TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident

Size: px
Start display at page:

Download "TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident"

Transcription

1 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 0 TEPCO s Activities on the Investigation into Unsolved Issues in the Fukushima Daiichi NPS Accident IAEA IEM8 Vienna International Centre, Vienna, Austria February 16-20, 2015 Daisuke YAMAUCHI Tokyo Electric Power Company

2 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 1 Overview of TEPCO s activities on investigation into unsolved issues (1) Purpose of investigations into unsolved issues As the operator of the nuclear power station and the main party responsible for the accident, TEPCO is fully committed to clarifying all aspects of the accident Solving reactor decommissioning issues and acquiring information Improvement in safety measures and enhancement of safety at Kashiwazaki-Kariwa Nuclear Power Station

3 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 2 Overview of TEPCO s activities on investigation into unsolved issues (2) Areas of investigation activities to identify issues Pre-accident status 11 March 2011 Time course End of March 2011 Post-accident status Height approx. 32 m Reactor pressure vessel Fuel rods (approx. 4 m) Water Reactor containment vessel Steam Water Water Fuel rods Valve Water To exhaust pipe Reactor building To Turbine building a. Earthquake b. Tsunami c. Equipment damage d. Operation by operators e. Equipment performance f. Reactor behavior g. Reactor damage h. Release of radioactive materials i. Containment vessel damage CS system CS 系 Water 給水系 supply system Area I Area II Area III Investigation activities were conducted mainly focused on What happened and the results were established in June This report is available from: Total amount of released FP and the cause of the land contamination of the northwest direction were evaluated and the results were established in May This report is available from: Investigation activities have been conducting focused on the detailed behavior of the equipment in steps e. and f., RPV and PCV damage processes in steps g. to i., and their post-accident statuses. Progress reports are available from;

4 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 3 Overview of TEPCO s activities on investigation into unsolved issues (3) Investigations which TEPCO has done until now - Tsunami arrival evaluation and the fact that the tsunami was a main cause of the loss of cooling function - Relationship between the earthquake and flooding in reactor building at Unit 1 - RCIC flow rate after loss of control power at Unit 2 - State of the RHR system after the tsunami arrival at Unit 2 - Identification of causes of PCV pressure decrease after RCIC shutdown at Unit 2 - Investigation on the accident progression based on reactor water level behavior after HPCI shutdown at Unit 3 - Possibility of rapid reactor depressurization due to ADS triggered at Unit 3 - Steep increase in reactor pressure after rapid depressurization at Unit 3, and its relationship to the reactor core damage progression

5 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 4 Overview of TEPCO s activities on investigation into unsolved issues (4) Progression of the study of ten high-priority issues - Cause of the shutdown of the reactor core isolation cooling system at Unit 3 -Evaluation into the amounts of water injected to the reactor vessels by fire engines - Evaluation of HPCI system operational state at Unit 3 and its impact on the accident progression - Rise in RPV pressure after the forced depressurization at Unit 2 - Status of safety relief valve operation after reactor core damage - Vent operation and rupture disk status at Unit 2 - Behavior of melted core relocation to the lower plenum -Thermal stratification in the suppression pool at Unit 3 - Increase of dose rate at 1F site since March 20 - Causes of the high-contamination of pipes in the reactor building closed cooling water system at Unit 1 TEPCO will continue investigations of the unsolved issues and will report the investigation results semi-annually.

6 Neutron dose rate (μsv/h) 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 5 gamma dose rate (μsv/h) (1) Overview In the morning of March 13 and in the night of March 14, small amounts of neutrons were detected near the main gate. The cause of neutron detection was unclear Neutron rays Gamma rays Neutron detection Neutron detection 1E+5 1E E E+2 1E E E-1 0 1E-2 3/11 3/12 3/13 3/14 3/15 3/16 3/17 The timing of neutron detection and the increase in the gamma dose rate are not correlated.

7 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 6 (2)Monitoring point and Detectors Monitoring car was located near the main gate. approx. 1km Detectors Dose rate: Ion chamber installed in the monitoring car Neutron dose rate: Portable neutron survey meter ( 3 He) Data is uploaded to

8 Dose rate(gamma ray) [μsv/h] 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 7 RPV water level [mm] (3)Unit 3 accident progression reflecting early HPCI degradation HPCI had already been degraded HPCI manually stopped 2:42 3/13 Dose rate without neutron detection Dose rate with neutron detection 0.01μSv/h Dose rate with neutron detection 0.02μSv/h unit3 water level (measured) unit3 water level (MAAP5.01) Core heat-up 3/13 3/13 3:00 3/13 6:00 3/13 9:00 3/13 12:00 date Neutron was detected when unit 3 core reached to high temperature due to W-Zr reaction =TAF BAF

9 Dose rate(gamma ray) [μsv/h] 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 8 Pressure[MPa] (4)Unit 2 accident progression with pressurization events /14 6:00 RPV pressure RCIC stopped D/W pressure 3/14 9:00 Dose rate without neutron detection Dose rate with neutron detection 0.01μSv/h Dose rate with neutron detection 0.02μSv/h unit2 RPV pressure unit2 D/W pressure Depressurization 3/14 12:00 3/14 15:00 3/14 18:00 date SRV manually opened Sea water injection 3/14 21:00 3/15 3/15 3: /15 6:00

10 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 9 (5) Process leading up to fuel melting in Unit 2 We estimate a scenario where, after reactor depressurization, the steam generated by cooling water injection from fire engines caused a zirconium-water reaction, in turn causing reactor pressure to rise and lead to fuel melting. SRV manually opened Depressurization Pressure increase Pressure decrease (1) (2) (3) (4) (5)

11 Dose rate(gamma ray) [μsv/h] Pressure[MPa] (6)Unit 2 accident progression with pressurization events Dose rate without neutron detection Dose rate with neutron detection 0.01μSv/h Dose rate with neutron detection 0.02μSv/h unit2 RPV pressure unit2 D/W pressure Sea water injection After water level 7.0 recovered to BAF, steam and gas were heated up by W-Zr 6.0 reaction with steam generated by water injection. 5.0 Due to RPV pressure increase, water could not be injected and the RPV pressure decreased gradually /14 18:00 3/14 21:00 3/15 3/15 3:00 3/15 6:00 date flashsing Press. increase Press. decrease 2015 The Tokyo Electric Power Company, INC. All Rights Reserved Neutron was detected when unit 2 core reached to high temperature due to W-Zr reaction.

12 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 11 (7) Origin of measured neutrons The neutrons detected near the main gate may have been generated by the spontaneous fission of actinides released from RPV with core melt progression at Units 3 and 2. (1) (2) As the result of soil sampling, short halflife actinides, such as Cm-242 and Cm- 244, were detected. These may have been originated in the Fukushima Daiichi accident. (TEPCO also estimate Xe gas detected in PCV gas to have derived from spontaneous fission by Cm etc.) Path (1); Neutrons generated in RPV were detected directly. Unlikely due to shielding by reactor vessel and reactor building Path (2)-1; Delayed neutrons deriving from the decay of fission products (Br-87, etc.) were detected. The delayed neutrons had become sufficiently attenuated due to short half-life of the delayed neutron precursors. Path (2)-2; Neutrons deriving from the spontaneous fission of discharged actinides (Cm-242, etc.) were detected. - The timing coincided with that of fuel melting. - Possible given the detection of actinides thought to arise from the Fukushima Daiichi accident in sampled soil.

13 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 12 (8)Summary Why neutron was detected? There is a possibility that detected neutron was derived from spontaneous fission of released actinides The timing of neutron detection might be related to the core melt with high temperature enough to release actinides. For future R&D It is important to understand the migration behavior of the radioactive nuclide from the point of view of radiation exposure and radioactive contamination. How does the core melt progress? How are the radioactive nuclides released from the core? How do the plume and FP travel to environment from the reactor buildings?

14 2015 The Tokyo Electric Power Company, INC. All Rights Reserved. 13 Summary Much information was obtained until now, however there are unclear issues on core damage progression and current situation of reactors and containment vessels. TEPCO continues the effort for revealing its complete picture by integrating obtained information including plant data, operator s action, considerations on equipment performance under the severe accident Analysis through SA code simulations and various researches Field investigations and activities towards the decommissioning TEPCO would like to share the insights obtained from investigation and discussion with researchers in the world TEPCO appreciates your proposal, advice and discussion First progress report: Second progress report

Correlation between neutrons detected outside the reactor building and fuel melting

Correlation between neutrons detected outside the reactor building and fuel melting Attachment 2-7 Correlation between neutrons detected outside the reactor building and fuel melting 1. Introduction The Fukushima Daiichi Nuclear Power Station (hereinafter referred to as Fukushima Daiichi

More information

FP release behavior at Unit-2 estimated from CAMS readings on March 14 th and 15 th

FP release behavior at Unit-2 estimated from CAMS readings on March 14 th and 15 th Attachment 2-11 FP release behavior at Unit-2 estimated from CAMS readings on March 14 th and 15 th 1. Outline of the incident and the issue to be examined At Unit-2 of the Fukushima Daiichi NPS, the reactor

More information

Analysis for Progression of Accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code

Analysis for Progression of Accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code Analysis for Progression of Accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code Toshinori MATSUMOTO, Jun ISHIKAWA, and Yu MARUYAMA Nuclear Safety Research Center, Japan Atomic Energy

More information

Detection of Xe135 at Nuclear Reactor of Unit 2, Fukushima Daiichi Nuclear Power Station. November 4, 2011 Tokyo Electric Power Company

Detection of Xe135 at Nuclear Reactor of Unit 2, Fukushima Daiichi Nuclear Power Station. November 4, 2011 Tokyo Electric Power Company Detection of Xe135 at Nuclear Reactor of Unit 2, Fukushima Daiichi Nuclear Power Station November 4, 2011 Tokyo Electric Power Company On November 1, as a sampling result by the gas control system that

More information

Institute for Science and International Security

Institute for Science and International Security Institute for Science and International Security FUKUSHIMA CRISIS: UNMONITORED RELEASES Preliminary Assessment of Accident Sequences and Potential Atmospheric Radiation Releases By David Albright, Paul

More information

European Fallout from Chernobyl

European Fallout from Chernobyl European Fallout from Chernobyl Fukushima Reactors: before & after earthquake and tsunami Fukushima reactors 3 & 4 (picture released by Tokyo Electric Power Company) Fukushima Reactor 1 A view inside one

More information

Information (11:00), February 12, 2019

Information (11:00), February 12, 2019 Information (11:00), February 12, 2019 To All Missions (Embassies, Consular posts and International Organizations in Japan) Report on the discharge record and the seawater monitoring results at Fukushima

More information

Kazuaki Yajima, Kazuki Iwaoka, and Hiroshi Yasuda

Kazuaki Yajima, Kazuki Iwaoka, and Hiroshi Yasuda Chapter 6 Radiation Survey Along Two Trails in Mt. Fuji to Investigate the Radioactive Contamination Caused by TEPCO s Fukushima Daiichi Nuclear Plant Accident Kazuaki Yajima, Kazuki Iwaoka, and Hiroshi

More information

Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method

Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method Sunghyon Jang, and Akira Yamaguchi Department of Nuclear Engineering and Management, The University of

More information

Information (10:00), July 3, 2018

Information (10:00), July 3, 2018 Information (10:00), July 3, 2018 To All Missions (Embassies, Consular posts and International Organizations in Japan) Report on the discharge record and the seawater monitoring results at Fukushima Daiichi

More information

Information (17:30), January 11, 2019

Information (17:30), January 11, 2019 Information (17:30), January 11, 2019 To All Missions (Embassies, Consular posts and International Organizations in Japan) Report on the discharge record and the seawater monitoring results at Fukushima

More information

Available online at ScienceDirect. Nuclear power plant explosions at Fukushima-Daiichi. Takashi Tsuruda*

Available online at   ScienceDirect. Nuclear power plant explosions at Fukushima-Daiichi. Takashi Tsuruda* Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 62 ( 2013 ) 71 77 The 9 th Asia-Oceania Symposium on Fire Science and Technology Nuclear power plant explosions at Fukushima-Daiichi

More information

Evaluating the Safety of Digital Instrumentation and Control Systems in Nuclear Power Plants

Evaluating the Safety of Digital Instrumentation and Control Systems in Nuclear Power Plants Evaluating the Safety of Digital Instrumentation and Control Systems in Nuclear Power Plants John Thomas With many thanks to Francisco Lemos for the nuclear expertise provided! System Studied: Generic

More information

Accelerator Facility Accident Report

Accelerator Facility Accident Report Accelerator Facility Accident Report 31 May 2013 Incorporated Administrative Agency - Japan Atomic Energy Agency Inter-University Research Institute - High Energy Accelerator Research Organization Subject:

More information

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process MR2014 Symposium, April 8-10, 2014, Studsvik, Nyköping, Sweden Klas Lundgren Arne Larsson Background Studsvik

More information

CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASUREMENT

CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASUREMENT CRITICALITY DETECTION METHOD BASED ON FP GAMMA RADIATION MEASREMENT Yoshitaka Naito, Kazuo Azekura NAIS Co., inc. Muramatsu 416, Tokaimura, Ibaraki-ken, Japan 319-1112 ynaito@nais.ne.jp azekura@nais.ne.jp

More information

FUKUSHIMA CORE MELT COMPOSITION SIMULATION WITH ASTEC

FUKUSHIMA CORE MELT COMPOSITION SIMULATION WITH ASTEC FUKUSHIMA CORE MELT COMPOSITION SIMULATION WITH ASTEC H. Bonneville, L. Carénini and M. Barrachin Institut de Radioprotection et de Sûreté Nucléaire (IRSN) 31, avenue de la division Leclerc, Fontenay-aux-Roses,

More information

Fukushima Daiichi Nuclear Power Station Unit 2 Primary Containment Vessel Internal Investigation

Fukushima Daiichi Nuclear Power Station Unit 2 Primary Containment Vessel Internal Investigation Fukushima Daiichi Nuclear Power Station Unit 2 Primary Containment Vessel Internal Investigation April 26, 2018 Tokyo Electric Power Company Holdings, Inc. 1. Primary containment vessel internal investigation

More information

Study on Quantification Methodology of accident sequences for Tsunami Induced by Seismic Events.

Study on Quantification Methodology of accident sequences for Tsunami Induced by Seismic Events. Study on Quantification Methodology of accident sequences for Tsunami Induced by Seismic Events 1 Keisuke Usui, 2 Hitoshi Muta, 3 Ken Muramatsu 1 Graduate Student, Corporative Major in Nuclear Energy:

More information

The Fukushima Tragedy Is Koeberg Next?

The Fukushima Tragedy Is Koeberg Next? UNIVERSITY OF PRETORIA The Fukushima Tragedy Is Koeberg Next? Johan Slabber 24 March 2011 1 Background To understand radiation and its source, one needs to have an understanding : Of the fundamental particles

More information

Chapter 3 Analysis of Radioactive Release from the Fukushima Daiichi Nuclear Power Station

Chapter 3 Analysis of Radioactive Release from the Fukushima Daiichi Nuclear Power Station Chapter 3 Analysis of Radioactive Release from the Fukushima Daiichi Nuclear Power Station Satoru Tanaka and Shinichiro Kado Abstract Basic schemes and databases necessary to assess the radioactive release

More information

7 th International Summer School 2015, JRC Ispra: Operational Issues in Radioactive Waste Management and Nuclear Decommissioning

7 th International Summer School 2015, JRC Ispra: Operational Issues in Radioactive Waste Management and Nuclear Decommissioning 7 th International Summer School 2015, JRC Ispra: Operational Issues in Radioactive Waste Management and Nuclear Decommissioning Nucleonica: Nuclear Applications for Radioactive Waste Management and Decommissioning

More information

AP1000 European 15. Accident Analyses Design Control Document EVALUATION MODELS AND PARAMETERS FOR ANALYSIS OF RADIOLOGICAL CONSEQUENCES OF ACCIDENTS

AP1000 European 15. Accident Analyses Design Control Document EVALUATION MODELS AND PARAMETERS FOR ANALYSIS OF RADIOLOGICAL CONSEQUENCES OF ACCIDENTS APPENDIX 15A EVALUATION MODELS AND PARAMETERS FOR ANALYSIS OF RADIOLOGICAL CONSEQUENCES OF ACCIDENTS This appendix contains the parameters and models that form the basis of the radiological consequences

More information

Employees Contractors

Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

Estimation of accidental environmental release based on containment measurements

Estimation of accidental environmental release based on containment measurements Estimation of accidental environmental release based on containment measurements Péter Szántó, Sándor Deme, Edit Láng, Istvan Németh, Tamás Pázmándi Hungarian Academy of Sciences Centre for Energy Research,

More information

8 th International Summer School 2016, JRC Ispra on Nuclear Decommissioning and Waste Management

8 th International Summer School 2016, JRC Ispra on Nuclear Decommissioning and Waste Management 8 th International Summer School 2016, JRC Ispra on Nuclear Decommissioning and Waste Management Nucleonica: Nuclear Applications for Radioactive Waste Management and Decommissioning cloud based nuclear

More information

Employees Contractors

Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear.

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear. Chemistry 500: Chemistry in Modern Living 1 Topic 5: The Fires of Nuclear Fission Atomic Structure, Nuclear Fission and Fusion, and Nuclear Weapons Chemistry in Context, 2 nd Edition: Chapter 8, Pages

More information

Multiphase CFD Applied to Steam Condensation Phenomena in the Pressure Suppression Pool

Multiphase CFD Applied to Steam Condensation Phenomena in the Pressure Suppression Pool Multiphase CFD Applied to Steam Condensation Phenomena in the Pressure Suppression Pool Marco Pellegrini NUPEC STAR Japanese Conference 2016 Yokohama, Japan June 9 th 2016 NUCLEAR PLANTS AFFECTED BY THE

More information

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage SESSION 7: Research and Development Required to Deliver an Integrated Approach Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage A. Šmaižys,

More information

October 2017 November Employees Contractors

October 2017 November Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

Homework 06. Nuclear

Homework 06. Nuclear HW06 - Nuclear Started: Mar 22 at 11:05am Quiz Instruc!ons Homework 06 Nuclear Question 1 How does a nuclear reaction differ from a chemical reaction? In a nuclear reaction, the elements change identities

More information

WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY

WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY Homework #17 is due today. Midterm 2: Weds, Mar 27, 7:45 8:55 pm (Same room as your midterm 1 exam.) Covers periods 10 19 and videos 3 & 4 Review: Tues,

More information

Science 30 Unit D Energy and the Environment

Science 30 Unit D Energy and the Environment Science 30 Unit D Energy and the Environment Outcome 2: Students will describe the sun as Earth s main source of energy and explain the functioning of some conventional and alternative technologies that

More information

ERMSAR Results and Progress of Fundamental Research on FP Chemistry. Japan Atomic Energy Agency. May16-18, 2017 Warsaw, Poland

ERMSAR Results and Progress of Fundamental Research on FP Chemistry. Japan Atomic Energy Agency. May16-18, 2017 Warsaw, Poland 8 TH CONFERENCE ON SEVERE ACCIDENT RESEARCH ERMSAR 2017 Results and Progress of Fundamental Research on FP Chemistry M.Osaka, K.Nakajima, S. Miwa, F.G.Di Lemma, N.Miyahara, C.Suzuki, E.Suzuki, T.Okane,

More information

Nuclear Science Merit Badge Workbook

Nuclear Science Merit Badge Workbook Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. This Workbook can help you organize your thoughts as you prepare to meet with your merit badge counselor.

More information

Revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (2) Seismic Hazard Evaluation

Revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (2) Seismic Hazard Evaluation Revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (2) Seismic Hazard Evaluation Katsumi Ebisawa a, Katsuhiro Kamae b, Tadashi Annaka c, Hideaki Tsutsumi d And Atsushi Onouchi e a

More information

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS Federal Environmental, Industrial and Nuclear Supervision Service Scientific and Engineering Centre for Nuclear and Radiation Safety Scientific and Engineering Centre for Nuclear and Radiation Safety Member

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION SOURCE TERM ESTIMATION FOR THE FUKUSHIMA DAIICHI NUCLEAR POWER STATION ACCIDENT BY COMBINED ANALYSIS OF ENVIRONMENTAL MONITORING AND PLANT DATA THROUGH ATMOSPHERIC DISPERSION SIMULATION H. Nagai, H. Terada,

More information

Assessment of Atmospheric Dispersion for the Fukushima Dai-ichi Nuclear Power Plant Accident

Assessment of Atmospheric Dispersion for the Fukushima Dai-ichi Nuclear Power Plant Accident Assessment of Atmospheric Dispersion for the Fukushima Dai-ichi Nuclear Power Plant Accident Anne Mathieu, Irène Korsakissok, Denis Quélo, Jérôme Groëll, Marilyne Tombette, Damien Didier, Emmanuel Quentric,

More information

Analysis on the formation process of high dose rate zone in the northwest direction of the Fukushima Daiichi nuclear power plant

Analysis on the formation process of high dose rate zone in the northwest direction of the Fukushima Daiichi nuclear power plant Analysis on the formation process of high dose rate zone in the northwest direction of the Fukushima Daiichi nuclear power plant Jun. 13, 2011 Research group of Japan Atomic Energy Agency (JAEA) has analyzed

More information

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident IRPA 13 - Fukushima session A.Mathieu, I.Korsakissok, D.Quélo, J.Groëll, M.Tombette,

More information

Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP5/PARCS v2.7

Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP5/PARCS v2.7 Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.10-18 (011) ARTICLE Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP/PARCS v. Agustín ABARCA,

More information

Isotopes 1. Carbon-12 and Carbon-14 have a different number of. A. Protons B. Neutrons C. Both D. Neither

Isotopes 1. Carbon-12 and Carbon-14 have a different number of. A. Protons B. Neutrons C. Both D. Neither Isotopes 1. Carbon-12 and Carbon-14 have a different number of A. Protons B. Neutrons C. Both D. Neither 2. Which statement is true about an isotope s half life? Radioactive Isotopes A. Isotopes of the

More information

Announcements. Projected Energy Consumption. Fossil fuel issues. By the end of class today

Announcements. Projected Energy Consumption. Fossil fuel issues. By the end of class today Announcements Projected Energy Consumption Ecological Footprint assignment starts this afternoon to be completed by 10 AM Thursday Today: Alternatives to fossil fuels? Nuclear power Energy efficiency Thursday:

More information

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning Paper presented at the seminar Decommissioning of nuclear facilities, Studsvik, Nyköping, Sweden, 14-16 September 2010. Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

More information

AP1000 European 15. Accident Analyses Design Control Document

AP1000 European 15. Accident Analyses Design Control Document 15.7 Radioactive Release from a Subsystem or Component This group of events includes the following: Gas waste management system leak or failure Liquid waste management system leak or failure (atmospheric

More information

Elementary Particle Physics Basic

Elementary Particle Physics Basic Elementary Particle Physics Basic 2016 Fumihiko Suekane Research Center for Neutrino Science Extension:3930 Email: suekane@awa.tohoku.ac.jp 161004 EPPBSuekane 1 * URL of this lecture: http://www.awa.tohoku.ac.jp/~suekane/kougi/16_eppb/

More information

Ordinary Level Physics Long Questions: NUCLEAR PHYSICS

Ordinary Level Physics Long Questions: NUCLEAR PHYSICS Ordinary Level Physics Long Questions: NUCLEAR PHYSICS The Atom 2008 Question 10 [Ordinary Level] Give two properties of an electron. The diagram shows the arrangement used by Rutherford to investigate

More information

Metropolitan Community College COURSE OUTLINE FORM LAB: 3.0

Metropolitan Community College COURSE OUTLINE FORM LAB: 3.0 Metropolitan Community College COURSE OUTLINE FORM Course Title: Nuclear Plant Operation II Course Prefix & No.: LEC: PROT - 2420 3.0 COURSE DESCRIPTION: LAB: 0 Credit Hours: 3.0 This course introduces

More information

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident

Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident Assessment of atmospheric dispersion and radiological consequences for the Fukushima Dai-ichi Nuclear Power Plant accident IRPA 13 - Fukushima session A.Mathieu, I.Korsakissok, D.Quélo, J.Groëll, M.Tombette,

More information

Fission product behaviour in the containment

Fission product behaviour in the containment VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Fission product behaviour in the containment Nuclear Science and Technology Symposium - NST2016 2-3 November, 2016 Marina Congress Center, Helsinki, Finland

More information

Assessment on safety and security for fusion plant

Assessment on safety and security for fusion plant Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN Assessment on safety and security

More information

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS Hernán G. Meier, Martín Brizuela, Alexis R. A. Maître and Felipe Albornoz INVAP S.E. Comandante Luis Piedra Buena 4950, 8400 San Carlos

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

12 Moderator And Moderator System

12 Moderator And Moderator System 12 Moderator And Moderator System 12.1 Introduction Nuclear fuel produces heat by fission. In the fission process, fissile atoms split after absorbing slow neutrons. This releases fast neutrons and generates

More information

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay Name Date _ Class _ Nuclear Chemistry Section.1 Nuclear Radiation In your textbook, read about the terms used to describe nuclear changes. Use each of the terms below just once to complete the passage.

More information

Applied Nuclear Science Educational, Training & Simulation Systems

Applied Nuclear Science Educational, Training & Simulation Systems WWW.NATS-USA.COM Applied Nuclear Science Educational, Training & Simulation Systems North American Technical Services Bridging Technology With The Latest in Radiation Detection Systems & Training Solutions

More information

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion fission

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion fission Nuclear processes: Students will develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive

More information

Evaluating the Core Damage Frequency of a TRIGA Research Reactor Using Risk Assessment Tool Software

Evaluating the Core Damage Frequency of a TRIGA Research Reactor Using Risk Assessment Tool Software Evaluating the Core Damage Frequency of a TRIGA Research Reactor Using Risk Assessment Tool Software M. Nematollahi and Sh. Kamyab Abstract After all preventive and mitigative measures considered in the

More information

Thinking Like a Chemist About Nuclear Change!

Thinking Like a Chemist About Nuclear Change! Thinking Like a Chemist About Nuclear Change! What are we going to learn today? Nuclear Changes REACTIONS ENERGY RELEASED DECAY Poll: Clicker Question There was a nuclear emergency in Japan. The emergency

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3 GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 5: Approved specimen question paper Version 1.3 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

Correlating Radioactive Material to Sea Surface Temperature off the Coast of Japan: The Fukushima Daiichi Nuclear Disaster. Maya R.

Correlating Radioactive Material to Sea Surface Temperature off the Coast of Japan: The Fukushima Daiichi Nuclear Disaster. Maya R. Correlating Radioactive Material to Sea Surface Temperature off the Coast of Japan: The Fukushima Daiichi Nuclear Disaster Maya R. Pincus Department of Geology, University of Puerto Rico-Mayagüez e-mail:

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

Nucleonica Lab. Case Study: Characterisation of an irradiated fuel sample (UOX) from a PWR. Dr. Joseph Magill, Nucleonica GmbH, Karlsruhe

Nucleonica Lab. Case Study: Characterisation of an irradiated fuel sample (UOX) from a PWR. Dr. Joseph Magill, Nucleonica GmbH, Karlsruhe A 1.5 h course to be held at the JRC Ispra at the 5th International Summer School 2013: Operational Issues in Radioactive Waste Management and Nuclear Decommissioning Nucleonica Lab Case Study: Characterisation

More information

Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials

Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials J.V. Ramsdell, Jr. Radiological Science and Engineering Group Pacific Northwest National Laboratory Richland, Washington

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

Thinking Like a Chemist About Nuclear Change!

Thinking Like a Chemist About Nuclear Change! UNIT7-DAY-LaB230 Page UNIT7-DAY-LaB230 Thursday, March 07, 203 8:48 AM Thinking Like a Chemist About Nuclear Change! IMPORTANT INFORMATION Begin Unit 7 LM s assigned on March 9 th HW assigned on March

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

CHAPTER 25: NUCLEAR CHEMISTRY. Mrs. Brayfield

CHAPTER 25: NUCLEAR CHEMISTRY. Mrs. Brayfield CHAPTER 25: NUCLEAR CHEMISTRY Mrs. Brayfield CHEMICAL VS. NUCLEAR When you hear the word nuclear, what do you think of? What makes nuclear reactions different from chemical reactions? The speed of nuclear

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Nuclear Theory - Course 127 FISSION

Nuclear Theory - Course 127 FISSION Nuclear Theory - Course 127 FISSION After having looked at neutron reactions in general, we shall use this lesson to describe the fission reaction and its products in some detail. The Fission Reaction

More information

FINNISH EXPERIMENTS ON LEVEL 3 PRA. VTT Technical Research Centre of Finland Ltd.: P.O. Box 1000, Espoo, Finland, 02044, and

FINNISH EXPERIMENTS ON LEVEL 3 PRA. VTT Technical Research Centre of Finland Ltd.: P.O. Box 1000, Espoo, Finland, 02044, and FINNISH EXPERIMENTS ON LEVEL 3 PRA Tero Tyrväinen 1, Ilkka Karanta 1, Jukka Rossi 1 1 VTT Technical Research Centre of Finland Ltd.: P.O. Box 1000, Espoo, Finland, 02044, and tero.tyrvainen@vtt.fi Level

More information

MECHANICAL ENGINEERING. Five-year M.Sc. studies School of Mechanical Engineering National Technical University of Athens

MECHANICAL ENGINEERING. Five-year M.Sc. studies School of Mechanical Engineering National Technical University of Athens MECHANICAL ENGINEERING Five-year M.Sc. studies School of Mechanical Engineering National Technical University of Athens Athens, September 8, 2010 Semester 1: Mathematics Ia (52h lectures and exercises)

More information

c) O-16 d) Pu An unstable nucleus emits. a) Atoms b) Electricity c) Plasma d) Radiation 3. Many of uranium are radioactive. a) Ions b) Isomers

c) O-16 d) Pu An unstable nucleus emits. a) Atoms b) Electricity c) Plasma d) Radiation 3. Many of uranium are radioactive. a) Ions b) Isomers Physical Science Domain 1 Nuclear Decay Review 1. Which nucleus would be MOST likely to be radioactive? a) C-12 b) Ca-40 c) O-16 d) Pu-241 2. An unstable nucleus emits. a) Atoms b) Electricity 3. Many

More information

Measurement of the environmental radiation dose due to the accident at the Fukushima Daiichi Nuclear Power Plant

Measurement of the environmental radiation dose due to the accident at the Fukushima Daiichi Nuclear Power Plant Measurement of the environmental radiation dose due to the accident at the Fukushima Daiichi Nuclear Power Plant Tomoaki YAMAMOTO 1,2), Kenzo MUROI 1), Sumito MARUYAMA 1), Takahisa KOIKE 1,2), Marina MATSUDA

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion Fission

Nuclear processes: Vocabulary: Radioactive decay Isotope Alpha particle Beta particle Transmutation Strong Nuclear Force Fusion Fission Nuclear processes: Students will develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive

More information

Nuclear Chemistry Unit

Nuclear Chemistry Unit Nuclear Chemistry Unit January 28th HW Due Thurs. 1/30 Read pages 284 291 Define: Radioactivity Nuclear Radiation Alpha Particle Beta Particle Gamma Ray Half-Life Answer: -Questions 1-3 -Write the symbols

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

RADIOACTIVITY & HALF-LIFE Part 3

RADIOACTIVITY & HALF-LIFE Part 3 RADIOACTIVITY & HALF-LIFE Part 3 Half-Life Half-life: is the rate of decay for a radioactive isotope. is the time required for half of an original quantity of an element to decay. is constant and independent

More information

When a body is accelerating, the resultant force acting on it is equal to its

When a body is accelerating, the resultant force acting on it is equal to its When a body is accelerating, the resultant force acting on it is equal to its A. change of momentum. B. rate of change of momentum. C. acceleration per unit of mass. D. rate of change of kinetic energy.

More information

Reduction of Radioactive Waste by Accelerators

Reduction of Radioactive Waste by Accelerators October 9-10, 2014 International Symposium on Present Status and Future Perspective for Reducing Radioactive Waste - Aiming for Zero-Release - Reduction of Radioactive Waste by Accelerators Hiroyuki Oigawa

More information

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie 1 Nuclear Chemistry Radioactivity 2 One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie (1876-1934). She discovered radioactivity or radioactive

More information

Chapter 16 Nuclear Chemistry. An Introduction to Chemistry by Mark Bishop

Chapter 16 Nuclear Chemistry. An Introduction to Chemistry by Mark Bishop Chapter 16 Nuclear Chemistry An Introduction to Chemistry by Mark Bishop Chapter Map Nuclides Nuclide = a particular type of nucleus, characterized by a specific atomic number and nucleon number Nucleon

More information

Integrated Catalyst System for Removing Buildup-Gas in BWR Inert Containments During a Severe Accident

Integrated Catalyst System for Removing Buildup-Gas in BWR Inert Containments During a Severe Accident GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1084 Integrated Catalyst System for Removing Buildup-Gas in BWR Inert Containments During a Severe Accident Kenji Arai *, Kazuo Murakami, Nagayoshi

More information

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 CHEN Wei, HU Zhiyong, YANG Rui Institute of Nuclear Physics and Chemistry, Sichuan, China 1 Preface SPRR-300 is a pool-typed research reactor which uses

More information

Provisional scenario of radioactive waste management for DEMO

Provisional scenario of radioactive waste management for DEMO US-Japan Workshop on Fusion power plants and Related advanced technologies 13-14 March 2014 UCSD, USA Provisional scenario of radioactive waste management for DEMO Youji Someya Japan Atomic Energy Agency,

More information

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons.

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons.

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

An introduction to Neutron Resonance Densitometry (Short Summary)

An introduction to Neutron Resonance Densitometry (Short Summary) An introduction to Neutron Resonance Densitometry (Short Summary) H. Harada 1, M. Koizumi 1, H. Tsuchiya 1, F. Kitatani 1, M. Seya 1 B. Becker 2, J. Heyse 2, S. Kopecky 2, C. Paradela 2, P. Schillebeeckx

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool 13461 Victor Potapov, Alexey Safronov, Oleg Ivanov, Sergey Smirnov, Vyacheslav Stepanov National Research

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

Dr. Ryohji Ohba (Nuclear Safety Research Association )

Dr. Ryohji Ohba (Nuclear Safety Research Association ) Survey of estimation method for amount of radioactive materials emitted from nuclear power station during severe accident Dr. Ryohji Ohba (Nuclear Safety Research Association ) Funded by Ministry of Education

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information