL) Model Development Transient Reactor Test Loop (TRTL) Model Development Emory Brown WORKING GROUP MEETING FLL 2016 TSK 2 BREKOUT SESSION BOSTON, M Outline Task Description Current Model Status With model projections Preliminary

More information

Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods

Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods Zechuan Ding Illume Research, 405 Xintianshiji Business Center, 5 Shixia Road, Shenzhen, China Abstract. After a nuclear reactor

More information

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 000 REACTOR CORE Efrizon Umar Center for Research and Development of Nuclear Techniques (P3TkN) ABSTRACT PREDICTION OF

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE

DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE Seyun Kim, Eunki Lee, Yo-Han Kim and Dong-Hyuk Lee Central Research Institute, Korea

More information

1/54 Circulation pump, safety valve, expansion vessel

1/54 Circulation pump, safety valve, expansion vessel 1/54 Circulation pump, safety valve, expansion vessel pressure loss efficiency of pump secured heat output safety valve sizing expansion vessel sizing Circulation pump 2/54 similar principle as for heating

More information

Boiling and Condensation (ME742)

Boiling and Condensation (ME742) Indian Institute of Technology Kanpur Department of Mechanical Engineering Boiling and Condensation (ME742) PG/Open Elective Credits: 3-0-0-9 Updated Syllabus: Introduction: Applications of boiling and

More information

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4. Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of asystemis the maximum useful work possible during a process that

More information

THE MATRIX CONDITION NUMBER IN THE NEUTRON NOISE DIAGNOSTICS

THE MATRIX CONDITION NUMBER IN THE NEUTRON NOISE DIAGNOSTICS THE MATRIX CONDITION NUMBER IN THE NEUTRON NOISE DIAGNOSTICS M. Berta and G. Pór Széchenyi István College, Győr, Hungary Technical University of Budapest, Hungary HU ISSN 1418-7108: HEJ Manuscript no.:

More information

(Refer Slide Time: 00:00:43 min) Welcome back in the last few lectures we discussed compression refrigeration systems.

(Refer Slide Time: 00:00:43 min) Welcome back in the last few lectures we discussed compression refrigeration systems. Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 14 Vapour Absorption Refrigeration Systems (Refer Slide

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS Ulrich BIEDER whole TrioCFD Team DEN-STMF, CEA, UNIVERSITÉ PARIS-SACLAY www.cea.fr SÉMINAIRE ARISTOTE, NOVEMBER 8, 2016 PAGE 1 Outline Obective: analysis

More information

DYNAMIC FLOW INSTABILITY OF NATURAL CIRCULATION HEAT RECOVERY STEAM GENERATORS

DYNAMIC FLOW INSTABILITY OF NATURAL CIRCULATION HEAT RECOVERY STEAM GENERATORS ISTP-16, 2005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA DYNAMIC FLOW INSTABILITY OF NATURAL CIRCULATION HEAT RECOVERY STEAM GENERATORS Heimo WALTER, Wladimir LINZER and Thomas SCHMID

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

NUMERICAL INVESTIGATIONS OF A SPENT FUEL STORAGE POOL IN ABNORMAL CONDITIONS

NUMERICAL INVESTIGATIONS OF A SPENT FUEL STORAGE POOL IN ABNORMAL CONDITIONS NUMERICAL INVESTIGATIONS OF A SPENT FUEL STORAGE POOL IN ABNORMAL CONDITIONS J-p Simoneau 1, B. Gaudron 1, Jérôme Laviéville 2, Julien Dumazet 1 Electricité de France (EDF) 1 12-14, av. Dutriévoz, 69628

More information

PSA on Extreme Weather Phenomena for NPP Paks

PSA on Extreme Weather Phenomena for NPP Paks PSA on Extreme Weather Phenomena for NPP Paks Tamás Siklóssy siklossyt@nubiki.hu WGRISK Technical Discussion on PSA Related to Weather-Induced Hazards Paris, 9 March, 2017 Background Level 1 Seismic PSA

More information

NEW FUEL IN MARIA RESEARCH REACTOR, PROVIDING BETTER CONDITIONS FOR IRRADIATION IN THE FAST NEUTRON SPECTRUM.

NEW FUEL IN MARIA RESEARCH REACTOR, PROVIDING BETTER CONDITIONS FOR IRRADIATION IN THE FAST NEUTRON SPECTRUM. NEW FUEL IN MARIA RESEARCH REACTOR, PROVIDING BETTER CONDITIONS FOR IRRADIATION IN THE FAST NEUTRON SPECTRUM. M. LIPKA National Centre for Nuclear Research Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland

More information

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants , June 30 - July 2, 2010, London, U.K. Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants R. Mahmoodi, M. Shahriari, R. Zarghami, Abstract In nuclear power plants, loss

More information

TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident

TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 0 TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident IAEA IEM8 Vienna International Centre,

More information

Raven Facing the Problem of assembling Multiple Models to Speed up the Uncertainty Quantification and Probabilistic Risk Assessment Analyses

Raven Facing the Problem of assembling Multiple Models to Speed up the Uncertainty Quantification and Probabilistic Risk Assessment Analyses 13 th International Conference on Probabilistic Safety Assessment and Management PSAM 13) Raven Facing the Problem of assembling Multiple Models to Speed up the Uncertainty Quantification and Probabilistic

More information

NUMERICAL METHOD FOR THREE DIMENSIONAL STEADY-STATE TWO-PHASE FLOW CALCULATIONS

NUMERICAL METHOD FOR THREE DIMENSIONAL STEADY-STATE TWO-PHASE FLOW CALCULATIONS ' ( '- /A NUMERCAL METHOD FOR THREE DMENSONAL STEADY-STATE TWO-PHASE FLOW CALCULATONS P. Raymond,. Toumi (CEA) CE-Saclay DMT/SERMA 91191 Gif sur Yvette, FRANCE Tel: (331) 69 08 26 21 / Fax: 69 08 23 81

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

Uncertainty Analysis on Containment Failure Frequency for a Japanese PWR Plant

Uncertainty Analysis on Containment Failure Frequency for a Japanese PWR Plant Uncertainty Analysis on Containment Failure Frequency for a Japanese PWR Plant O. KAWABATA Environmental Safety Analysis Group Safety Analysis and Evaluation Division, Japan Nuclear Energy Safety Organization

More information

Project ALLEGRO: ÚJV Group Activities in He-related Technologies

Project ALLEGRO: ÚJV Group Activities in He-related Technologies Project ALLEGRO: ÚJV Group Activities in He-related Technologies L. Bělovský, J. Berka, M. Janák et al. K. Gregor, O. Frýbort et al. 9 th Int. School on Nuclear Power, Warsaw, Poland, Nov 17, 2017 Outline

More information

Nodalization. The student should be able to develop, with justification, a node-link diagram given a thermalhydraulic system.

Nodalization. The student should be able to develop, with justification, a node-link diagram given a thermalhydraulic system. Nodalization 3-1 Chapter 3 Nodalization 3.1 Introduction 3.1.1 Chapter content This chapter focusses on establishing a rationale for, and the setting up of, the geometric representation of thermalhydraulic

More information

DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3

DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 DOE-HDBK-1012/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved

More information

EFFECT OF LIQUID PHASE COMPRESSIBILITY ON MODELING OF GAS-LIQUID TWO-PHASE FLOWS USING TWO-FLUID MODEL

EFFECT OF LIQUID PHASE COMPRESSIBILITY ON MODELING OF GAS-LIQUID TWO-PHASE FLOWS USING TWO-FLUID MODEL EFFECT OF LIQUID PHASE COMPRESSIBILITY ON MODELING OF GAS-LIQUID TWO-PHASE FLOWS USING TWO-FLUID MODEL Vahid SHOKRI 1*,Kazem ESMAEILI 2 1,2 Department of Mechanical Engineering, Sari Branch, Islamic Azad

More information

Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015

Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015 Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015 Topics: 1. Overview on Beam Dump 2. Description of cooling circuit 3. Safety philosofy 4. BD safety system:

More information

Development of education and training programs using ISIS research reactor

Development of education and training programs using ISIS research reactor Development of education and training programs using ISIS research reactor F. Foulon 1, B. Lescop 1, X. Wohleber 2 1) National Institute for Nuclear Science and Technology, CEA-Saclay,France 2) Nuclear

More information

Coupling of thermal-mechanics and thermalhydraulics codes for the hot channel analysis of RIA events First steps in AEKI toward multiphysics

Coupling of thermal-mechanics and thermalhydraulics codes for the hot channel analysis of RIA events First steps in AEKI toward multiphysics Coupling of thermal-mechanics and thermalhydraulics codes for the hot channel analysis of RIA events First steps in AEKI toward multiphysics A. Keresztúri, I. Panka, A. Molnár KFKI Atomic Energy Research

More information

Evaluating the Core Damage Frequency of a TRIGA Research Reactor Using Risk Assessment Tool Software

Evaluating the Core Damage Frequency of a TRIGA Research Reactor Using Risk Assessment Tool Software Evaluating the Core Damage Frequency of a TRIGA Research Reactor Using Risk Assessment Tool Software M. Nematollahi and Sh. Kamyab Abstract After all preventive and mitigative measures considered in the

More information

Supercritical Helium Cooling of the LHC Beam Screens

Supercritical Helium Cooling of the LHC Beam Screens EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report Supercritical Helium Cooling of the LHC Beam Screens Emmanuel Hatchadourian,,

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information