Heterotic String Compactication with Gauged Linear Sigma Models

Size: px
Start display at page:

Download "Heterotic String Compactication with Gauged Linear Sigma Models"

Transcription

1 Heterotic String Compactication with Gauged Linear Sigma Models Fabian Rühle Bethe Center for Theoretical Physics Bonn University LMU Fields & Strings 04/25/2013 Based on: [Lüdeling,FR,Wieck: ], [Blaszczyk,Groot Nibbelink,FR: ], [Blaszczyk,Groot Nibbelink,FR: ]

2 Motivation Start with heterotic string on M 1,3 X 4D physics is a function of compactication manifold X Want N = 1 SUSY in 4D X is CY threefold [Candelas,Horowitz,Strominger,Witten] Want G SM = SU(3) SU(2) U(1) gauge group Choose holomorphic, stable vector bundle V to break E 8 E 8 G SM ( G hidden ) Study resulting string theory Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 1 / 34

3 Motivation Start with heterotic string on M 1,3 X 4D physics is a function of compactication manifold X Want N = 1 SUSY in 4D X is CY threefold [Candelas,Horowitz,Strominger,Witten] Want G SM = SU(3) SU(2) U(1) gauge group Choose holomorphic, stable vector bundle V to break E 8 E 8 G SM ( G hidden ) Study resulting string theory Problem Resulting string theory described by complicated NLSM Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 1 / 34

4 Motivation Solution ideas Study special CYs that allow for a free CFT description (Orbifolds) [Dixon,Harvey,Vafa,Witten],[Blaszczyk,Buchmüller,Groot Nibbelink,Nilles, Raby,Ramos Sanchez,Ratz,FR,Vaudrevange,... ] Study generic CYs in supergravity approximation [Anderson,Bouchard,Braun,Donagi,Gray,He,Lukas,Ovrut,Palti,Pantev,Waldram,... ] Study easy non-conformal GLSM that ows in the IR to conformal NLSM [Witten],[Adams,Blaszczyk,Blumenhagen,Carlevahro,Distler,Groot Nibbelink,Israel,Rahn,FR,... ] Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 2 / 34

5 Motivation Our procedure Start with orbifold where string theory under control Find consistency requirements from exact free CFT calculations [Blaszczyk,Groot Nibbelink,Ratz,FR,Trapletti,Vaudrevange] Unknown how to get them in other phases like SUGRA approximation Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 3 / 34

6 Motivation Our procedure Start with orbifold where string theory under control Find consistency requirements from exact free CFT calculations [Blaszczyk,Groot Nibbelink,Ratz,FR,Trapletti,Vaudrevange] Unknown how to get them in other phases like SUGRA approximation Depart from orbifold geometry Study more general points in moduli space Phenomenology (SUSY+exotics+GG) requires departure from orbifold point Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 3 / 34

7 Motivation Our procedure Start with orbifold where string theory under control Find consistency requirements from exact free CFT calculations [Blaszczyk,Groot Nibbelink,Ratz,FR,Trapletti,Vaudrevange] Unknown how to get them in other phases like SUGRA approximation Depart from orbifold geometry Study more general points in moduli space Phenomenology (SUSY+exotics+GG) requires departure from orbifold point Go to GLSM description of the orbifold [Blaszczyk,Groot Nibbelink,FR] Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 3 / 34

8 Motivation Our procedure Start with orbifold where string theory under control Find consistency requirements from exact free CFT calculations [Blaszczyk,Groot Nibbelink,Ratz,FR,Trapletti,Vaudrevange] Unknown how to get them in other phases like SUGRA approximation Depart from orbifold geometry Study more general points in moduli space Phenomenology (SUSY+exotics+GG) requires departure from orbifold point Go to GLSM description of the orbifold [Blaszczyk,Groot Nibbelink,FR] Study other GLSM phases like smooth CY Phenomenological models require torsion and often NS5 branes Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 3 / 34

9 Outline 1 N = (2, 2) GLSMs Introduction GLSM description of compactication spaces Study of moduli space 2 N = (0, 2) GLSMs & Anomalies Introduction Anomalies + Cancelation mechanism Examples 3 N = (0, 2) GLSMs & Discrete Symmetries Introduction Study of discrete symmetries 4 Conclusion Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 4 / 34

10 Part I N = (2, 2) GLSMs

11 Field content Think of 2D N = (2, 2) superspace as a dim. reduction of 4D N = 1 superspace with Lorentz group SO(1, 1) [Witten] Superspace coordinates Two WS coordinates σ 1, σ 2 Two complex Grassmann variables θ +, θ Multiplets Chiral multiplet (D ± Z = 0): Z = (z, ψ +, ψ, F ) Vector multiplet (V = V ): V = (A, A σ, A σ, λ +, λ, D) Twisted chiral multiplet (D + Σ = D Σ = 0) Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 5 / 34

12 GLSM Action GLSM Action S GLSM = S kin + S FI + S W S kin = d 2 σd 4 θze 2qV Z + 1 e 2 Σ Σ S FI = d 2 σd θ dθ + ρσ + h.c. with ρ = b + iβ S W = d 2 σd 2 θcp(z) + h.c. with q(c) < 0,q(Z) > 0, q(p(z)) = q(c) = i q(z i) Algebraic EOMs D term: i q i z i 2 + q c c 2 = b F term: P(z) = 0, c P(z) z i = 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 6 / 34

13 Relation to target space (2, 2) GLSMs describe heterotic string in standard embedding Relations GLSM elds Z i Toric ambient space coordinates GLSM gaugings U(1) N Weights of toric spaces F terms hypersurface constraints q(c) + i q(p(z i)) = 0 c 1 (TX ) = 0 = c 1 (V ) FI terms b Kähler parameters D terms Kähler cone, SR ideal X is Kähler and Ricci-at X has SU(N) holonomy Spin connection is identied with gauge connection Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 7 / 34

14 Example: T 2 GLSM Fields Z 1 Z 2 Z 3 C U(1) charges Superpotential W = C(Z Z3 2 + Z3 3 + κz 1Z 2 Z 3 ) κ encodes CS of T 2 relate to τ via Weierstrass function Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 8 / 34

15 Example: T 2 GLSM Fields Z 1 Z 2 Z 3 C U(1) charges Superpotential W = C(Z Z3 2 + Z3 3 + κz 1Z 2 Z 3 ) κ encodes CS of T 2 relate to τ via Weierstrass function D Term z z z c 2 = b b > 0: SR={z 1 z 2 z 3 }, c = 0 (from F term) smooth T 2 b < 0: SR={c}, z 1 = z 2 = z 3 = 0 (from F term) Z 3 LG orbifold Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 8 / 34

16 Example: T 2 GLSM Fields Z 1 Z 2 Z 3 C U(1) charges Superpotential W = C(Z Z3 2 + Z3 3 + κz 1Z 2 Z 3 ) κ encodes CS of T 2 relate to τ via Weierstrass function D Term z z z c 2 = b b > 0: SR={z 1 z 2 z 3 }, c = 0 (from F term) smooth T 2 b < 0: SR={c}, z 1 = z 2 = z 3 = 0 (from F term) Z 3 LG orbifold Note: We are not after the (non-geometric) LG orbifold but after the (geometric) singular CY orbifold Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 8 / 34

17 Example: (T 2 ) 3 /Z 3 orbifold e 2πi/3 e 2πi/3 e 2πi/3 Start with compactication space (T 2 ) 3 : Choose complex coordinates z 1, z 2, z 3 and lattice Λ T Remove parallelizable spinors by introducing non-trivial holonomy: Choose CS such that Λ T has Z 3 symmetry Λ T is root lattice A 2 A 2 A 2 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 9 / 34

18 Example: (T 2 ) 3 /Z 3 orbifold Start with compactication space (T 2 ) 3 : Choose complex coordinates z 1, z 2, z 3 and lattice Λ T Remove parallelizable spinors by introducing non-trivial holonomy: Choose CS such that Λ T has Z 3 symmetry Λ T is root lattice A 2 A 2 A 2 Mod out Z 3 : Action described by orbifold twist v = (v 1, v 2, v 3 ): θ : (z 1, z 2, z 3 ) (e 2πiv 1 z 1, e 2πiv 2 z 2, e 2πiv 3 z 3 ) 27 xed points CY constraint: Ω = dz 1 dz 2 dz 3 invariant v 1 +v 2 +v 3 =0 mod 1 Modular invariance: Augment orbifold twist by shift V in gauge DOFs: θ : Λ E8 E 8 Λ E8 E 8 + V with V 2 v 2 = 0 mod 2 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 9 / 34

19 Example: (T 2 ) 3 /Z 3 orbifold U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 R R R Fterms for c i and z iρ : z i1 3 + z i2 3 + z i3 3 + κ i z i1 z i2 z i3 = 0, i = 1, 2, 3, c i (z iρ 2 + κ i z iµ z iν ) = 0, Dterms: z i1 2 + z i2 2 + z i3 2 3 c i 2 = a i, i = 1, 2, 3 Geometry: z i1, z i2, z i3 : coordinate of i th torus Fix CS at τ i = e 2πi/3 κ i = 0 from Weierstrass map i, ρ = 1, 2, 3, ρ µ ν ρ Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 10 / 34

20 Example: (T 2 ) 3 /Z 3 orbifold U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 R R R Fterms for c i and z iρ : z i1 3 + z i2 3 + z i3 3 = 0, i = 1, 2, 3, c i z iρ 2 = 0, i, ρ = 1, 2, 3 Dterms: z i1 2 + z i2 2 + z i3 2 3 c i 2 = a i, i = 1, 2, 3 Geometry: a i : sizes of tori a i > 0 at least 3 z i,ρ 0 c i = 0 (assume this case for now) Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 11 / 34

21 Example: (T 2 ) 3 /Z 3 orbifold U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 x 1 R R R E Fterms for c i : zi1 3 x 1 + zi2 3 + z3 i3 = 0, i = 1, 2, 3 Dterms: z i1 2 + z i2 2 + z i3 2 = a i, i = 1, 2, 3 z z z x 1 2 = b 1 Geometry: [Aspinwall, Plesser] b 1 : sizes of exceptional cycles b 1 < 0 x 1 0 x 1 breaks E 1 to Z 3 with 27 FP z 11 =z 21 =z 31 =0 b 1 > 0 FP z 11 =z 21 =z 31 =0 forbidden smooth Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 11 / 34

22 Example: (T 2 ) 3 /Z 3 orbifold U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 x 1 x 2 R R R E E Fterms for c i : zi1 3 x 1 + zi2 3 x 2 + zi3 3 = 0, i = 1, 2, 3 Dterms: z i1 2 + z i2 2 + z i3 2 = a i, i = 1, 2, 3 z z z x 1 2 = b 1 z z z x 2 2 = b 2 Geometry: b 1 < 0 x 1 0 x 1 breaks E 1 to Z 3 with 9 FP z 11 =z 21 =z 31 =0 b 2 < 0 x 2 0 x 2 breaks E 2 to Z 3 with 9 FP z 12 =z 22 =z 32 =0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 11 / 34

23 Example: (T 2 ) 3 /Z 3 orbifold U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 x 1 x 2 R R R E E E z i1 2 + z i2 2 + z i3 2 = a i, i = 1, 2, 3 z z z x 1 2 = b 1 z z z x 2 2 = b 2 Where are last 9 xed points? Combine U(1)'s or D terms: z z z x x 2 2 = i a i + b 1 + b 2 Geometry: x FP z 11 =z 21 =z 31 =0 x FP z 12 =z 22 =z 32 =0 Last 9 FP z 13 =z 23 =z 33 =0. Note: Not smooth for b 1,2 > 0! Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 11 / 34

24 Example: (T 2 ) 3 /Z 3 orbifold U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 x 1 x 2 x 3 R R R E E E Fterms for c i : z 3 i1 x 1 + z 3 i2 x 2 + z 3 i3 x 3 = 0, i = 1, 2, 3 Dterms: z i1 2 + z i2 2 + z i3 2 = a i, i = 1, 2, 3 z 1ρ 2 + z 2ρ 2 + z 3ρ 2 3 x ρ 2 = b ρ, ρ = 1, 2, 3 Geometry: x 1 =0 generates Z 3 with FP z 11 =z 21 =z 31 =0 x 2 =0 generates Z 3 with FP z 12 =z 22 =z 32 =0 x 3 =0 generates Z 3 with FP z 13 =z 23 =z 33 =0 3 9 xed points Smooth for b ρ > 0! Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 11 / 34

25 General procedure: To build an orbifold/resolution GLSM model 1 Choose toric description appropriate for orbifold action 2 Introduce exceptional divisors to smoothen the singularities 3 Set FI parameters a 0 > b to study orbifold or a b > 0 to study blowup 4 Construct inherited divisors and linear equivalences 5 Read o intersection numbers In this way, the resolution phase can be studied using a GLSM which can be smoothly connected to the orbifold. The procedure yields GLSM description of previous approaches which proceeded via polytopes and gluings. [Lust,Reert,Scheidegger,Stieberger] Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 12 / 34

26 Study of Moduli Space But we can do more! Having a GLSM realization, we can probe whole moduli space by simply varying FI parameter. U(1)'s z 11 z 12 z 13 z 21 z 22 z 23 z 31 z 32 z 33 c 1 c 2 c 3 x 1 x 2 x 3 R R R E E E Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 = a i, i = 1, 2, 3 3 i=1 z iρ 2 3 x ρ 2 = b ρ, ρ = 1, 2, 3 For simplicity: Set a i = a and b ρ = b. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 13 / 34

27 Phase I: Non-Geometric Regime b Superpotential: W = i,ρ c iz 3 iρ x ρ a Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric 3 i=1 z iρ 2 3 x ρ 2 =b a < 0, b < 0: c i = a 3, x ρ = b 3, z iρ = 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

28 Phase I: Non-Geometric Regime b Superpotential: W = i,ρ c iz 3 iρ x ρ a Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric 3 i=1 z iρ 2 3 x ρ 2 =b a < 0, b < 0: c i = a 3, x ρ = b 3, z iρ = 0 Target space is a point. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

29 Phase II: Orbifold b Superpotential: W = i,ρ c iz 3 iρ x ρ a Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b a > 0, b < 0: c i = 0, x ρ > 0, z iρ 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

30 Phase II: Orbifold b Superpotential: W = i,ρ c iz 3 iρ x ρ a Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b a > 0, b < 0: c i = 0, x ρ > 0, z iρ 0 Target space is the T 6 /Z 3 orbifold. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

31 Phase III: Blowup b blowup a Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b a > 3b > 0: c i = 0, x ρ 0, z iρ 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

32 Phase III: Blowup b blowup a Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b a > 3b > 0: c i = 0, x ρ 0, z iρ 0 Target space is the resolution CY of the T 6 /Z 3 orbifold. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

33 Phase IV: Singular Over-Blowup b orbifold (singular over-blowup) non-geometric blowup orbifold a Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a 3 i=1 z iρ 2 3 x ρ 2 =b a < 0, b > 0: Note complete symmetry of the model under x ρ c i, z iρ z ρi, a b c i > 0, x ρ = 0, z iρ 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

34 Phase IV: Singular Over-Blowup b orbifold (singular over-blowup) non-geometric blowup orbifold a Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a 3 i=1 z iρ 2 3 x ρ 2 =b a < 0, b > 0: Note complete symmetry of the model under x ρ c i, z iρ z ρi, a b c i > 0, x ρ = 0, z iρ 0 Target space again T 6 /Z 3 orbifold, with x and c exchanged. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

35 Phase V: Over-Blowup b orbifold (singular over-blowup) blowup a over-blowup Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b b > 3a > 0: c i 0, x ρ = 0, z iρ 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

36 Phase V: Over-Blowup b orbifold (singular over-blowup) blowup a over-blowup Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b b > 3a > 0: c i 0, x ρ = 0, z iρ 0 Target space is the resolution CY of the other T 6 /Z 3 orbifold. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

37 Phase VI: Critical Blowup b orbifold (singular critical over-blowup) blowup blowup a over-blowup Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b a > 0, b [ a 3, 3a] : c i ρ 0, x ρ 0, z iρ 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

38 Phase VI: Critical Blowup b orbifold (singular critical over-blowup) blowup blowup a over-blowup Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a non-geometric orbifold 3 i=1 z iρ 2 3 x ρ 2 =b a > 0, b [ a 3, 3a] : c i ρ 0, x ρ 0, z iρ 0 Target space is hybrid phase with blowup limits for b a 3 & b 3a. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

39 Summary b orbifold (singular over-blowup) non-geometric over-blowup critical blowup blowup orbifold a Superpotential: W = i,ρ c iz 3 iρ x ρ Dterms: 3 ρ=1 z iρ 2 3 c i 2 =a 3 i=1 z iρ 2 3 x ρ 2 =b Note that in general The dimension of the TS can jump between the phases There can be op-transitions also outside the CY There can be several distinct singular phases [Aspinwall, Greene, Morrison, Plesser,... ] There is a vast (moduli) space to be explored! Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 14 / 34

40 Part II N = (0, 2) Models & Anomalies

41 Denition of GLSM supereld type notation charge bosonic DOF fermionic DOF chiral Ψ a (q I ) a z a ψ a chiralfermi Λ α (Q I ) α F α λ α gauge (V, A) I 0 aσ, I aσ I, D I Φ I Fermigauge σ i 0 s i ϕ i chiral Φ m (q I ) m x m ψ m chiralfermi Γ µ (Q I ) µ F µ γ µ Think of 2D N = (0, 2) superspace as N = (2, 2) superspace and dispense of θ +, θ + [Dine, Seiberg] Multiplets (2, 2) Chiral multiplet Z (2,2) (Z; χ) =(chiral; chiral-fermi) (2, 2) Vector multiplet V 2,2 (V, A; Σ) =(gauge; Fermi-gauge) Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 15 / 34

42 Denition of GLSM supereld type notation charge bosonic DOF fermionic DOF chiral Z a (q I ) a z a ψ a chiralfermi Λ α (Q I ) α F α λ α gauge (V, A) I 0 aσ I, ai σ, D I Φ I Fermigauge Σ i 0 s i ϕ i chiral Φ m (q I ) m x m ψ m chiralfermi Γ µ (Q I ) µ F µ γ µ Geometry: D Term: (q I ) a z a 2 + (q I ) m x m 2 b I = 0, b I : FIparameter F Term: W geom = Γ µ P µ (Z) P µ (Z) = 0 Geometry D Terms give SR ideal Kähler cone, GLSM phase F Terms give restriction to hypersurface Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 15 / 34

43 Denition of GLSM supereld type notation charge bosonic DOF fermionic DOF chiral Z a (q I ) a z a ψ a chiralfermi Λ α (Q I ) α F α λ α gauge (V, A) I 0 aσ, I aσ I, D I Φ I Fermigauge σ i 0 s i ϕ i chiral Φ m (q I ) m x m ψ m chiralfermi Γ µ (Q I ) µ F µ γ µ Gauge group: Fermionic Transformation: δ Θ Λ α = M α i(z)θ i Superpotential: W bundle = Φ m N mα (Ψ)Λ α Φ m N mα (Z) = 0 Gauge group Gauge group and particle content given by (naturally arising) monad construction via ker(n)/im(m). Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 15 / 34

44 Anomalies A IJ := 1 2 (Q I Q J q I q J ), Q I Q J := α (Q I ) α (Q J ) α + µ (Q I ) µ (Q J ) µ, q I q J := a (q I ) a (q J ) a + m (q I ) m (q J ) m. Problem In general many U(1) gauge groups Huge amount of stringent anomaly conditions. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 16 / 34

45 Anomalies A IJ := 1 2 (Q I Q J q I q J ) T IJ, Q I Q J := α (Q I ) α (Q J ) α + µ (Q I ) µ (Q J ) µ, q I q J := a (q I ) a (q J ) a + m (q I ) m (q J ) m. Idea Introduce new elds to obtain GreenSchwarz mechanism on the worldsheet to cancel gauge anomalies. [Adams,Ernebjerg,Lapan] Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 16 / 34

46 GreenSchwarz mechanism GreenSchwarz mechanism needs elds that transform with shifts. Our approach Use logarithm of coordinate elds Ψ W FI = [ ] ρ 0 I + T XI ln R X (Z) f I T IJ = ri X T XI A IJ = 1 2 (Q I Q J q I q J ) T IJ with ρ 0 I : constant FI parameter R X (Z): homogeneous polynomials w/ charges ri X T XI : (quantized) coecients: T XI F I Z Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 17 / 34

47 GreenSchwarz mechanism GreenSchwarz mechanism needs elds that transform with shifts. Our approach Use logarithm of coordinate elds Ψ W FI = [ ] ρ 0 I + T XI ln R X (Z) f I T IJ = ri X T XI A IJ = 1 2 (Q I Q J q I q J ) T IJ WS Anom: TS BI's: I 4 = A IJ F I F J dh = ch 2 (V ) ch 2 (TX ) NS5 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 17 / 34

48 GreenSchwarz mechanism GreenSchwarz mechanism needs elds that transform with shifts. Our approach Use logarithm of coordinate elds Ψ W FI = [ ] ρ 0 I + T XI ln R X (Z) f I T IJ = ri X T XI A IJ = 1 2 (Q I Q J q I q J ) T IJ WS Anom: TS BI's: Anom: I 4 = A IJ F I F J dh = ch 2 (V ) ch 2 (TX ) NS5 I 4 = [QI α Qα J qm I qj m ]F I F J [qi a }{{} qa J Qµ I Qµ J ]F I F J T IJ F I F }{{}}{{ J } Z (ch 2 (V )) Z (ch 2 (TX )) Z (NS5) Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 17 / 34

49 1.) No anomalies supereld Z a=1,...,8 Γ µ=1,...,4 Λ α=1,...,8 Φ m=1,...,4 gauge charge P 7 [2, 2, 2, 2] with SU(3) bundle A 11 = 1 2 [ Q 2 1 q1 2 ] T11 W FI = ρ 0 + T ln Z 1 r 1 1 = 1, T 11 = T, T 2Z V D = 1 [ z a 2 2 x m 2 b T ln z 1 ] 2! = 0 2 a m Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 18 / 34

50 1.) No anomalies supereld Z a=1,...,8 Γ µ=1,...,4 Λ α=1,...,8 Φ m=1,...,4 gauge charge P 7 [2, 2, 2, 2] with SU(3) bundle A 11 = 1 2 [ Q 2 1 q1 2 ] T11 W FI = ρ 0 + T ln Z 1 r 1 1 = 1, T 11 = T, T 2Z V D = 1 [ z a 2 2 x m 2 b T ln z 1 ] 2! = 0 2 A 11 = 1 2 a m [ 8 (1) ( 2) 2 8 (1) 2 4 ( 2) 2] + T 11! = 0 T 11 = T = 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 18 / 34

51 1.) No anomalies b = 1 b > 0 x a = 0, V D! = 0 8 z a 2 = b a=1 Geometry compact, no anomalies. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 19 / 34

52 2.) T > 0, compact geometry, eective curve supereld Ψ a=1,...,8 Γ µ=1,...,4 Λ α=1,...,4 Φ m=1,2 gauge charge P 7 [2, 2, 2, 2] with SU(2) bundle A 11 = 1 2 [ Q 2 1 q1 2 ] T11 W FI = ρ 0 + T ln[z 1 ] r 1 1 = 1, T 11 = T, T 2Z V D = 1 [ z a 2 2 x m 2 b T ln z 1 ] 2! = 0 2 a m Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 20 / 34

53 2.) T > 0, compact geometry, eective curve supereld Ψ a=1,...,8 Γ µ=1,...,4 Λ α=1,...,4 Φ m=1,2 gauge charge P 7 [2, 2, 2, 2] with SU(2) bundle A 11 = 1 2 [ Q 2 1 q1 2 ] T11 W FI = ρ 0 + T ln[z 1 ] r 1 1 = 1, T 11 = T, T 2Z V D = 1 [ z a 2 2 x m 2 b T ln z 1 ] 2! = 0 2 A 11 = 1 2 a m [ 4 (1) ( 2) 2 8 (1) 2 2 ( 2) 2] T 11! = 0 T 11 = T = 2 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 20 / 34

54 2.) T > 0, compact geometry, eective curve b = 1 b = 10 b > 0 x a = 0, V D! = 0 8 z a 2 = b + 2 ln z 1 z 1 2 a=2 Geometry still compact, anomalies canceled by NS5 branes. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 21 / 34

55 3.) T < 0, decompactied geometry, noneective curve supereld Z a=1,...,8 Γ µ=1,...,4 Λ α=1,...,8 Φ m=1,2 gauge charge P 7 [2, 2, 2, 2] with SU(6) bundle A 11 = 1 2 [ Q 2 1 q1 2 ] T11 W FI = ρ 0 + T ln[z 1 ] r 1 1 = 1, T 11 = T, T 4Z V D = 1 [ z a 2 4 x m 2 b T ln z 1 ] 2! = 0 2 a m Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 22 / 34

56 3.) T < 0, decompactied geometry, noneective curve supereld Z a=1,...,8 Γ µ=1,...,4 Λ α=1,...,8 Φ m=1,2 gauge charge P 7 [2, 2, 2, 2] with SU(6) bundle A 11 = 1 2 [ Q 2 1 q1 2 ] T11 W FI = ρ 0 + T ln[z 1 ] r 1 1 = 1, T 11 = T, T 4Z V D = 1 [ z a 2 4 x m 2 b T ln z 1 ] 2! = 0 2 A 11 = 1 2 a m [ 8 (1) ( 2) 2 8 (1) 2 2 ( 4) 2] T 11! = 0 T 11 = T = 8 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 22 / 34

57 3.) T < 0, decompactied geometry, noneective curve b = 1 b = 10 b > 0 x a = 0, V D! = 0 8 z a 2 = b 8 ln z 1 z 1 2 a=2 Geometry decompactied, anomalies canceled with antins5 branes. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 23 / 34

58 Part III N = (0, 2) Models & Discrete Symmetries

59 Introduction Discrete Symmtries important for Absence of FCNCs Absence of µterm [Dreiner,Lee,Luhn,Raby,Ratz,Ross,Schieren,Schmidt- Hoberg,Thormaier,Vaudrevange,... ] Creation of hierarchies Proton stability Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 24 / 34

60 Introduction Discrete Symmtries important for Absence of FCNCs Absence of µterm [Dreiner,Lee,Luhn,Raby,Ratz,Ross,Schieren,Schmidt- Hoberg,Thormaier,Vaudrevange,... ] Creation of hierarchies Proton stability Discrete symmetries on orbifold Non-R Symmetries from xed point degeneracies R Symmetries from remnants of internal Lorentz group Lee at.al. found nice Z 4 R-symmetry Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 24 / 34

61 Introduction Discrete Symmtries important for Absence of FCNCs Absence of µterm [Dreiner,Lee,Luhn,Raby,Ratz,Ross,Schieren,Schmidt- Hoberg,Thormaier,Vaudrevange,... ] Creation of hierarchies Proton stability Discrete symmetries on orbifold Non-R Symmetries from xed point degeneracies R Symmetries from remnants of internal Lorentz group Lee at.al. found nice Z 4 R-symmetry Discrete symmetries on CY Symmetries aries as isometries in GLSM Charges from graded cohomology Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 24 / 34

62 Z 3 Orbifold θ : (z 1, z 2, z 3 ) (e 2πi/3 z 1, e 2πi/3 z 2, e 2πi 2/3 z 3 ) Orbifold action given by twist vector v = 1 3 (1, 1, 2) Gauge sector given by shift V in the Λ E8 E 8 Choose Standard embedding V = 1 3 (1, 1, 2, 05 )(0 8 ) = v Gauge group: [E 6 SU(3)] vis [E 8 ] hidden Matter: 3(27, 3; 1) + 27[(27, 1; 1) + 3(1, 3; 1)] Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 25 / 34

63 Consistency requirements Want to construct smooth CY with line bundles from orbifold using toric (algebraic) geometry. Impose Bianchi identity (ensures anomaly cancelation): H = db + ω YM ω L D dh = D trr 2 trf 2! = 0 DonaldsonUhlenbeckYau (ensures 4d N = 1 SUSY) J J F = 0 X Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 26 / 34

64 Resolution of T 6 /Z 3 with line bundles Procedure: [Blaszczyk,Groot Nibbelink,Ha,Klevers,FR,Trapletti,Vaudrevange,Walter,... ] Introduce exceptional divisors E αβγ at x αβγ = 0 Introduce gauge ux F = E αβγ V I αβγ H I The H I are the 16 Cartan generators of E 8 E 8 The matrix Vαβγ I describes the gauge line bundle at the 27 xed points Note that in the orbifold limit the E αβγ are shrunk to a point ux is located at xed points Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 27 / 34

65 Resolution of T 6 /Z 3 with line bundles Procedure: [Blaszczyk,Groot Nibbelink,Ha,Klevers,FR,Trapletti,Vaudrevange,Walter,... ] Introduce exceptional divisors E αβγ at x αβγ = 0 Introduce gauge ux F = E αβγ V I αβγ H I The H I are the 16 Cartan generators of E 8 E 8 The matrix Vαβγ I describes the gauge line bundle at the 27 xed points Note that in the orbifold limit the E αβγ are shrunk to a point ux is located at xed points To make contact with the orbifold description: Choose the V αβγ to coincide with the internal E 8 E 8 momentum of some twisted orbifold state located at (α, β, γ) Vev of orbifold state generates the blowup of the E αβγ Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 27 / 34

66 Resolution of T 6 /Z 3 with line bundles Choose 3 dierent bundle vectors from (27, 1) of E 6 SU(3) V 1 = 1 3 (2, 2, 2, 05 )(0 8 ) at 9 xed points V 2 = 1 3 ( 1, 1, 1, 3, 04 )(0 8 ) at 9 xed points V 3 = (V 1 + V 2 ) at 9 xed points F = 9 i=1 E iv1 I H I + 18 j=10 E jv2 I H I E nv3 I H I Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 28 / 34

67 Resolution of T 6 /Z 3 with line bundles Choose 3 dierent bundle vectors from (27, 1) of E 6 SU(3) V 1 = 1 3 (2, 2, 2, 05 )(0 8 ) at 9 xed points V 2 = 1 3 ( 1, 1, 1, 3, 04 )(0 8 ) at 9 xed points V 3 = (V 1 + V 2 ) at 9 xed points F = 9 i=1 E iv1 I H I + 18 j=10 E jv2 I H I E nv3 I H I Gauge group [E 6 SU(3)] [E 8 ] [SO(8) (U(1) A U(1) B ) SU(3)] [E 8 ], U(1) A,B anomalous Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 28 / 34

68 Resolution of T 6 /Z 3 with line bundles Choose 3 dierent bundle vectors from (27, 1) of E 6 SU(3) V 1 = 1 3 (2, 2, 2, 05 )(0 8 ) at 9 xed points V 2 = 1 3 ( 1, 1, 1, 3, 04 )(0 8 ) at 9 xed points V 3 = (V 1 + V 2 ) at 9 xed points F = 9 i=1 E iv1 I H I + 18 j=10 E jv2 I H I E nv3 I H I Gauge group [E 6 SU(3)] [E 8 ] [SO(8) (U(1) A U(1) B ) SU(3)] [E 8 ], U(1) A,B anomalous Bianchi identities E αβγ trf 2 = E αβγ trr 2 V 2 1 = V 2 2 = V 2 3 = 4 3 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 28 / 34

69 Resolution of T 6 /Z 3 with line bundles Choose 3 dierent bundle vectors from (27, 1) of E 6 SU(3) V 1 = 1 3 (2, 2, 2, 05 )(0 8 ) at 9 xed points V 2 = 1 3 ( 1, 1, 1, 3, 04 )(0 8 ) at 9 xed points V 3 = (V 1 + V 2 ) at 9 xed points F = 9 i=1 E iv1 I H I + 18 j=10 E jv2 I H I E nv3 I H I Gauge group [E 6 SU(3)] [E 8 ] [SO(8) (U(1) A U(1) B ) SU(3)] [E 8 ], U(1) A,B anomalous Bianchi identities E αβγ trf 2 = E αβγ trr 2 V 2 1 = V 2 2 = V 2 3 = 4 3 DUY equations J J F = 0 9 i=1 V1 I vol(e i)+ 18 j=10 V2 I vol(e j)+ 27 k=19 V I 3 vol(e k) = 0 Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 28 / 34

70 Remnant non-r symmetries Non-R symmetries arise as discrete subgroups of U(1) A and U(1) B which leave vevs of blowup modes invariant 27 8 s(1, 1) + 8 c(1,1) + 8 v( 2,0) + 1 ( 2, 2) + 1 ( 2,2) + 1 (4,0) Blowup modes: 1 ( 2, 2), 1 ( 2,2), 1 (4,0) corresponding to V 1, V 2, V 3 Leave discrete Z 2 Z 2 symmetry generated by T ± : φ (qa,q b ) e 2πi 2 (q A±q B ) φ (qa,q B ) Both symmetries are non-anomalous Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 28 / 34

71 Remnant R symmetries Properties of R symmetries R symmetries do not commute with SUSY Grassmann coordinate θ transforms under R symmetries R symmetries only dened up to mixing with non-r symmetries Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 29 / 34

72 Remnant R symmetries Properties of R symmetries R symmetries do not commute with SUSY Grassmann coordinate θ transforms under R symmetries R symmetries only dened up to mixing with non-r symmetries R symmetries on orbifolds R charge on orbifold dened via a combination of right-moving momenta q and oscillator numbers N: R = q N with q = 1 3 (1, 1, 1) [Kobayashi,Raby,Zhang] Remnant symmetry of internal space: Sublattice rotations by 2π/3 in each torus: T R k : φ e2πi/3r k φ, k=1,2,3 labels tori Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 29 / 34

73 Remnant R symmetries Orbifold Our orbifold blowup modes have R = q N = 1 (1, 1, 1) 3 To identify remnant R-symmetries, search for invariant combinations of T R k with T U(1) A and T U(1)B : 1 ( 2, 2) (T R 1 ) a (T R 2 ) b (T R 3 ) c T U(1)A T U(1)B 1 ( 2, 2)! = 1 ( 2, 2) 1 ( 2,2) (T R 1 ) a (T R 2 ) b (T R 3 ) c T U(1)A T U(1)B 1 ( 2,2)! = 1 ( 2,2) 1 (4,0) (T R 1 ) a (T R 2 ) b (T R 3 ) c T U(1)A T U(1)B 1 (4,0)! = 1 (4,0) Result One nds that a + b + c = 3 only a (trivial) Z 2 R-symmetry remains in blowup. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 30 / 34

74 Remnant R symmetries GLSM Look at simplied model with 3 exceptional divisors: Symmetries: 0 = z 3 11x 1 + z 3 12x 2 + z 3 13x 3 0 = z 3 21x 1 x 2 x 3 + z z = z 3 31x 1 x 2 x 3 + z z 3 33 a i = z i1 2 + z i2 2 + z i3 2 b α = z 1α 2 + z z x α 2 z iα e 2πi/3 z iα (x 1, x 2, x 3 ) e 2πi/3 (x 1, x 2, x 3 )... Origin of Symmetries Note that the symmetries are inherited from the special choice of complex structure on the orbifold (absence of κ z i1 z i2 z i3 term) Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 31 / 34

75 Remnant R symmetries GLSM How to check which of these symmetries are R-symmetries? R-symmetries will transform the holomorphic (3, 0) form Ω: Ω ηγηdz i dz j dz k Q R (Ω) = Q R (W ) [Witten] Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 32 / 34

76 Remnant R symmetries GLSM How to check which of these symmetries are R-symmetries? R-symmetries will transform the holomorphic (3, 0) form Ω: Ω ηγηdz i dz j dz k Q R (Ω) = Q R (W ) [Witten] How are the R-symmetries broken in blowup? (Presumably) via marginal deformations in Kähler potential under the presence of the gauge bundle: d 2 θ + φ 4D (x µ )N(z, x)λλ φ 4D : 4D modes N(z, x): Polynomial in the geometry elds z iα, x α Λ: WS fermions describing the gauge bundle N(z, x) might not be compatible with rotational symmetries R symmetry broken Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 32 / 34

77 Remnant R symmetries GLSM To check transformation of bundle under discrete symmetries: Tools Find discrete transformations of coordinate elds z, x under symmetry in question Write down gauge bundle in ambient space Restrict bundle to toric hypersurface via Koszul sequence Find contributing monomials Check transformation of monomials under discrete symmetry The last three steps should be automatized using cohomcalg and the Koszul extension developed by Blumenhagen et.al. Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 33 / 34

78 Conclusion N = (2, 2) GLSM GLSM Resolution of Orbifolds worked out Rich moduli space with interesting topology changes Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 34 / 34

79 Conclusion N = (2, 2) GLSM GLSM Resolution of Orbifolds worked out Rich moduli space with interesting topology changes N = (0, 2) GLSM & Anomalies GLSM anomalies can be canceled via log FI Term Description of torsion and NS5 branes Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 34 / 34

80 Conclusion N = (2, 2) GLSM GLSM Resolution of Orbifolds worked out Rich moduli space with interesting topology changes N = (0, 2) GLSM & Anomalies GLSM anomalies can be canceled via log FI Term Description of torsion and NS5 branes N = (0, 2) GLSM & Discrete Symmetries Find phenomenologically interesting discrete symmetries in GLSM Calculate matter charges from kinetic deformations Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 34 / 34

81 Conclusion N = (2, 2) GLSM GLSM Resolution of Orbifolds worked out Rich moduli space with interesting topology changes N = (0, 2) GLSM & Anomalies GLSM anomalies can be canceled via log FI Term Description of torsion and NS5 branes N = (0, 2) GLSM & Discrete Symmetries Find phenomenologically interesting discrete symmetries in GLSM Calculate matter charges from kinetic deformations Thank you for your attention! Fabian Ruehle (BCTP Bonn) Heterotic string with GLSMs LMU (04/25/2013) 34 / 34

Anomalies and Discrete Symmetries in Heterotic String Constructions

Anomalies and Discrete Symmetries in Heterotic String Constructions Anomalies and Discrete Symmetries in Heterotic String Constructions Fabian Rühle Bethe Center for Theoretical Physics Bonn University Northeastern University 07/16/2012 Based on: [Lüdeling,FR,Wieck: 1203.5789],

More information

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling Anomalies and Remnant Symmetries in Heterotic Constructions Christoph Lüdeling bctp and PI, University of Bonn String Pheno 12, Cambridge CL, Fabian Ruehle, Clemens Wieck PRD 85 [arxiv:1203.5789] and work

More information

Aspects of (0,2) theories

Aspects of (0,2) theories Aspects of (0,2) theories Ilarion V. Melnikov Harvard University FRG workshop at Brandeis, March 6, 2015 1 / 22 A progress report on d=2 QFT with (0,2) supersymmetry Gross, Harvey, Martinec & Rohm, Heterotic

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012 dario.rosa@mib.infn.it Dipartimento di Fisica, Università degli studi di Milano Bicocca Milano, Thursday, September 27th, 2012 1 Holomorphic Chern-Simons theory (HCS) Strategy of solution and results 2

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

Solution Set 8 Worldsheet perspective on CY compactification

Solution Set 8 Worldsheet perspective on CY compactification MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics String Theory (8.821) Prof. J. McGreevy Fall 2007 Solution Set 8 Worldsheet perspective on CY compactification Due: Monday, December 18, 2007

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech An introduction to heterotic mirror symmetry Eric Sharpe Virginia Tech I ll begin today by reminding us all of ordinary mirror symmetry. Most basic incarnation: String theory on a Calabi-Yau X = String

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

New Aspects of Heterotic Geometry and Phenomenology

New Aspects of Heterotic Geometry and Phenomenology New Aspects of Heterotic Geometry and Phenomenology Lara B. Anderson Harvard University Work done in collaboration with: J. Gray, A. Lukas, and E. Palti: arxiv: 1106.4804, 1202.1757 J. Gray, A. Lukas and

More information

Mirror symmetry for G 2 manifolds

Mirror symmetry for G 2 manifolds Mirror symmetry for G 2 manifolds based on [1602.03521] [1701.05202]+[1706.xxxxx] with Michele del Zotto (Stony Brook) 1 Strings, T-duality & Mirror Symmetry 2 Type II String Theories and T-duality Superstring

More information

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Exact Results in D=2 Supersymmetric Gauge Theories And Applications Exact Results in D=2 Supersymmetric Gauge Theories And Applications Jaume Gomis Miami 2012 Conference arxiv:1206.2606 with Doroud, Le Floch and Lee arxiv:1210.6022 with Lee N = (2, 2) supersymmetry on

More information

An Introduction to Quantum Sheaf Cohomology

An Introduction to Quantum Sheaf Cohomology An Introduction to Quantum Sheaf Cohomology Eric Sharpe Physics Dep t, Virginia Tech w/ J Guffin, S Katz, R Donagi Also: A Adams, A Basu, J Distler, M Ernebjerg, I Melnikov, J McOrist, S Sethi,... arxiv:

More information

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS Alon E. Faraggi AEF, 990 s (top quark mass, CKM, MSSM w Cleaver and Nanopoulos) AEF, C. Kounnas, J. Rizos, 003-009 AEF, PLB00, work in progress with Angelantonj,

More information

D-branes in non-abelian gauged linear sigma models

D-branes in non-abelian gauged linear sigma models D-branes in non-abelian gauged linear sigma models Johanna Knapp Vienna University of Technology Bonn, September 29, 2014 Outline CYs and GLSMs D-branes in GLSMs Conclusions CYs and GLSMs A Calabi-Yau

More information

Anomalous discrete symmetries in D-brane models

Anomalous discrete symmetries in D-brane models Anomalous discrete symmetries in D-brane models Shohei Uemura Maskawa Institute for Science and Culture, Kyoto Sangyo University based on a work in progress with Tatsuo Kobayashi (Hokkaido University),

More information

Mirrored K3 automorphisms and non-geometric compactifications

Mirrored K3 automorphisms and non-geometric compactifications Mirrored K3 automorphisms and non-geometric compactifications Dan Israe l, LPTHE New Frontiers in String Theory, Kyoto 2018 Based on: D.I. and Vincent Thie ry, arxiv:1310.4116 D.I., arxiv:1503.01552 Chris

More information

Gauge Threshold Corrections for Local String Models

Gauge Threshold Corrections for Local String Models Gauge Threshold Corrections for Local String Models Stockholm, November 16, 2009 Based on arxiv:0901.4350 (JC), 0906.3297 (JC, Palti) Local vs Global There are many different proposals to realise Standard

More information

Some developments in heterotic compactifications

Some developments in heterotic compactifications Some developments in heterotic compactifications Eric Sharpe Virginia Tech In collaboration with J. Distler (Austin), and with assistance of A. Henriques, A. Knutson, E. Scheidegger, and R. Thomas J. Distler,

More information

An Algorithmic Approach to Heterotic Compactification

An Algorithmic Approach to Heterotic Compactification An Algorithmic Approach to Heterotic Compactification Lara B. Anderson Department of Physics, University of Pennsylvania, and Institute for Advanced Study, Princeton Work done in collaboration with: LBA,

More information

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories From Calabi-Yau manifolds to topological field theories Pietro Fre' SISSA-Trieste Paolo Soriani University degli Studi di Milano World Scientific Singapore New Jersey London Hong Kong CONTENTS 1 AN INTRODUCTION

More information

Instantons and Donaldson invariants

Instantons and Donaldson invariants Instantons and Donaldson invariants George Korpas Trinity College Dublin IFT, November 20, 2015 A problem in mathematics A problem in mathematics Important probem: classify d-manifolds up to diffeomorphisms.

More information

THE MASTER SPACE OF N=1 GAUGE THEORIES

THE MASTER SPACE OF N=1 GAUGE THEORIES THE MASTER SPACE OF N=1 GAUGE THEORIES Alberto Zaffaroni CAQCD 2008 Butti, Forcella, Zaffaroni hepth/0611229 Forcella, Hanany, Zaffaroni hepth/0701236 Butti,Forcella,Hanany,Vegh, Zaffaroni, arxiv 0705.2771

More information

On Flux Quantization in F-Theory

On Flux Quantization in F-Theory On Flux Quantization in F-Theory Raffaele Savelli MPI - Munich Bad Honnef, March 2011 Based on work with A. Collinucci, arxiv: 1011.6388 Motivations Motivations The recent attempts to find UV-completions

More information

D-brane instantons in Type II orientifolds

D-brane instantons in Type II orientifolds D-brane instantons in Type II orientifolds in collaboration with R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter Timo Weigand Department of Physics and Astronomy, University of Pennsylvania Strings 2008

More information

Heterotic Flux Compactifications

Heterotic Flux Compactifications Heterotic Flux Compactifications Mario Garcia-Fernandez Instituto de Ciencias Matemáticas, Madrid String Pheno 2017 Virginia Tech, 7 July 2017 Based on arxiv:1611.08926, and joint work with Rubio, Tipler,

More information

Heterotic Vector Bundles, Deformations and Geometric Transitions

Heterotic Vector Bundles, Deformations and Geometric Transitions Heterotic Vector Bundles, Deformations and Geometric Transitions Lara B. Anderson Harvard University Work done in collaboration with: J. Gray, A. Lukas and B. Ovrut arxiv: 1010.0255, 1102.0011, 1107.5076,

More information

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology Sebastian Greiner arxiv: 1512.04859, 1702.03217 (T. Grimm, SG) Max-Planck-Institut für Physik and ITP Utrecht String Pheno 2017 Sebastian Greiner

More information

Introduction to defects in Landau-Ginzburg models

Introduction to defects in Landau-Ginzburg models 14.02.2013 Overview Landau Ginzburg model: 2 dimensional theory with N = (2, 2) supersymmetry Basic ingredient: Superpotential W (x i ), W C[x i ] Bulk theory: Described by the ring C[x i ]/ i W. Chiral

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

2-Group Global Symmetry

2-Group Global Symmetry 2-Group Global Symmetry Clay Córdova School of Natural Sciences Institute for Advanced Study April 14, 2018 References Based on Exploring 2-Group Global Symmetry in collaboration with Dumitrescu and Intriligator

More information

Ω-deformation and quantization

Ω-deformation and quantization . Ω-deformation and quantization Junya Yagi SISSA & INFN, Trieste July 8, 2014 at Kavli IPMU Based on arxiv:1405.6714 Overview Motivation Intriguing phenomena in 4d N = 2 supserymmetric gauge theories:

More information

The Toric SO(10) F-theory Landscape

The Toric SO(10) F-theory Landscape The Toric SO(10) F-theory Landscape Paul-Konstantin Oehlmann DESY/Hamburg University In preperation arxiv:170x.xxxx in collaboration with: W. Buchmueller, M. Dierigl, F. Ruehle Virginia Tech,Blacksburg

More information

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich F-theory effective physics via M-theory Thomas W. Grimm Max Planck Institute for Physics (Werner-Heisenberg-Institut) Munich Ahrenshoop conference, July 2014 1 Introduction In recent years there has been

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Non-Supersymmetric Seiberg duality Beyond the Planar Limit Non-Supersymmetric Seiberg duality Beyond the Planar Limit Input from non-critical string theory, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction

More information

Looking Beyond Complete Intersection Calabi-Yau Manifolds. Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R.

Looking Beyond Complete Intersection Calabi-Yau Manifolds. Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R. Looking Beyond Complete Intersection Calabi-Yau Manifolds Work in progress with Hans Jockers, Joshua M. Lapan, Maurico Romo and David R. Morrison Who and Why Def: X is Calabi-Yau (CY) if X is a Ricci-flat,

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Non-Geometric Calabi- Yau Backgrounds

Non-Geometric Calabi- Yau Backgrounds Non-Geometric Calabi- Yau Backgrounds CH, Israel and Sarti 1710.00853 A Dabolkar and CH, 2002 Duality Symmetries Supergravities: continuous classical symmetry, broken in quantum theory, and by gauging

More information

Yet Another Alternative to Compactification by Heterotic Five-branes

Yet Another Alternative to Compactification by Heterotic Five-branes The University of Tokyo, Hongo: October 26, 2009 Yet Another Alternative to Compactification by Heterotic Five-branes arxiv: 0905.285 [hep-th] Tetsuji KIMURA (KEK) Shun ya Mizoguchi (KEK, SOKENDAI) Introduction

More information

F-theory and the classification of elliptic Calabi-Yau manifolds

F-theory and the classification of elliptic Calabi-Yau manifolds F-theory and the classification of elliptic Calabi-Yau manifolds FRG Workshop: Recent progress in string theory and mirror symmetry March 6-7, 2015 Washington (Wati) Taylor, MIT Based in part on arxiv:

More information

Supersymmetric Standard Models in String Theory

Supersymmetric Standard Models in String Theory Supersymmetric Standard Models in String Theory (a) Spectrum (b) Couplings (c) Moduli stabilisation Type II side [toroidal orientifolds]- brief summary- status (a),(b)&(c) Heterotic side [Calabi-Yau compactification]

More information

Anomalies, Conformal Manifolds, and Spheres

Anomalies, Conformal Manifolds, and Spheres Anomalies, Conformal Manifolds, and Spheres Nathan Seiberg Institute for Advanced Study Jaume Gomis, Po-Shen Hsin, Zohar Komargodski, Adam Schwimmer, NS, Stefan Theisen, arxiv:1509.08511 CFT Sphere partition

More information

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1 MIFPA-10-34 PiTP Lectures Katrin Becker 1 Department of Physics, Texas A&M University, College Station, TX 77843, USA 1 kbecker@physics.tamu.edu Contents 1 Introduction 2 2 String duality 3 2.1 T-duality

More information

G 2 manifolds and mirror symmetry

G 2 manifolds and mirror symmetry G 2 manifolds and mirror symmetry Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics First Annual Meeting, New York, 9/14/2017 Andreas Braun University of Oxford based on [1602.03521]

More information

Nonsupersymmetric C 4 /Z N singularities and closed string tachyons

Nonsupersymmetric C 4 /Z N singularities and closed string tachyons Nonsupersymmetric C 4 /Z N singularities and closed string tachyons K. Narayan Chennai Mathematical Institute (CMI), Chennai [ arxiv:0912.3374, KN ] Overview of closed string tachyons,... Nonsusy 4-complex

More information

Heterotic Standard Models

Heterotic Standard Models 19 August 2008 Strings 08 @ CERN The High Country region of the string landscape Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies String landscape is huge, but

More information

COUNTING BPS STATES IN CONFORMAL GAUGE THEORIES

COUNTING BPS STATES IN CONFORMAL GAUGE THEORIES COUNTING BPS STATES IN CONFORMAL GAUGE THEORIES Alberto Zaffaroni PISA, MiniWorkshop 2007 Butti, Forcella, Zaffaroni hepth/0611229 Forcella, Hanany, Zaffaroni hepth/0701236 Butti,Forcella,Hanany,Vegh,

More information

Magdalena Larfors

Magdalena Larfors Uppsala University, Dept. of Theoretical Physics Based on D. Chialva, U. Danielsson, N. Johansson, M.L. and M. Vonk, hep-th/0710.0620 U. Danielsson, N. Johansson and M.L., hep-th/0612222 2008-01-18 String

More information

Generalized complex geometry and topological sigma-models

Generalized complex geometry and topological sigma-models Generalized complex geometry and topological sigma-models Anton Kapustin California Institute of Technology Generalized complex geometry and topological sigma-models p. 1/3 Outline Review of N = 2 sigma-models

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

String Theory Compactifications with Background Fluxes

String Theory Compactifications with Background Fluxes String Theory Compactifications with Background Fluxes Mariana Graña Service de Physique Th Journées Physique et Math ématique IHES -- Novembre 2005 Motivation One of the most important unanswered question

More information

Heterotic Geometry and Fluxes

Heterotic Geometry and Fluxes Heterotic Geometry and Fluxes Li-Sheng Tseng Abstract. We begin by discussing the question, What is string geometry? We then proceed to discuss six-dimensional compactification geometry in heterotic string

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

An introduction to mirror symmetry. Eric Sharpe Virginia Tech

An introduction to mirror symmetry. Eric Sharpe Virginia Tech An introduction to mirror symmetry Eric Sharpe Virginia Tech This will be a talk about string theory, so let me discuss the motivation. Twentieth-century physics saw two foundational advances: General

More information

A-field and B-field from Freed-Witten anomaly

A-field and B-field from Freed-Witten anomaly A-field and B-field from Freed-Witten anomaly Raffaele Savelli SISSA/ISAS - Trieste Based on a work with L. Bonora and F. Ferrari Ruffino (arxiv: 0810.4291) Seminal paper by Freed & Witten: hep-th/9907189

More information

Sphere Partition Functions, Topology, the Zamolodchikov Metric

Sphere Partition Functions, Topology, the Zamolodchikov Metric Sphere Partition Functions, Topology, the Zamolodchikov Metric, and Extremal Correlators Weizmann Institute of Science Efrat Gerchkovitz, Jaume Gomis, ZK [1405.7271] Jaume Gomis, Po-Shen Hsin, ZK, Adam

More information

Supercurrents. Nathan Seiberg IAS

Supercurrents. Nathan Seiberg IAS Supercurrents Nathan Seiberg IAS 2011 Zohar Komargodski and NS arxiv:0904.1159, arxiv:1002.2228 Tom Banks and NS arxiv:1011.5120 Thomas T. Dumitrescu and NS arxiv:1106.0031 Summary The supersymmetry algebra

More information

Yet Another Alternative to Compactification

Yet Another Alternative to Compactification Okayama Institute for Quantum Physics: June 26, 2009 Yet Another Alternative to Compactification Heterotic five-branes explain why three generations in Nature arxiv: 0905.2185 [hep-th] Tetsuji KIMURA (KEK)

More information

arxiv:hep-th/ v1 22 Aug 1995

arxiv:hep-th/ v1 22 Aug 1995 CLNS-95/1356 IASSNS-HEP-95/64 hep-th/9508107 TOWARDS MIRROR SYMMETRY AS DUALITY FOR TWO DIMENSIONAL ABELIAN GAUGE THEORIES arxiv:hep-th/9508107 v1 Aug 1995 DAVID R. MORRISON Department of Mathematics,

More information

Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs

Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs Yvonne Geyer Strings 2017 Tel Aviv, Israel arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine arxiv:170x.xxxx

More information

Lecture 24 Seiberg Witten Theory III

Lecture 24 Seiberg Witten Theory III Lecture 24 Seiberg Witten Theory III Outline This is the third of three lectures on the exact Seiberg-Witten solution of N = 2 SUSY theory. The third lecture: The Seiberg-Witten Curve: the elliptic curve

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Discrete symmetries in string theory and supergravity

Discrete symmetries in string theory and supergravity Discrete symmetries in string theory and supergravity Eric Sharpe Virginia Tech w/ J Distler, S Hellerman, T Pantev,..., 0212218, 0502027, 0502044, 0502053, 0606034, 0608056, 0709.3855, 1004.5388, 1008.0419,

More information

Lecture 1. Toric Varieties: Basics

Lecture 1. Toric Varieties: Basics Lecture 1. Toric Varieties: Basics Taras Panov Lomonosov Moscow State University Summer School Current Developments in Geometry Novosibirsk, 27 August1 September 2018 Taras Panov (Moscow University) Lecture

More information

Heterotic Brane World

Heterotic Brane World Heterotic Brane World Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, to appear in Physical Review D Heterotic

More information

The exact quantum corrected moduli space for the universal hypermultiplet

The exact quantum corrected moduli space for the universal hypermultiplet The exact quantum corrected moduli space for the universal hypermultiplet Bengt E.W. Nilsson Chalmers University of Technology, Göteborg Talk at "Miami 2009" Fort Lauderdale, December 15-20, 2009 Talk

More information

Web of threefold bases in F-theory and machine learning

Web of threefold bases in F-theory and machine learning and machine learning 1510.04978 & 1710.11235 with W. Taylor CTP, MIT String Data Science, Northeastern; Dec. 2th, 2017 1 / 33 Exploring a huge oriented graph 2 / 33 Nodes in the graph Physical setup: 4D

More information

Computability of non-perturbative effects in the string theory landscape

Computability of non-perturbative effects in the string theory landscape Computability of non-perturbative effects in the string theory landscape IIB/F-theory perspective Iñaki García Etxebarria Nov 5, 2010 Based on [1009.5386] with M. Cvetič and J. Halverson. Phenomenology

More information

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano In collaboration with Pablo G. Cámara Motivation Two popular

More information

Techniques for exact calculations in 4D SUSY gauge theories

Techniques for exact calculations in 4D SUSY gauge theories Techniques for exact calculations in 4D SUSY gauge theories Takuya Okuda University of Tokyo, Komaba 6th Asian Winter School on Strings, Particles and Cosmology 1 First lecture Motivations for studying

More information

arxiv: v2 [hep-th] 3 Jul 2015

arxiv: v2 [hep-th] 3 Jul 2015 Prepared for submission to JHEP NSF-KITP-15-068, MIT-CTP-4677 P 1 -bundle bases and the prevalence of non-higgsable structure in 4D F-theory models arxiv:1506.03204v2 [hep-th] 3 Jul 2015 James Halverson

More information

Coupling Selection Rules in Heterotic Orbifold Compactifications

Coupling Selection Rules in Heterotic Orbifold Compactifications Coupling Selection Rules in Heterotic Orbifold Compactifications Susha L. Parameswaran Leibniz Universität Hannover JHEP 1205 (2012) 008 with Tatsuo Kobayashi, Saúl Ramos-Sánchez & Ivonne Zavala see also

More information

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1 Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1 Ofer Aharony Weizmann Institute of Science 8 th Crete Regional Meeting on String Theory, Nafplion, July 9, 2015 OA, Berkooz, Rey, 1501.02904 Outline

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

A Supergravity Dual for 4d SCFT s Universal Sector

A Supergravity Dual for 4d SCFT s Universal Sector SUPERFIELDS European Research Council Perugia June 25th, 2010 Adv. Grant no. 226455 A Supergravity Dual for 4d SCFT s Universal Sector Gianguido Dall Agata D. Cassani, G.D., A. Faedo, arxiv:1003.4283 +

More information

Moduli of heterotic string compactifications

Moduli of heterotic string compactifications Moduli of heterotic string compactifications E Sharpe (Virginia Tech) arxiv: 1110.1886 w/ I Melnikov (Potsdam) Introduction This talk will concern compactifications of heterotic strings. Recall: in 10D,

More information

Universität Bonn. Physikalisches Institut. Exploring the Web of Heterotic String Theories using Anomalies. Fabian Rühle

Universität Bonn. Physikalisches Institut. Exploring the Web of Heterotic String Theories using Anomalies. Fabian Rühle Universität Bonn Physikalisches Institut Exploring the Web of Heterotic String Theories using Anomalies Fabian Rühle We investigate how anomalies can be used to infer relations among dierent descriptions

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

(0,2) Elephants. Duke University, Durham, NC Am Mühlenberg 1, D Golm, Germany. Abstract

(0,2) Elephants. Duke University, Durham, NC Am Mühlenberg 1, D Golm, Germany. Abstract AEI-010-10 August 010 (0,) Elephants arxiv:1008.156v [hep-th] 7 Dec 010 Paul S. Aspinwall 1, Ilarion V. Melnikov and M. Ronen Plesser 1 1 Center for Geometry and Theoretical Physics, Box 90318 Duke University,

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

2 Type IIA String Theory with Background Fluxes in d=2

2 Type IIA String Theory with Background Fluxes in d=2 2 Type IIA String Theory with Background Fluxes in d=2 We consider compactifications of type IIA string theory on Calabi-Yau fourfolds. Consistency of a generic compactification requires switching on a

More information

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009 String Theory A general overview & current hot topics Benjamin Jurke 4d model building Non-perturbative aspects Optional: Vafa s F-theory GUT model building Würzburg January 8th, 2009 Compactification

More information

Think Globally, Act Locally

Think Globally, Act Locally Think Globally, Act Locally Nathan Seiberg Institute for Advanced Study Quantum Fields beyond Perturbation Theory, KITP 2014 Ofer Aharony, NS, Yuji Tachikawa, arxiv:1305.0318 Anton Kapustin, Ryan Thorngren,

More information

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants ddd (KIAS) USTC 26 Sep 2013 Base on: H. Kim, J. Park, ZLW and P. Yi, JHEP 1109 (2011) 079 S.-J. Lee, ZLW and P. Yi, JHEP 1207 (2012) 169

More information

The geometry of Landau-Ginzburg models

The geometry of Landau-Ginzburg models Motivation Toric degeneration Hodge theory CY3s The Geometry of Landau-Ginzburg Models January 19, 2016 Motivation Toric degeneration Hodge theory CY3s Plan of talk 1. Landau-Ginzburg models and mirror

More information

N = 2 heterotic string compactifications on orbifolds of K3 T 2

N = 2 heterotic string compactifications on orbifolds of K3 T 2 Prepared for submission to JHEP N = 2 heterotic string compactifications on orbifolds of K3 T 2 arxiv:6.0893v [hep-th 7 Nov 206 Aradhita Chattopadhyaya, Justin R. David Centre for High Energy Physics,

More information

Some new torsional local models for heterotic strings

Some new torsional local models for heterotic strings Some new torsional local models for heterotic strings Teng Fei Columbia University VT Workshop October 8, 2016 Teng Fei (Columbia University) Strominger system 10/08/2016 1 / 30 Overview 1 Background and

More information

Holographic Anyons in the ABJM theory

Holographic Anyons in the ABJM theory Seminar given at NTHU/NTS Journal lub, 010 Sep. 1 Holographic Anyons in the ABJM theory Shoichi Kawamoto (NTNU, Taiwan) with Feng-Li Lin (NTNU) Based on JHEP 100:059(010) Motivation AdS/FT correspondence

More information

Think Globally, Act Locally

Think Globally, Act Locally Think Globally, Act Locally Nathan Seiberg Institute for Advanced Study Quantum Fields beyond Perturbation Theory, KITP 2014 Ofer Aharony, NS, Yuji Tachikawa, arxiv:1305.0318 Anton Kapustin, Ryan Thorngren,

More information

Non-associative Deformations of Geometry in Double Field Theory

Non-associative Deformations of Geometry in Double Field Theory Non-associative Deformations of Geometry in Double Field Theory Michael Fuchs Workshop Frontiers in String Phenomenology based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D.

More information

Knot Homology from Refined Chern-Simons Theory

Knot Homology from Refined Chern-Simons Theory Knot Homology from Refined Chern-Simons Theory Mina Aganagic UC Berkeley Based on work with Shamil Shakirov arxiv: 1105.5117 1 the knot invariant Witten explained in 88 that J(K, q) constructed by Jones

More information

A-twisted Landau-Ginzburg models

A-twisted Landau-Ginzburg models A-twisted Landau-Ginzburg models Eric Sharpe Virginia Tech J. Guffin, ES, arxiv: 0801.3836, 0803.3955 M. Ando, ES, to appear A Landau-Ginzburg model is a nonlinear sigma model on a space or stack X plus

More information

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges Adi Armoni Swansea University Queen Mary, April 2009 1 Introduction Seiberg duality (Seiberg 1994) is a highly non-trivial

More information

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES GRAVITY DUALS OF 2D SUSY GAUGE THEORIES BASED ON: 0909.3106 with E. Conde and A.V. Ramallo (Santiago de Compostela) [See also 0810.1053 with C. Núñez, P. Merlatti and A.V. Ramallo] Daniel Areán Milos,

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information