Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES

Size: px
Start display at page:

Download "Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES"

Transcription

1 Silicon Capacitive Accelerometers Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES 1

2 Measuring Acceleration The acceleration measurement is based on Newton s 2nd law: Let the acceleration act on a known proof mass and measure the force acting on it = m * a Usually the spring acts as a force gauge: 1) capacitive measurement of deflection, 2) piezoresistive or 3) piezoelectric measurement of strain The capacitive and piezoresistive principle can be used to measure DC acceleration (inclination), whereas piezoelectric sensors have a high pass feature 2

3 Sensing Element Operation 3

4 ,1 0,01 0,001 0,0001 0,00001 Acceleration Speed 0,01 0, Frequency Response For slow accelerations the deflection of the proof mass in the sensor coordinates is directly proportional to the acceleration If the sensor is underdamped, there is a resonance at some frequency - a phenomenon, which might not always be desired Position Under Over Critic. For frequencies well above the resonance the sensor measures its position (seismometer) In the intermediate frequency range an overdamped sensor measures its AC speed 4

5 Bulk Micro Machining S 2 S (111) (100) Glass Silicon - V + V Bulk micro machining is using anisotropic etching (wet/dry) to form 3d structures into the bulk of a single crystal silicon Wafers are bonded together: anodic and fusion bonding Lithography, oxidation and thin films (electrodes) 5

6 Silicon Capacitive Accelerometers The sensing element consists of three layers of silicon Proof mass and springs in the mid wafer Capacitors one on each side of the proof mass Symmetrical structure Gas damping in the hermetically sealed cavity Glass insulation between the electrodes 6

7 Measuring Direction & Cross-axis Sensitivity Ideally, the directional dependence of the sensitivity off the nominal measuring axis is a cosine function of the angle of deviation from nominal direction: S = S 0 * COS(Phi) The measuring direction may be parallel or perpendicular to the mounting plane Cross-axis sensitivity = maximum sensitivity in the plane perpendicular to the measuring direction relative to the sensitivity in the measuring direction In the silicon capacitive technology the cross-axis sensitivity results from alignment errors in the mounting a Phi 7

8 3-axis Element Four triangular spring-proof mass systems. Three acceleration components can be calculated as linear combinations of mass tilting angles Y axis of rotation Most of the capacitance area is located where most of the gap deformation is formed mass Z X centre of gravity 8

9 Sensor Structure First version dimensions 2.65mm x 2.65mm x 1.2mm. Five layer structure familiar from other VTI sensors. Silicon block electrical feedthroughs structural wafer glass grid glass grid Silicon block capping wafers contact pads 9

10 Prototype Results Capacitance [pf] axis accelerometer rotated in 1g field Rotation angle [deg] E2 E1 E6 E8 E7 E5 E4 E3 10

11 Measuring Inclination The accelerometer can be used as an inclinometer It measures the combination of the force of earth s gravity and acceleration: Signal = a + 1g * SIN(ϕ) The sensing element is strongly over-damped (f -3dB 2 28Hz) to reduce the influence of acceleration Because of angular mounting errors (component of crossaxis sensitivity in the plane of inclination) there is an offset in the sinus function sin(ϕ + ϕ 0 ) +1g <=> 90 G 0g <=> 0 11

12 Measuring Position The inclinometer can be used to measure position: L L * SIN(ϕ) ϕ L ϕ L * COS(ϕ) L1 L2 ϕ1 ϕ2 L2 * COS(ϕ2) L1 * SIN(ϕ1) L1 * COS(ϕ1) + L2 * SIN(ϕ2) 12

13 Calibration Inclinometers and low-g accelerometers up to a full range of about 3g can easily be calibrated in earth s gravitational field Horizontal accelerometer and inclinometer: Normal position = Zero Position = 0g, +90 turned = +1g + 1g * SIN(ϕ 0 ), - 90 turned = -1g + 1g * SIN(ϕ 0 ) => Sensitivity = [(+90 turned) - (-90 turned)]/2; if the inclinometer full range is less than ±90 the full scale angle can be used as calibration point for Sensitivity Vertical accelerometer: Normal position = Zero Position = +1g, +90 turned = +0g + 1g * SIN(ϕ 0 ), - 90 turned = - 0g - 1g * SIN(ϕ 0 ) => Sensitivity = Normal position - [(+90 turned) + (-90 turned)]/2 13

14 Why This Technology? Single crystal silicon Capacitive sensing Hermetically sealed structures Symmetrical structures Customised sensors Bulk micro machining Proof Mass and Springs in VTI s Low-g Sensor 14

15 Single Crystal Silicon Ideal elastic material: no plastic deformation, tough up to g 15

16 Capacitive Sensor Direct measurement of deflection Based on the variation of a gap between two planar surfaces The capacitance or charge storage capacity of a pair of plates only depends on gap width d and plate area A: C = ε 0 * A/d On one side a force (acceleration) decreases the gap and on the other side increases it: C 1 = C 01 + C 11 /(1 - k 1 * a), C 2 = C 02 + C 12 /(1 + k 2 * a) Assuming symmetry and small stray capacitance (or (k * a) 2 << 1) one gets: (C 1 - C 2 )/(C 1 + C 2 ) a 16

17 Hermetically Sealed Sensor Reduced packaging requirements Reliability: no particles or chemicals can get into the element 17

18 Symmetrical Structures Improved accelerometer zero stability, linearity and cross-axis sensitivity Temperature dependence well below 1 mg/ºc Non-linearity typically below 1% Cross-axis sensitivity typically less than 3% 18

19 Customised Sensors Application specific sensitivity and frequency response Flexible 2-chip solution SCA600 19

20 Surface Micro Machined Accelerometers Dominating technology for high g-ranges 20

21 Two Accelerometer Technologies Ultimate limit: F= m a = k x Adhesion and electrostatic forces start to dominate at small F Surface and bulk micro machining approach each other 21

22 Bulk Micro Machining Large proof mass, large capacitance enable high performance low-g sensing Zero stability and noise performance (high resolution) Noise spectrum (1-100 Hz) Noise performance comparison Noise (u g /sqrt(hz)) Noise (ADXL202) Noise (HML288) Noise(SCA61T) 1 0,0 20,0 40,0 60,0 80,0 100,0 120,0 Frequency (Hz) 22

23 Why Two Accelerometer Technologies? Surface + IC-compatible + Lowest cost + <1mm thickness High noise Poor stability Sticking will limit scalability Wide band response Lack of flexibility Bulk + Low noise + Good stability + Scalable to low g-ranges + Flexible to customization + High damping available Higher cost Bulky size and shape 23

24 Capacitive Sensing Circuitry Minimise the effect of stray impedance (capacitance): use virtual ground and fixed voltages Minimise electrostatic forces: charge balance Charge balance principle: Sensing element capacitors C 1 and C 2 are charged with amplitude modulated square waves of opposite signs; V 1 = V ref + V 0 and V 2 = -(V ref - V 0 ) in such a way that the net flow of charge Q = 0. Now C 1 * (V ref + V 0 ) = C 2 * (V ref - V 0 ) and V 0 = (C 1 - C 2 )/(C 1 + C 2 ) * V ref = linear measure of acceleration Net electrostatic force: F = F 1 - F 2 (V 1 /d 1 ) 2 - (V 2 /d 2 ) 2 Q Q 2 2 = 0 V 1 C 1 C 2 Q A V 2 24

25 Packaging Lowest level: Sensor as SMD First level: Calibrated SMD component 10 mm 5 mm Second level: Stand-alone accelerometer 25

26 Product Concepts Sensing Elements Sensor Components SCA610 / SCA600 Stand alone accelerometers + Electronics, ASICs SCA320 (z-axis) 26

27 VTI Standard Products Available ranges (g) SCA61T/100T ±0.5 ±1.0 SCA610 ±0.5 ±1.0 ±1.5 ±1.7 SCA600 ±1.0 ±1.5 ±1.7 ±3.0 SCA620/320 ±1.5 ±3.0 ±12.0 SCA111 ±1.2 ±2.0 SCA110 ±1.2 27

28 Applications: ABS and TCS ABS and TCS keeps slip at max.10% level for maneuverability In All Wheel Drive (AWD) vehicles all wheels may slip (no speed reference) Speed or deceleration/acceleration information from inertial sensor, longitudinal accelerometer (v = 0 t a dt + v 0 ) 28

29 Applications: VDC or ESP ABS and TCS are not enough in a curve ESP corrects for under- and over-steering Yaw rate (Ω) and centrifugal acceleration (a T ) from an angular rate sensor and a lateral accelerometer are compared to those calculated from wheel speed and steering wheel angle (Ω = v/r, a T = v 2 /R) 29

30 g Applications: ECS g g g Vertical accelerometers in the vehicle corners measure body acceleration Shock absorbers are adjusted in real-time or in average for safe and smooth ride In advanced systems wheel force is measured with wheel hub accelerometers and vehicle inclination with inclinometers In vehicles without steering wheel angle sensor a lateral accelerometer measures centrifugal force 30

31 Other Applications Vehicle Tilt Monitoring and Control Digging Depth and Slope Control Train Lateral Force and Vertical Acceleration Monitoring Seismic Monitoring Platform Leveling Inclinometer Instruments Marine Applications Inertial Navigation Medical: Patient Monitoring, Cardiac Pacemakers Sports and Fitness: Motion, position, altitude, energy,... 31

32 Applications: Excavator Inclinometer: Vout = Vdd/2 * ( 1+ k * SIN(Phi)) Digging Position: 1) Z = L * SIN(Phi) & X = L * COS(Phi) [Normally horizontal arm of length L] 2) X = L * SIN(Phi) & Z = L * COS(Phi) [Normally vertical arm of length L] 32

33 Other Vehicle Applications Motor Grader with Inclinometers (a = 1g * SIN(Phi)) High Speed Train Inclination and Suspension (a T = v 2 /R * COS(Phi) = 1g * SIN(Phi)). 33

34 Other MEMS Sensors: Absolute Pressure Sensor 34

35 Pressure Sensor Sensing Circuitry Voltage based interface V out = V(S2) - [V(S1) + V(S3)]/2 = - C 0 /C(P) * V in C(P) = C 1 /(1 P/P 0 ) + C 2 => P = P 0 * {1 C 1 /C * [1 + (C 2 /C) + (C 2 /C) 2 + (C 2 /C) 3 + ]} Sampling before - during - and after the pulse 3-point calibration gives excellent accuracy C(P) S1 S2 S3 V in C 0 V out -A 35

36 Pressure Sensor Sensing Circuitry Time based interface N out = F out * T = T * V DD /V H /4R * 1/C(P) = k/c(p) P = P 0 * {1 C 1 /C * [1 + (C 2 /C) + (C 2 /C) 2 + (C 2 /C) 3 + ]} One can add one or two references by switching in constant capacitors instead of C(P) The oscillator can be switched off between measurements to reduce power C(P) R -A F out 36

37 Other MEMS Sensors: Angular Rate Sensor Based on the same process as the accelerometer 37

38 Thank You! 38

HSG-IMIT Application AG

HSG-IMIT Application AG B4.1 Acceleration Sensors IP-Blocks for MEMS Foundry Surface Micromachining Process R. Knechtel, S. Dempwolf S. Hering X-FAB Semiconductor Foundries AG Haarberstraße 67 99097 Erfurt / Germany T. Link J.

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

Variable Capacitance Accelerometers: Design and Applications

Variable Capacitance Accelerometers: Design and Applications Variable Capacitance Accelerometers: Design and Applications Micromachined silicon variable-capacitance accelerometers are designed for easy manufacture and demanding applications. Tom Connolly, Endevco

More information

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B PRODUCT FAMILY SPEFICIFATION SCB10H Series Pressure Elements SCB10H Series Pressure Elements Doc. No. 82 1250 00 B Table of Contents 1 General Description... 3 1.1 Introduction... 3 1.2 General Description...

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

SENSOR DEVICES MECHANICAL SENSORS

SENSOR DEVICES MECHANICAL SENSORS SENSOR DEVICES MECHANICAL SENSORS OUTLINE 4 Mechanical Sensors Introduction General mechanical properties Piezoresistivity Piezoresistive sensors Capacitive sensors Applications INTRODUCTION MECHANICAL

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS P. MIAO, P. D. MITCHESON, A. S. HOLMES, E. M. YEATMAN, T. C. GREEN AND B. H. STARK Department of Electrical and Electronic Engineering, Imperial

More information

Design of a MEMS Capacitive Comb-drive Accelerometer

Design of a MEMS Capacitive Comb-drive Accelerometer Design of a MEMS Capacitive Comb-drive Accelerometer Tolga Kaya* 1, Behrouz Shiari 2, Kevin Petsch 1 and David Yates 2 1 Central Michigan University, 2 University of Michigan * kaya2t@cmich.edu Abstract:

More information

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by Foundations of MEMS Second Edition Chang Liu McCormick School of Engineering and Applied Science Northwestern University International Edition Contributions by Vaishali B. Mungurwadi B. V. Bhoomaraddi

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

Accelerometer Theory & Design

Accelerometer Theory & Design 11 Chapter 2 Accelerometer Theory & Design 2.1 Introduction An accelerometer is a sensor that measures the physical acceleration experienced by an object due to inertial forces or due to mechanical excitation.

More information

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS JYH-CHENG YU and FU-HSIN LAI Department of Mechanical Engineering National Taiwan University of Science and Technology

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters Issued: Wednesday, Nov. 23, 2011. PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 8, 2011, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Inertial Measurement Unit Dr. Kostas Alexis (CSE) Where am I? What is my environment? Robots use multiple sensors to understand where they are and how their environment

More information

DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS

DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 008 DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER FOR SPACE APPLICATIONS Thampi Paul 1, Jaspreet Singh,

More information

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool

Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Design and Simulation of Comb Drive Capacitive Accelerometer by Using MEMS Intellisuite Design Tool Gireesh K C 1, Harisha M 2, Karthick Raj M 3, Karthikkumar M 4, Thenmoli M 5 UG Students, Department

More information

b. The displacement of the mass due to a constant acceleration a is x=

b. The displacement of the mass due to a constant acceleration a is x= EE147/247A Final, Fall 2013 Page 1 /35 2 /55 NO CALCULATORS, CELL PHONES, or other electronics allowed. Show your work, and put final answers in the boxes provided. Use proper units in all answers. 1.

More information

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding.

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding. UNIT 4 DISPLACEMENT MEASURMENT Electrical comparator Working principle of Electrical comparators: These instruments are based on the theory of Wheatstone A.C. Bridge. When the bridge is electrically balanced,

More information

Arrow Brasil. Rodrigo Rodrigues Field Application Engineer F: Date: 30/01/2014 TM 2

Arrow Brasil. Rodrigo Rodrigues Field Application Engineer F: Date: 30/01/2014 TM 2 TM Arrow Brasil Rodrigo Rodrigues Field Application Engineer Rodrigo.rodrigues@arrowbrasil.com.br F:+55 11 3613-9331 Date: 30/01/2014 TM 2 State-of-the-art review Introduction How a Gyro Works Performance

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

Basic Principle of Strain Gauge Accelerometer. Description of Strain Gauge Accelerometer

Basic Principle of Strain Gauge Accelerometer. Description of Strain Gauge Accelerometer Basic Principle of Strain Gauge Accelerometer When a cantilever beam attached with a mass at its free end is subjected to vibration, vibrational displacement of the mass takes place. Depending on the displacement

More information

Fabrication and performance of d 33 -mode lead-zirconate-titanate (PZT) MEMS accelerometers

Fabrication and performance of d 33 -mode lead-zirconate-titanate (PZT) MEMS accelerometers Fabrication and performance of d 33 -mode lead-zirconate-titanate (PZT) MEMS accelerometers H. G. Yu, R. Wolf*,K. Deng +,L.Zou +, S. Tadigadapa and S. Trolier-McKinstry* Department of Electrical Engineering,

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Module I Module I: traditional test instrumentation and acquisition systems Prof. Ramat, Stefano Transducers A

More information

Simple piezoresistive accelerometer

Simple piezoresistive accelerometer Simple piezoresistive pressure sensor Simple piezoresistive accelerometer Simple capacitive accelerometer Cap wafer C(x)=C(x(a)) Cap wafer may be micromachined silicon, pyrex, Serves as over-range protection,

More information

Vibration Measurements Vibration Instrumentation. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 11 Fall 2011

Vibration Measurements Vibration Instrumentation. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 11 Fall 2011 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 11 Fall 2011 Overview of Vibration Measurements Follow Palm, Sect. pp 425-430 and 559-562. Additional references: Holman, J.P.,

More information

Objectives. Fundamentals of Dynamics: Module 9 : Robot Dynamics & controls. Lecture 31 : Robot dynamics equation (LE & NE methods) and examples

Objectives. Fundamentals of Dynamics: Module 9 : Robot Dynamics & controls. Lecture 31 : Robot dynamics equation (LE & NE methods) and examples \ Module 9 : Robot Dynamics & controls Lecture 31 : Robot dynamics equation (LE & NE methods) and examples Objectives In this course you will learn the following Fundamentals of Dynamics Coriolis component

More information

Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University of Bridgeport, Bridgeport, CT /08/2015

Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University of Bridgeport, Bridgeport, CT /08/2015 Design and Analysis of Three DOF Piezoelectric Vibration Energy Harvester Ravi Teja Purra Reddy, Xingguo Xiong, Junling Hu Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University

More information

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE TE 75R RESEARCH RUBBER FRICTION TEST MACHINE Background: The Research Rubber Friction Test Machine offers the ability to investigate fully the frictional behaviour of rubbery materials both in dry and

More information

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Arti Arora 1, Himanshu Monga 2, Anil Arora 3 Baddi University of Emerging Science

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: Midterm Preparation Dr. Kostas Alexis (CSE) Areas of Focus Coordinate system transformations (CST) MAV Dynamics (MAVD) Navigation Sensors (NS) State Estimation

More information

Kurukshetra University INDIA

Kurukshetra University INDIA American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Mechanical Energy Domain Physics Surface acoustic waves Silicon microresonators Variable resistance sensors Piezoelectric sensors Capacitive

More information

ᓸᯏ㔚ㆇ ᗵ ℂ ᙥ ޕ ᑞ ᇷ ݾ ᔭ ஃ რऄתᖄ ៰ⷐ ᓸᯏ㔚ᛛⴚ ข ᓸᯏ㔚ㆇ ᗵ ℂ ᧂ น ਯ ᣂᙥ inemo ᘠᕈ㊂

ᓸᯏ㔚ㆇ ᗵ ℂ ᙥ ޕ ᑞ ᇷ ݾ ᔭ ஃ რऄתᖄ ៰ⷐ ᓸᯏ㔚ᛛⴚ ข ᓸᯏ㔚ㆇ ᗵ ℂ ᧂ น ਯ ᣂᙥ inemo ᘠᕈ㊂ inemo (MEMS)? MEMS = Micro-Electro-Mechanical System, : / ST (THELMA: THick Epitaxial Layer for Microactuators and Accelerometers) THELMA ST ST ST Source: ifixit teardown report inemo 9 : A+M+G [m/sec²]

More information

Data Sheet CAPACITIVE ABSOLUTE 1.2 BAR SCB10H-B012FB PRESSURE SENSOR ELEMENT. Features. Applications. General Description

Data Sheet CAPACITIVE ABSOLUTE 1.2 BAR SCB10H-B012FB PRESSURE SENSOR ELEMENT. Features. Applications. General Description Data Sheet CAPACITIVE ABSOLUTE 1.2 BAR SCB10H-B012FB PRESSURE SENSOR ELEMENT Features Small size 1.4 x 1.4 x 0.85 mm (w x l x h) High isolation resistance and low passive capacitance enables very low power

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

Final EE290G Intro to MEMS 12/16/98

Final EE290G Intro to MEMS 12/16/98 Final EE290G Intro to MEMS 12/16/98 Name SID 1. (20 points) Using poly1 in the MCNC/MUMPS process: Fx Fy L b L a x y cxx = c yx c xy c yy Fx F y (1) (a) Calculate c xy, the constant relating the force

More information

7. CONCLUSIONS & SCOPE

7. CONCLUSIONS & SCOPE 7. CONCLUSIONS & SCOPE ENERGY harvesting is a critical technology for the expansion of self-governing, self-powered electronic devices. As the energy requirements of low-power electronics reduction, the

More information

Electrostatic Microgenerators

Electrostatic Microgenerators Electrostatic Microgenerators P.D. Mitcheson, T. Sterken, C. He, M. Kiziroglou, E. M. Yeatman and R. Puers Executive Summary Just as the electromagnetic force can be used to generate electrical power,

More information

Midterm 2 PROBLEM POINTS MAX

Midterm 2 PROBLEM POINTS MAX Midterm 2 PROBLEM POINTS MAX 1 30 2 24 3 15 4 45 5 36 1 Personally, I liked the University; they gave us money and facilities, we didn't have to produce anything. You've never been out of college. You

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

INF5490 RF MEMS. LN06: RF MEMS switches, II. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN06: RF MEMS switches, II. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN06: RF MEMS switches, II Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Design of RF MEMS switches Electromechanical design, II RF design Examples of implementations

More information

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation Chapter 8. Model of the Accelerometer 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation 8.3 Sensor System Simulation In order to predict the behavior of the mechanical sensor in combination

More information

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal Cryogenic Instrumentation I 1. Thermometry 2. anges of Application 3. Constant Volume 4. Thermocouples 5. Time esponse Data 6. 4 Terminal esistance Measurement OUTLINE 8. Pt (pure metal) 9. Typical esistive

More information

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level 3 Basic Phenomenon in Effect in Sensor Operation Sensors Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of

More information

PHYSICS. Unit 3 Written examination Trial Examination SOLUTIONS

PHYSICS. Unit 3 Written examination Trial Examination SOLUTIONS PHYSICS Unit 3 Written examination 1 2012 Trial Examination SECTION A Core Motion in one and two dimensions Question 1 SOLUTIONS Answer: 120 N Figure 1 shows that at t = 5 sec, the cart is travelling with

More information

Simulation based Analysis of Capacitive Pressure Sensor with COMSOL Multiphysics

Simulation based Analysis of Capacitive Pressure Sensor with COMSOL Multiphysics Simulation based Analysis of Capacitive Pressure Sensor with COMSOL Multiphysics Nisheka Anadkat MTech- VLSI Design, Hindustan University, Chennai, India Dr. M J S Rangachar Dean Electrical Sciences, Hindustan

More information

APPLICATIONS OF VIBRATION TRANSDUCERS

APPLICATIONS OF VIBRATION TRANSDUCERS APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and mid-size pumps. These sensors

More information

Design and Analysis of dual Axis MEMS Capacitive Accelerometer

Design and Analysis of dual Axis MEMS Capacitive Accelerometer International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 779-790 Research India Publications http://www.ripublication.com Design and Analysis of dual Axis

More information

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.)

19. Capacitive Accelerometers : A Case Study. 19. Capacitive Accelerometers : A Case Study. Introduction. Introduction (ctnd.) 19 Capacitive Accelerometers : A Case Study 19 Capacitive Accelerometers : A Case Study Fundamentals of Quasi-Static Accelerometers Position Measurement with Capacitance Capacitive Accelerometer Case Study

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE CHAPTER-8 DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE 8.1 Introduction The behavior of materials is different when they are subjected to dynamic loading [9]. The testing of materials under dynamic conditions

More information

Using Two Tri-Axis Accelerometers for Rotational Measurements

Using Two Tri-Axis Accelerometers for Rotational Measurements Using Two Tri-Axis Accelerometers for Rotational Measurements Introduction In man applications, customers would like to measure rotational motions (angular velocit, angular acceleration) in addition to

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

Microstructure cantilever beam for current measurement

Microstructure cantilever beam for current measurement 264 South African Journal of Science 105 July/August 2009 Research Articles Microstructure cantilever beam for current measurement HAB Mustafa and MTE Khan* Most microelectromechanical systems (MEMS) sensors

More information

Long-base Hydrostatic Incline Meter. gravitational antenna

Long-base Hydrostatic Incline Meter. gravitational antenna Long-base Hydrostatic Incline Meter. gravitational antenna There are many reasons resulting in relative vertical displacements of end-capping and central mirrors of gravitational antenna. Firstly is passing

More information

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Alexey I. Borovkov Eugeny V. Pereyaslavets Igor A. Artamonov Computational Mechanics Laboratory, St.Petersburg State

More information

Modeling and Design of MEMS Accelerometer to detect vibrations on chest wall

Modeling and Design of MEMS Accelerometer to detect vibrations on chest wall Modeling and Design of MEMS Accelerometer to detect vibrations on chest wall P. Georgia Chris Selwyna 1, J.Samson Isaac 2 1 M.Tech Biomedical Instrumentation, Department of EIE, Karunya University, Coimbatore

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Microsensors. G.K. Ananthasuresh Professor, Mechanical Engineering Indian Institute of Science Bangalore, , India

Microsensors. G.K. Ananthasuresh Professor, Mechanical Engineering Indian Institute of Science Bangalore, , India Microsensors G.K. Ananthasuresh Professor, Mechanical Engineering Indian Institute of Science Bangalore, 560012, India What are sensors? Sensors measure something, which we call a measurand. There are

More information

Flavien Heu+er Sales & Applica+ons Engineer EFCC 2015

Flavien Heu+er Sales & Applica+ons Engineer EFCC 2015 Oscillator design guidelines for implantable medical device applications Flavien Heu+er Sales & Applica+ons Engineer 1 EFCC 2015 Agenda o Introduc/on o Key parameters in specifying quartz crystals o Suggested

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

ME 515 Mechatronics. Overview of Computer based Control System

ME 515 Mechatronics. Overview of Computer based Control System ME 515 Mechatronics Introduction to Sensors I Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk Overview of Computer based Control

More information

Heterogeneous 3D integration considered by the perspective of reliability studied in the European projects e-brains and ESiP

Heterogeneous 3D integration considered by the perspective of reliability studied in the European projects e-brains and ESiP Workshop Heterogeneous 3D integration considered by the perspective of reliability studied in the European projects and ESiP Best-Reliable Ambient Intelligent Nanosensor Systems by Heterogeneous Integration

More information

Ferroelectrics investigation

Ferroelectrics investigation Ferroelectrics investigation. Introduction A dielectric is understood as a material where the electric field induces an electric momentum. Let s consider a vacuum capacitor made of two planar metallic

More information

High performance DC link capacitor/bus sourcing dual Infineon HybridPACK TM Drive inverters for EV applications

High performance DC link capacitor/bus sourcing dual Infineon HybridPACK TM Drive inverters for EV applications High performance DC link capacitor/bus sourcing dual Infineon HybridPACK TM Drive inverters for EV applications Michael A. Brubaker, SBE Inc., USA, MichaelB@sbelectronics.com Terry A. Hosking, SBE Inc.,

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

Active elastomer components based on dielectric elastomers

Active elastomer components based on dielectric elastomers Gummi Fasern Kunststoffe, 68, No. 6, 2015, pp. 412 415 Active elastomer components based on dielectric elastomers W. Kaal and S. Herold Fraunhofer Institute for Structural Durability and System Reliability

More information

Glossary Innovative Measurement Solutions

Glossary Innovative Measurement Solutions Glossary GLOSSARY OF TERMS FOR TRANSDUCERS, LOAD CELLS AND WEIGH MODULES This purpose of this document is to provide a comprehensive, alphabetical list of terms and definitions commonly employed in the

More information

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation Chapter 8. Model of the Accelerometer 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation 8.2.1 Basic equations 8.2.2 Resonant frequency 8.2.3 Squeeze-film damping 8.2 The dynamic model

More information

Force and Displacement Measurement

Force and Displacement Measurement Force and Displacement Measurement Prof. R.G. Longoria Updated Fall 20 Simple ways to measure a force http://scienceblogs.com/dotphysics/200/02/diy_force_probe.php Example: Key Force/Deflection measure

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 12: Mechanics

More information

Characterizing, Simulating, and Eliminating Vibration Induced Counts in Measurement While Drilling Gamma Ray Detectors. authors

Characterizing, Simulating, and Eliminating Vibration Induced Counts in Measurement While Drilling Gamma Ray Detectors. authors Abstract: Characterizing, Simulating, and Eliminating Vibration Induced Counts in Measurement While Drilling Gamma Ray Detectors authors K. Kimmich and C. Grodsinsky 1 A Measurement While Drilling (MWD)

More information

I. MEASUREMENT OF TEMPERATURE

I. MEASUREMENT OF TEMPERATURE I. MEASUREMENT OF TEMPERATURE Most frequent measurement and control Direct contact: thermometer, Indirect contact: pyrometer (detect generated heat or sensing optical properties) 1. Definition of temperature

More information

Sensors & Actuators. Velocity and acceleration Sensors & Actuators - H.Sarmento

Sensors & Actuators. Velocity and acceleration Sensors & Actuators - H.Sarmento Sensors & Actuators Velocity and acceleration 014-015 Sensors & Actuators - H.Sarmento Outline Velocity sensors Gyroscopes Accelerometers 014-015 Sensors & Actuators - H.Sarmento 1 Velocity and acceleration

More information

Sensors for mobile robots

Sensors for mobile robots ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 2 Sensors for mobile robots Sensors are used to perceive, analyze and understand the environment

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information

Tunable MEMS Capacitor for RF Applications

Tunable MEMS Capacitor for RF Applications Tunable MEMS Capacitor for RF Applications Shriram H S *1, Tushar Nimje 1, Dhruv Vakharia 1 1 BITS Pilani, Rajasthan, India *1167, 1 st Main, 2 nd Block, BEL Layout, Vidyaranyapura, Bangalore 560097; email:

More information

3-Axis Accelerometer (Order Code 3D-BTA)

3-Axis Accelerometer (Order Code 3D-BTA) 3-Axis Accelerometer (Order Code 3D-BTA) The 3-Axis Accelerometer consists of three 5 to +5 g accelerometers mounted in one small block. Using the appropriate data-collection hardware and software, you

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

Freescale Semiconductor

Freescale Semiconductor Freescale Semiconductor Pressure Rev 14, 10/2008 + 10 kpa Uncompensated Silicon Pressure The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output, directly proportional

More information

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Modelling

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

General Physics Contest 2010

General Physics Contest 2010 General Physics Contest 2010 May 22, 2010 (9:10-10:50), Total 6 pages Part I : Choice Questions (20 single-choice questions of 3% each. Use 2B pencil to mark the answer.) 1. A particle moving along the

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 11: Force, Strain, and Tactile Sensors Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty

More information

e jωt = cos(ωt) + jsin(ωt),

e jωt = cos(ωt) + jsin(ωt), This chapter introduces you to the most useful mechanical oscillator model, a mass-spring system with a single degree of freedom. Basic understanding of this system is the gateway to the understanding

More information

Technical Report PZT-Silicon Cantilever Benders

Technical Report PZT-Silicon Cantilever Benders Radiant Technologies, Inc. 2021 Girard SE Albuquerque, NM 876 Tel: 505-842-8007 Fax: 505-842-0366 Technical Report PZT-Silicon Cantilever Benders Subject: Displacement Measurements of Silicon Cantilevers

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

v A v B V + V v S v A v B K = v S /(V + V K T = N/v S

v A v B V + V v S v A v B K = v S /(V + V K T = N/v S vs S v A v B V + V v S v A v B K = v S /(V + V K v S N T = N/v S P affiche = P S K T H u etal (S) = 50 µv/kp a P =2 R1 K u etal (K) = 0, 1 SEMICONDUCTOR TECHNICAL DATA Order this document by MPX2200/D

More information

(Refer Slide Time: 1: 19)

(Refer Slide Time: 1: 19) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 46 Force Measurement So this will be lecture

More information

Data Sheet CAPACITIVE ABSOLUTE 1.2 BAR SCB10H-B012FB PRESSURE SENSOR ELEMENT. Features. Applications. General Description

Data Sheet CAPACITIVE ABSOLUTE 1.2 BAR SCB10H-B012FB PRESSURE SENSOR ELEMENT. Features. Applications. General Description Data Sheet CAPACITIVE ABSOLUTE.2 BAR SCB0H-B02FB PRESSURE SENSOR ELEMENT Features Small size.4 x.4 x 0.85 mm (w x l x h) High isolation resistance and low passive capacitance enables very low power consumption,

More information