Estimating constants in generalised Wente-type estimates Asama Qureshi Supervised by Dr. Yann Bernard, Dr. Ting-Ying Chang Monash University

Size: px
Start display at page:

Download "Estimating constants in generalised Wente-type estimates Asama Qureshi Supervised by Dr. Yann Bernard, Dr. Ting-Ying Chang Monash University"

Transcription

1 Estimating constants in genealised Wente-tye estimates Asama Queshi Suevised by D Yann Benad D Ting-Ying Chang Monash Univesity Vacation Reseach Scholashis ae funded jointly by the Deatment of Education and Taining and the Austalian Mathematical Sciences Institute

2 Intoduction Let Ω be a bounded simly connected domain in R with a smooth bounday Ω Given two functions a and b such that a L (Ω) and b L (Ω) then let φ be the uniue solution in L (Ω) to the Diichlet oblem φ a b a b x y y x φ in Ω () on Ω whee Ω is aameteised by x and y and subscit x and y denote the atial deivatives of a and b The Wente (969) ineuality states that thee exists a constant C (Ω) such that kφkl (Ω) +k φkl (Ω) C (Ω)k akl (Ω) k bkl (Ω) () In this ae we examine the following genealisation of the Wente ineuality on D whee D a disk of adius in R centeed at the oigin kφkl (D ) +k φkl (D ) C ( D )k akl (D ) k bkl (D ) with + (3) < < We find the best constant C ( D ) in the following esult Theoem - φ satisfies the genealised Wente ineualities: kφkl (D ) C ( D )k akl (D ) k bkl (D ) and (4) k φkl (D ) C ( D )k akl (D ) k bkl (D ) fo two otimal constants C ( D ) and C ( D ) satisfying: K C ( D ) C ( D ) K whee K sin(π/) ( )/ < < This is a significant esult because () initially only tells us that φ is in L but this does not imly that φ L o that φ L The div-cul stuctue of () with the esence of the negative sign intoduces a comensation henomenon allowing us to make the estimates in () Baaket (996) and He lein () found the otimal constant C (Ω) + indeendently of the domain Ω That is Baaket found this constant fo simly connected Ω and He lein found this fo any Ω

3 Poof of esults Hee we will ove the esults stated in (4) Fist we find C ( D ) and then we will find C ( D ) Theoem - Let φ be the solution to the Diichlet oblem φ φ ax by ay bx in D on D (5) Then it holds: kφkl (D ) C ( D )k akl (D ) k bkl (D ) with C ( D ) K whee K sin(π/) ( )/ < < Poof By Geen s Reesentation Theoem we have the following exession fo φ E(x x ) φ φ(x ) φ E(x x ) ds + E(x x ) φdx v v D D fo fixed x D E(x x ) log x (6) x and v is the exteio nomal vecto to D Choosing x in (6) gives us φ() E(x) φdx (7) B Lemma - Pefoming a change of vaiables on (5) into ola coodinates gives φ whee x + y and θ Actan y x (a bθ aθ b ) (8) Poof We stat out with (5) and use the chain ule ax by ay bx (a x + aθ θx )(b y + bθ θy ) (a y + aθ θy )(b x + bθ θx ) a bθ x θy + aθ b y θx a bθ y θx aθ b x θy a bθ (x θy y θx ) aθ b (x θy y θx ) (a bθ aθ b )(x θy y θx ) (9)

4 Noting that x θy y θx x x +y + y x x y yx x +y + y x x 3 y 3 and substituting into (9) the oof is comlete Substituting (8) back into (7) we have φ() log (a bθ aθ b ) dθd log (a bθ aθ b ) dθd log ((abθ ) (ab )θ ) dθd log (abθ ) dθd Using the oduct ule φ() φ() Since ab () ab () φ() then using integation by ats abθ dθd () Now obseve that (a a)bθ dθ abθ dθ whee a() a( σ)dσ Hence (a a)bθ dθ abθ dθ ka akl () kbθ kl () () whee the last ineuality is tue by Ho lde s ineuality By the Poincae ineuality we have that ka akl () kbθ kl () K kaθ kl () kbθ kl () whee K sin(π/) ( )/ () see Aendix A 3

5 Now substituting () into () we have that K K φ() d kaθ kl kbθ kl kaθ kl kbθ kl d (3) With anothe alication of Ho lde s ineuality Note that K φ() K and kaθ kl! d kbθ kl aθ dθ R R d! d bθ dθ d (4) so we have K φ() aθ dθd bθ dθd (5) Now obseve that aθ dθd aθ aθ! dθd + a a dθd dθd!! Thus: aθ dθd k akl (D ) (6) Similaly bθ dθd k bkl (D ) (7) Substituting (6) and (7) back into (5) we have φ() K k akl (D ) k bkl (D ) (8) This gives us the ue bound of φ at the cente of the disk To find the ue bound fo φ ove the whole disk we intoduce the confomal tansfomation T : D D given by T (z) z + z + z z with fixed z D (9) 4

6 T is a smooth ma that mas the bounday of D to itself and T () z Let a a T b b T φe φ T Lemma - Euation (5) is confomally invaiant unde T namely: φe a x b y a y b x φe () Poof Let (u v) T (x y) e y) φ(u v) φ(u v)xx φ(u v)yy φ(x (φu ux + φv vx )x (φu uy + φv vy )y (φux ux + φu uxx ) (φvx vx + φv vxx ) (φuy uy + φu uyy ) (φvy vy + φv vyy ) Since T is a confomal tansfomation then u and v satisfy the Cauchy-Riemann euations (ie ux vy and uy vx ) giving us φe (ux (φux + φvy ) + uy (φuy φvx ) + φu (uxx + uyy ) + φv (vxx + vyy )) Futhemoe since T is confomal u and v ae hamonic functions (ie uxx + uyy and vxx + vyy ) so φe (ux (φux + φvy ) + uy (φuy φvx )) (ux (φuu ux + φuv vx + φuv uy + φvv vy ) + uy (φuu uy + φuv vy φuv ux φvv vx )) (φuu ux + φvv ux vy + φuu uy φvv uy vx ) (φuu + φvv )(ux + uy ) φ(ux + uy ) () Now evaluating the ight hand side of () a x b y a y b x (au ux + av vx )(bu uy + bv vy ) (au uy + av vy )(bu ux + bv vx ) au ux bv vy + av vx bu uy au uy bv vx av vy bu ux (au bv av bu )(ux vy uy vx ) (au bv av bu )(ux + uy ) () 5

7 Combining () and () we see that e y) a x b y a y b x φ(x φ(u v)(ux + uy ) (au bv av bu )(ux + uy ) Howeve ux + uy and since T 6 then ux + uy > thus we have φ(u v) au bv av bu Using Geen s Reesentation Theoem on () similaly as in (7) we get e a b θ dθ d φ() (3) T induces a diffeomohism of D We aamateize D T ( D ) by θ [ ] Thee exists a constant γ : Actan(T ()) deending only on z such that a b θ dθ +γ abθ dθ (4) γ The Poincae ineuality is invaiant unde tanslation (mutatis mutandis Aendix A) +γ abθ dθ K kaθ kl () kbθ kl () (5) γ hence a b θ dθ K kaθ kl () kbθ kl () Hence as in (8) e φ() K k akl (D ) k bkl (D ) φ(z ) K k akl (D ) k bkl (D ) Thus: As this holds fo all z in D with the same constant K we find kφkl (D ) K k akl (D ) k bkl (D ) (6) Thus C ( D ) K theeby comleting the oof 6

8 Now we will ove the claim fo the constant C ( D ) in (4) Theoem - Let φ be the solution to (5) Then we have: k φkl (D ) C ( D )k akl (D ) k bkl (D ) with K C ( D ) and K sin(π/) ( )/ Poof Let ( y x ) ( x y ) Then a b ax by ay bx (7) By Ho lde s ineuality a b L (D ) k akl (D ) k bkl (D ) (8) whee + < < Now we find an ue bound fo k φkl k φkl (D ) φ ddθ φ )ddθ θ φ ddθ + (φ + φ ddθ θ (9) Let A φ ddθ and B φ ddθ θ Fist we simlify A With an integation by ats we get: A dθ φφ φφ ddθ φφ ddθ Then because φ on D A φφ ddθ φφ ddθ 7

9 Now we simlify B Using integation by ats gives us B φφθ θ d θ φφθθ dθd φφθ ( ) φφθ ( ) so we have: B φφθθ dθd Substituting A and B back into (9) we get k φkl (D ) φφ + φφ + φφθθ ddθ φ φddθ (3) By (7) k φkl (D ) φ a b ddθ and by Ho lde s ineuality φ a b ddθ kφkl (D ) a b L (D ) (3) By (6) and (8) k φkl (D ) kφkl (D ) k akl (D ) k bkl (D ) K k akl (D ) k bkl (D ) Hence k φkl (D ) K k akl (D ) k bkl (D ) (3) Theefoe we see that C ( D ) K as claimed 3 Futhe wok Ou esults give the best constant fo the disk but we do not know whethe this is tue fo any Ω unlike the standad Wente ineuality [Toing (997)] Futhe it is not clea whethe the constant emains valid fo Ω simly connected unlike the standad Wente ineuality [Baaket (996)] Insecting ou oof we conjectue: 8

10 Let φ be the uniue solution to () whee Ω is a gah ove a cicle then it holds: kφk L (Ω) C ( Ω)k akl (Ω) k bkl (Ω) kφk C ( Ω)k ak k bk L (Ω) L (Ω) L (Ω) whee C ( Ω) and C ( Ω) ae as in (4) This is because thee exists a smooth bijective confomal ma between all simly connected domains in C by the Riemann maing theoem taking the bounday of D to the bounday of Ω Since D is maed to Ω in a one-to-one fashion and all oints on Ω can be aameteised along [ ] uniuely this should not affect ou constant found in (4) Aendix A Poincae Ineuality The Poincae ineuality in one dimension on ( ) is given by a(x) a x whee a x R L ( ) G a (x) L ( ) (33) a(x)dx Stanoyevitch (99) found on the inteval ( ) the Poincae constant G to be G sin(π/) π( )/ < < We will show that on ( ) a(y) a y whee a y L () πg a (y) L () (34) a(y)dy (35) Poof Let y (x + )π dy π dx We have a(y) a y L () a(y) a(u)du dy a(π(x + )) π a(π(u + ))du dx 9

11 Let A(x) a(π(x + )) and A x a(y) a y R A(u)du then L () A(x) π π A(x) A(u)du dx A x L ( ) By the Poincae ineuality π A(x) A x L ( ) πg A (x) L ( ) a (π(x + )) dx πg Now subsituting y in πg a (π(x + )) dx G da dy dy dy dx G π a (y) L () G π a (y) dy Thus as claimed a(y) a y L () G π a (y) L () Refeences Baaket S (996) Estimations of the best constant involving the L nom in Wente s ineuality Annales de la faculte des sciences de Toulouse 5(3) He lein F () Hamonic Mas Consevation Laws and Moving Fames nd edn Cambidge Univesity Pess chate Stanoyevitch A (99) Geomety of Poincae Domains PhD thesis The Univesity of Michigan Toing P (997) The otimal constant in Wente s L estimate Comment Math Helv Wente H (969) An existence theoem fo sufaces of constant mean cuvatue J Math Anal Al

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS Loukas Gafakos and Stehen Montgomey-Smith Univesity of Missoui, Columbia Abstact. We ecisely evaluate the oeato nom of the uncenteed Hady-Littlewood maximal

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8

Problem Set #10 Math 471 Real Analysis Assignment: Chapter 8 #2, 3, 6, 8 Poblem Set #0 Math 47 Real Analysis Assignment: Chate 8 #2, 3, 6, 8 Clayton J. Lungstum Decembe, 202 xecise 8.2 Pove the convese of Hölde s inequality fo = and =. Show also that fo eal-valued f / L ),

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

An Estimate of Incomplete Mixed Character Sums 1 2. Mei-Chu Chang 3. Dedicated to Endre Szemerédi for his 70th birthday.

An Estimate of Incomplete Mixed Character Sums 1 2. Mei-Chu Chang 3. Dedicated to Endre Szemerédi for his 70th birthday. An Estimate of Incomlete Mixed Chaacte Sums 2 Mei-Chu Chang 3 Dedicated to Ende Szemeédi fo his 70th bithday. 4 In this note we conside incomlete mixed chaacte sums ove a finite field F n of the fom x

More information

GROWTH ESTIMATES THROUGH SCALING FOR QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

GROWTH ESTIMATES THROUGH SCALING FOR QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS Annales Academiæ Scientiaum Fennicæ Mathematica Volumen 32, 2007, 595 599 GROWTH ESTIMATES THROUGH SCALING FOR QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS Teo Kilpeläinen, Henik Shahgholian and Xiao Zhong

More information

< 1. max x B(0,1) f. ν ds(y) Use Poisson s formula for the ball to prove. (r x ) x y n ds(y) (x B0 (0, r)). 1 nα(n)r n 1

< 1. max x B(0,1) f. ν ds(y) Use Poisson s formula for the ball to prove. (r x ) x y n ds(y) (x B0 (0, r)). 1 nα(n)r n 1 7 On the othe hand, u x solves { u n in U u on U, so which implies that x G(x, y) x n ng(x, y) < n (x B(, )). Theefoe u(x) fo all x B(, ). G ν ds(y) + max g G x ν ds(y) + C( max g + max f ) f(y)g(x, y)

More information

A NOTE ON VERY WEAK SOLUTIONS FOR A CLASS OF NONLINEAR ELLIPTIC EQUATIONS

A NOTE ON VERY WEAK SOLUTIONS FOR A CLASS OF NONLINEAR ELLIPTIC EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol3 15 2007, 41 45 A NOTE ON VERY WEAK SOLUTIONS FOR A CLASS OF NONLINEAR ELLIPTIC EQUATIONS LI JULING AND GAO HONGYA Abstact We pove a new a pioi estimate fo vey weak

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3 Math : alculus I Math/Sci majos MWF am / pm, ampion Witten homewok Review: p 94, p 977,8,9,6, 6: p 46, 6: p 4964b,c,69, 6: p 47,6 p 94, Evaluate the following it by identifying the integal that it epesents:

More information

Product Rule and Chain Rule Estimates for Hajlasz Gradients on Doubling Metric Measure Spaces

Product Rule and Chain Rule Estimates for Hajlasz Gradients on Doubling Metric Measure Spaces Poduct Rule and Chain Rule Estimates fo Hajlasz Gadients on Doubling Metic Measue Saces A Eduado Gatto and Calos Segovia Fenández Ail 9, 2004 Abstact In this ae we intoduced Maximal Functions Nf, x) of

More information

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 ) Pola Coodinates We now intoduce anothe method of labelling oints in a lane. We stat by xing a oint in the lane. It is called the ole. A standad choice fo the ole is the oigin (0; 0) fo the Catezian coodinate

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

YUXIANG LI DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING , P.R.CHINA.

YUXIANG LI DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING , P.R.CHINA. SOME REMARKS ON WILLMORE SURFACES EMBEDDED IN R 3 YUXIANG LI DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING 100084, P.R.CHINA. EMAIL: YXLI@MATH.TSINGHUA.EDU.CN. Abstact. Let f : C R

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

Measure Estimates of Nodal Sets of Polyharmonic Functions

Measure Estimates of Nodal Sets of Polyharmonic Functions Chin. Ann. Math. Se. B 39(5), 08, 97 93 DOI: 0.007/s40-08-004-6 Chinese Annals of Mathematics, Seies B c The Editoial Office of CAM and Spinge-Velag Belin Heidelbeg 08 Measue Estimates of Nodal Sets of

More information

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13 PHZ 3113 Fall 2017 Homewok #5, Due Fiday, Octobe 13 1. Genealize the poduct ule (fg) = f g +f g to wite the divegence Ö (Ù Ú) of the coss poduct of the vecto fields Ù and Ú in tems of the cul of Ù and

More information

Mean Curvature and Shape Operator of Slant Immersions in a Sasakian Space Form

Mean Curvature and Shape Operator of Slant Immersions in a Sasakian Space Form Mean Cuvatue and Shape Opeato of Slant Immesions in a Sasakian Space Fom Muck Main Tipathi, Jean-Sic Kim and Son-Be Kim Abstact Fo submanifolds, in a Sasakian space fom, which ae tangential to the stuctue

More information

ON LACUNARY INVARIANT SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

ON LACUNARY INVARIANT SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS STUDIA UNIV BABEŞ BOLYAI, MATHEMATICA, Volume XLVIII, Numbe 4, Decembe 2003 ON LACUNARY INVARIANT SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS VATAN KARAKAYA AND NECIP SIMSEK Abstact The

More information

The Derivative of the Sine and Cosine. A New Derivation Approach

The Derivative of the Sine and Cosine. A New Derivation Approach The Deivative of the Sine and Cosine. A New Deivation Appoach By John T. Katsikadelis Scool of Civil Engineeing, National Technical Univesity of Athens, Athens 15773, Geece. e-mail: jkats@cental.ntua.g

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

arxiv:gr-qc/ v2 8 Jun 2006

arxiv:gr-qc/ v2 8 Jun 2006 On Quantization of the Electical Chage Mass Dmitiy M Palatnik 1 6400 N Sheidan Rd 2605, Chicago, IL 60626 axiv:g-qc/060502v2 8 Jun 2006 Abstact Suggested a non-linea, non-gauge invaiant model of Maxwell

More information

Adam Kubica A REGULARITY CRITERION FOR POSITIVE PART OF RADIAL COMPONENT IN THE CASE OF AXIALLY SYMMETRIC NAVIER-STOKES EQUATIONS

Adam Kubica A REGULARITY CRITERION FOR POSITIVE PART OF RADIAL COMPONENT IN THE CASE OF AXIALLY SYMMETRIC NAVIER-STOKES EQUATIONS DEMONSTRATIO MATHEMATICA Vol. XLVIII No 1 015 Adam Kuica A REGULARITY CRITERION FOR POSITIVE PART OF RADIAL COMPONENT IN THE CASE OF AXIALLY SYMMETRIC NAVIER-STOKES EQUATIONS Communicated y K. Chełmiński

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx SUPPLEMENTARY MATERIAL 613 7.6.3 CHAPTER 7 ( px + q) a x + bx + c dx. We choose constants A and B such that d px + q A ( ax + bx + c) + B dx A(ax + b) + B Compaing the coefficients of x and the constant

More information

Dorin Andrica Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Dorin Andrica Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania #A INTEGERS 5A (05) THE SIGNUM EQUATION FOR ERDŐS-SURÁNYI SEQUENCES Doin Andica Faculty of Mathematics and Comute Science, Babeş-Bolyai Univesity, Cluj-Naoca, Romania dandica@math.ubbcluj.o Eugen J. Ionascu

More information

On absence of solutions of a semi-linear elliptic equation with biharmonic operator in the exterior of a ball

On absence of solutions of a semi-linear elliptic equation with biharmonic operator in the exterior of a ball Tansactions of NAS of Azebaijan, Issue Mathematics, 36, 63-69 016. Seies of Physical-Technical and Mathematical Sciences. On absence of solutions of a semi-linea elliptic euation with bihamonic opeato

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Lecture 23. Representation of the Dirac delta function in other coordinate systems

Lecture 23. Representation of the Dirac delta function in other coordinate systems Lectue 23 Repesentation of the Diac delta function in othe coodinate systems In a geneal sense, one can wite, ( ) = (x x ) (y y ) (z z ) = (u u ) (v v ) (w w ) J Whee J epesents the Jacobian of the tansfomation.

More information

CMSC 425: Lecture 5 More on Geometry and Geometric Programming

CMSC 425: Lecture 5 More on Geometry and Geometric Programming CMSC 425: Lectue 5 Moe on Geomety and Geometic Pogamming Moe Geometic Pogamming: In this lectue we continue the discussion of basic geometic ogamming fom the eious lectue. We will discuss coodinate systems

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as Chapte 1 Elliptic Equations 1.1 Intoduction The mathematical modeling of steady state o equilibium phenomena geneally esult in to elliptic equations. The best example is the steady diffusion of heat in

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Kepler s problem gravitational attraction

Kepler s problem gravitational attraction Kele s oblem gavitational attaction Summay of fomulas deived fo two-body motion Let the two masses be m and m. The total mass is M = m + m, the educed mass is µ = m m /(m + m ). The gavitational otential

More information

8 Separation of Variables in Other Coordinate Systems

8 Separation of Variables in Other Coordinate Systems 8 Sepaation of Vaiables in Othe Coodinate Systems Fo the method of sepaation of vaiables to succeed you need to be able to expess the poblem at hand in a coodinate system in which the physical boundaies

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

A CHARACTERIZATION ON BREAKDOWN OF SMOOTH SPHERICALLY SYMMETRIC SOLUTIONS OF THE ISENTROPIC SYSTEM OF COMPRESSIBLE NAVIER STOKES EQUATIONS

A CHARACTERIZATION ON BREAKDOWN OF SMOOTH SPHERICALLY SYMMETRIC SOLUTIONS OF THE ISENTROPIC SYSTEM OF COMPRESSIBLE NAVIER STOKES EQUATIONS Huang, X. and Matsumua, A. Osaka J. Math. 52 (215), 271 283 A CHARACTRIZATION ON BRAKDOWN OF SMOOTH SPHRICALLY SYMMTRIC SOLUTIONS OF TH ISNTROPIC SYSTM OF COMPRSSIBL NAVIR STOKS QUATIONS XIANGDI HUANG

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Cross section dependence on ski pole sti ness

Cross section dependence on ski pole sti ness Coss section deendence on ski ole sti ness Johan Bystöm and Leonid Kuzmin Abstact Ski equiment oduce SWIX has ecently esented a new ai of ski oles, called SWIX Tiac, which di es fom conventional (ound)

More information

The Divergence Theorem

The Divergence Theorem 13.8 The ivegence Theoem Back in 13.5 we ewote Geen s Theoem in vecto fom as C F n ds= div F x, y da ( ) whee C is the positively-oiented bounday cuve of the plane egion (in the xy-plane). Notice this

More information

A NOTE ON ROTATIONS AND INTERVAL EXCHANGE TRANSFORMATIONS ON 3-INTERVALS KARMA DAJANI

A NOTE ON ROTATIONS AND INTERVAL EXCHANGE TRANSFORMATIONS ON 3-INTERVALS KARMA DAJANI A NOTE ON ROTATIONS AND INTERVAL EXCHANGE TRANSFORMATIONS ON 3-INTERVALS KARMA DAJANI Abstact. Wepove the conjectue that an inteval exchange tansfomation on 3-intevals with coesponding pemutation (1; 2;

More information

11.2 Proving Figures are Similar Using Transformations

11.2 Proving Figures are Similar Using Transformations Name lass ate 11. Poving igues ae Simila Using Tansfomations ssential Question: How can similait tansfomations be used to show two figues ae simila? esouce ocke ploe onfiming Similait similait tansfomation

More information

RADIALLY SYMMETRIC SOLUTIONS TO THE GRAPHIC WILLMORE SURFACE EQUATION

RADIALLY SYMMETRIC SOLUTIONS TO THE GRAPHIC WILLMORE SURFACE EQUATION RADIALLY SYMMETRIC SOLUTIONS TO THE GRAPHIC WILLMORE SURFACE EQUATION JINGYI CHEN AND YUXIANG LI Abstact. We show that a smooth adially symmetic solution u to the gaphic Willmoe suface equation is eithe

More information

A Bijective Approach to the Permutational Power of a Priority Queue

A Bijective Approach to the Permutational Power of a Priority Queue A Bijective Appoach to the Pemutational Powe of a Pioity Queue Ia M. Gessel Kuang-Yeh Wang Depatment of Mathematics Bandeis Univesity Waltham, MA 02254-9110 Abstact A pioity queue tansfoms an input pemutation

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

This aticle was oiginally published in a jounal published by Elsevie, the attached copy is povided by Elsevie fo the autho s benefit fo the benefit of the autho s institution, fo non-commecial eseach educational

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equation in Highe Dimensions We now conside the initial-value poblem fo the wave equation in n dimensions, u tt c u 0 x R n u(x, 0 φ(x u t (x, 0 ψ(x whee u n i u x i x i. (7. 7. Method of Spheical

More information

Boundedness for Marcinkiewicz integrals associated with Schrödinger operators

Boundedness for Marcinkiewicz integrals associated with Schrödinger operators Poc. Indian Acad. Sci. (Math. Sci. Vol. 24, No. 2, May 24, pp. 93 23. c Indian Academy of Sciences oundedness fo Macinkiewicz integals associated with Schödinge opeatos WENHUA GAO and LIN TANG 2 School

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

FOURIER-BESSEL SERIES AND BOUNDARY VALUE PROBLEMS IN CYLINDRICAL COORDINATES

FOURIER-BESSEL SERIES AND BOUNDARY VALUE PROBLEMS IN CYLINDRICAL COORDINATES FOURIER-BESSE SERIES AND BOUNDARY VAUE PROBEMS IN CYINDRICA COORDINATES The paametic Bessel s equation appeas in connection with the aplace opeato in pola coodinates. The method of sepaation of vaiables

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Force of gravity and its potential function

Force of gravity and its potential function F. W. Phs0 E:\Ecel files\ch gavitational foce and potential.doc page of 6 0/0/005 8:9 PM Last pinted 0/0/005 8:9:00 PM Foce of gavit and its potential function (.) Let us calculate the potential function

More information

Results on the Commutative Neutrix Convolution Product Involving the Logarithmic Integral li(

Results on the Commutative Neutrix Convolution Product Involving the Logarithmic Integral li( Intenational Jounal of Scientific and Innovative Mathematical Reseach (IJSIMR) Volume 2, Issue 8, August 2014, PP 736-741 ISSN 2347-307X (Pint) & ISSN 2347-3142 (Online) www.acjounals.og Results on the

More information

COLLAPSING WALLS THEOREM

COLLAPSING WALLS THEOREM COLLAPSING WALLS THEOREM IGOR PAK AND ROM PINCHASI Abstact. Let P R 3 be a pyamid with the base a convex polygon Q. We show that when othe faces ae collapsed (otated aound the edges onto the plane spanned

More information

ESSENTIAL NORM OF AN INTEGRAL-TYPE OPERATOR ON THE UNIT BALL. Juntao Du and Xiangling Zhu

ESSENTIAL NORM OF AN INTEGRAL-TYPE OPERATOR ON THE UNIT BALL. Juntao Du and Xiangling Zhu Opuscula Math. 38, no. 6 (8), 89 839 https://doi.og/.7494/opmath.8.38.6.89 Opuscula Mathematica ESSENTIAL NORM OF AN INTEGRAL-TYPE OPERATOR FROM ω-bloch SPACES TO µ-zygmund SPACES ON THE UNIT BALL Juntao

More information

Topic 3: Spacetime Geometry and Clifford Algebras

Topic 3: Spacetime Geometry and Clifford Algebras Lectue Seies: The Spin of the Matte, Physics 4250, Fall 200 Topic 3: Spacetime Geomety and Cliffod Algebas D. Bill Pezzaglia CSUEB Physics Updated Nov 28, 200 fo geomety, you know, it the gate of science,

More information

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4 Fouie tansfom pais: f(x) 1 f(k) e p 2 (k) p e iax 2 (k a) 2 e a x a a 2 + k 2 e a2 x 1 2, a > 0 a p k2 /4a2 e 2 1 H(x) ik p 2 + 2 (k) The fist few Y m Y 0 0 = Y 0 1 = Y ±1 1 = l : 1 Y2 0 = 4 3 ±1 cos Y

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

An o5en- confusing point:

An o5en- confusing point: An o5en- confusing point: Recall this example fom last lectue: E due to a unifom spheical suface chage, density = σ. Let s calculate the pessue on the suface. Due to the epulsive foces, thee is an outwad

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

Kirby-Melvin s τ r and Ohtsuki s τ for Lens Spaces

Kirby-Melvin s τ r and Ohtsuki s τ for Lens Spaces Kiby-Melvin s τ and Ohtsuki s τ fo Lens Saces Bang-He Li & Tian-Jun Li axiv:math/9807155v1 [mathqa] 27 Jul 1998 Abstact Exlicit fomulae fo τ (L(,q)) and τ(l(,q)) ae obtained fo all L(,q) Thee ae thee systems

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

Doubling property for the Laplacian and its applications (Course Chengdu 2007)

Doubling property for the Laplacian and its applications (Course Chengdu 2007) Doubling popety fo the Laplacian and its applications Couse Chengdu 007) K.-D. PHUNG The oiginal appoach of N. Gaofalo and F.H. Lin Fo simplicity, we epoduce the poof of N. Gaofalo and F.H. Lin in the

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

Dynamic Visualization of Complex Integrals with Cabri II Plus

Dynamic Visualization of Complex Integrals with Cabri II Plus Dynamic Visualiation of omplex Integals with abi II Plus Sae MIKI Kawai-juu, IES Japan Email: sand_pictue@hotmailcom Abstact: Dynamic visualiation helps us undestand the concepts of mathematics This pape

More information

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis Bief summay of functional analysis APPM 5440 Fall 014 Applied Analysis Stephen Becke, stephen.becke@coloado.edu Standad theoems. When necessay, I used Royden s and Keyzsig s books as a efeence. Vesion

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 ELETRODYNAMIS: PHYS 44. Electomagnetic Field Equations. Maxwell s Equations Analysis in space (vacuum). oulomb Bon June 4, 76 Angoulême, Fance Died August 2, 86 Pais, Fance In 785 oulomb pesented his thee

More information

Integral operator defined by q-analogue of Liu-Srivastava operator

Integral operator defined by q-analogue of Liu-Srivastava operator Stud. Univ. Babeş-Bolyai Math. 582013, No. 4, 529 537 Integal opeato defined by q-analogue of Liu-Sivastava opeato Huda Aldweby and Maslina Daus Abstact. In this pape, we shall give an application of q-analogues

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

arxiv: v1 [math.ca] 31 Aug 2009

arxiv: v1 [math.ca] 31 Aug 2009 axiv:98.4578v [math.ca] 3 Aug 9 On L-convegence of tigonometic seies Bogdan Szal Univesity of Zielona Góa, Faculty of Mathematics, Compute Science and Econometics, 65-56 Zielona Góa, ul. Szafana 4a, Poland

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

On the ratio of maximum and minimum degree in maximal intersecting families

On the ratio of maximum and minimum degree in maximal intersecting families On the atio of maximum and minimum degee in maximal intesecting families Zoltán Lóánt Nagy Lale Özkahya Balázs Patkós Máté Vize Mach 6, 013 Abstact To study how balanced o unbalanced a maximal intesecting

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

1. The Subterranean Brachistochrone

1. The Subterranean Brachistochrone 1 1. The Subteanean Bachistochone A Bachistochone is a fictionless tack that connects two locations and along which an object can get fom the fist point to the second in minimum time unde only the action

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Some Remarks on the Boundary Behaviors of the Hardy Spaces

Some Remarks on the Boundary Behaviors of the Hardy Spaces Soe Reaks on the Bounday Behavios of the Hady Spaces Tao Qian and Jinxun Wang In eoy of Jaie Kelle Abstact. Soe estiates and bounday popeties fo functions in the Hady spaces ae given. Matheatics Subject

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

Semicanonical basis generators of the cluster algebra of type A (1)

Semicanonical basis generators of the cluster algebra of type A (1) Semicanonical basis geneatos of the cluste algeba of type A (1 1 Andei Zelevinsky Depatment of Mathematics Notheasten Univesity, Boston, USA andei@neu.edu Submitted: Jul 7, 006; Accepted: Dec 3, 006; Published:

More information