Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study

Size: px
Start display at page:

Download "Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study"

Transcription

1 Thermodynamic behaviour of mixtures containing. A molecular simulation study V. Lachet, C. Nieto-Draghi, B. Creton (IFPEN) Å. Ervik, G. Skaugen, Ø. Wilhelmsen, M. Hammer (SINTEF)

2 Introduction quality issues in transport operations Impact of associated gases? H 2 O H 2 S O 2 N 2 Ar SO 2 CO N 2 O NO NO 2... Impure may have significantly different thermo-physical properties compared to pure. Needs for accurate knowledge of the thermodynamic and transport properties of + associated gas mixtures in order to develop optimized transport solutions. Molecular simulation 2

3 Outline Simulation methods Monte Carlo and Molecular Dynamics Application to the calculation of pure properties Thermodynamic study of CO + N 2 2 O mixtures Intermolecular potential for nitrous oxide Vapor-liquid phase diagrams Densities and viscosities Thermodynamic study of + NO mixtures Intermolecular potential for nitric oxide Vapor-liquid phase diagrams Densities and viscosities Thermal conductivity of mixtures Intermolecular potentials for O 2, N 2, and H 2 S Application to + N 2, + O 2, and + H 2 S 3

4 Simulation methods Molecular simulation methodologies Two ways of generating a statistical ensemble Initial Configuration Monte Carlo: Statistical method (Markov chain + Metropolis algorithm) ensuring occurrence of configuration i ~ exp(-u i /kt) Molecular Dynamics: Integration of Newton s equations of motion t = 1 to 2 fs m t = 4 to 5 ns t 1 t 1 + t t = t 1 +m t X MD 1 = t t t1 X ( t) dt Representative array of n configurations ( n > 5.x1 7 ) n 1 X = ( ) X MC i n i= 1 averages for property X = V, U,... Ergodicity theorem: X = MD X MC 4

5 Simulation methods Molecular simulation methodologies Non-Equilibrium Molecular Dynamics x Select particle 4 with highest kinetic energy 35 T (K) 3 25 old v c Cold region Hypothetical elastic collision Select particle Hot regionwith lowest Cold region kinetic energy old v h y J q (W/m 2 ) z new v c new v h z (A) t (ps) 5

6 Simulation methods Intermolecular potential used for Harris and Yung (1995) Lennard-Jones potentiel U disp rep ij Energy ε σ Electrostatic energy U σ = 4ε rij el ij qi q j = 4πε r o 6 σ 6 r distance ij ij Rigid molecule Three 6-12 Lennard-Jones centers + three point charges q = e 3 Lennard-Jones centers (σ Ο = 3.3 Å and ε O = 8.57 K) (σ C = 2.76 Å and ε C = K) O C q =.6512 e O q = e J. Harris and K. Yung, J. Phys. Chem. 99, 1221 (1995). 6

7 Simulation methods Pure properties Thermodynamic and transport properties Temperature (K) Simulation results Experimental data ln Psat (Pa) Simulation results Experimental data ρ (kg.m -3 ) /T (K -1 ) H vap (kj.mol -1 ) Simulation results Experimental data η (mpa.s) Simulation results / Liq. Simulation results / Vap. Experimental data Temperature (K) /T (K -1 ) 7

8 -N 2 O mixtures Study of -N 2 O mixtures Intermolecular potential for nitrous oxide Two sets of parameters are available in the literature: Costa Gomes et al. (26) Hansen et al. (27) Rigid molecule (geometry taken from Chase, 1985) Three 6-12 Lennard-Jones centers + three point charges 3 Lennard-Jones centers (Ν 1, Ν 2, Ο) q N1 N N Ǻ Ǻ O q O q N2 M.W. Chase, C.A. Davies et al., J. Phys. Chem. Ref. Data 14 (Suppl. 1) (1985). M.F. Costa Gomes, J. Deschamps, A.A.H. Padua, J. Phys. Chem. B 11, (26). N. Hansen, F.A.B. Agbor, F.J. Keil, Fluid Phase Equil. 259, (27). 8

9 -N 2 O mixtures Intermolecular potential for N 2 O Optimization of force field parameters Minimization of the error function (Ungerer et al., JCP, 112, 5499, 2): F = 1 n n calc exp ( fi fi ) 2 i= 1 s i where s i = statistical uncertainty on f i = ρ l, H vap, ln(p sat ) Searching for the minimum using the gradient method Calculation of partial derivatives of F from statistical fluctuations (NVT ensemble): 2 f i σ calc j = f i calc σ j β f i calc U σ j f i calc U σ j Bourasseau et al., JCP, 118, 32 (23) Use of two temperatures in the error criterion (19 K and 27 K) Results: σ N1 = Å; ε N1 = K; q N1 = -.34 e σ N2 = Å; ε N2 = K; q N1 =+.68 e σ O = 3.44 Å; ε O = K; q O = -.34 e N N O 9

10 -N 2 O mixtures Intermolecular potential for N 2 O Accuracy of different force-fields Liquid-vapor coexisting densities Temperature (K) New force field Costa Gomes force field Hansen force field Experimental data AAD Costa Gomes 2.6 % Hansen.9 % New force field 1. % + good estimate of the critical coordinates ρ (kg.m -3 ) Exp data: DIPPR data bank and Quinn (1929) 1

11 -N 2 O mixtures Intermolecular potential for N 2 O Accuracy of different force-fields Vapor pressures Psat (MPa) 1.1 New force field Costa Gomes force field Hansen force field Experimental data /T (K -1 ) AAD Costa Gomes 24.7 % Hansen 6.7 % New force field 5.8 % Exp data: DIPPR data bank 11

12 -N 2 O mixtures Intermolecular potential for N 2 O Accuracy of different force-fields Vaporization enthalpies 18 H vap (kj.mol -1 ) New force field Costa Gomes force field Hansen force field Experimental data AAD Costa Gomes 9.5 % Hansen 7.4 % New force field 3.5 % Temperature (K) Exp data: DIPPR data bank 12

13 -N 2 O mixtures Intermolecular potential for N 2 O Accuracy of different force-fields Viscosities along the saturation curve.25 η (mpa.s) New force field / Vap. Costa Gomes / Vap. Hansen / Vap. New force field / Liq. Costa Gomes / Liq. Hansen / Liq. Experimental data /T (K -1 ) AAD Costa Gomes 22.3 % Hansen 35.2 % New force field 11.8 % Exp data: NIST website 13

14 -N 2 O mixtures Study of -N 2 O mixtures Vapor-liquid phase diagrams Good agreement between experimental and simulated data at 283 K and 293 K Strong similarities between and N 2 O (in terms of molecular weights, vapor pressures, critical coordinates...) => quasi-azeotropic system over the full range of compositions Sim. results Exp. / DIPPR Exp. / Rowlinson, 1957 Exp. / Cook, 1953 T = K T = K P (MPa) T = K 14 Exp data: - D. Cook, Proceedings of the Royal Society of London Series A 219, (1953): 293 K -> 37 K - J.S. Rowlinson, J.R. Sutton, F. Weston, Proceedings, International Conference Thermodynamics and Transport Properties Fluids (1957): 277 K -> 293 K T = K T = K mole fraction

15 -N 2 O mixtures Study of -N 2 O mixtures Densities and viscosities Pressure-density and pressure-viscosity diagram at 283 K and 293 K of a -N 2 O mixture with 1 mol% of N 2 O. 8.8 ρ (kg.m -3 ) N 2 O / Sim. / K / Sim. / K / Experimental data -N 2 O / Sim. / K / Sim. / K / Experimental data η (mpa.s) N 2 O / Sim. / K / Sim. / K / Experimental data -N 2 O / Sim. / K / Sim. / K / Experimental data P (MPa) P (MPa) Excellent agreement between experimental and simulated data for pure No significant impact of N 2 O on both densities and viscosities Exp data for : NIST website 15

16 -NO mixtures Study of NO Equilibrium between monomers and dimers Nitric oxide: 2 NO N 2 O 2 Monte Carlo in the Reactive Ensemble Constraints Fixed T and V, or fixed T and P Mass conservation Equilibrium condition Monte Carlo moves Usual moves performed in the NVT or NPT ensembles Reaction move s i= 1 ν µ = i i example: µ(n 2 O 2 ) = 2µ(NO) M. Lisal, J.K. Brennan, W.R. Smith, J. Chem. Phys. 124 (26) W.R. Smith and B. Triska, J. Chem. Phys. 1 (1994) J. K. Johnson, A.Z. Panagiotopoulos, and K.E. Gubbins, Mol. Phys. 81 (1994) 16

17 -NO mixtures Study of the -NO mixtures Intermolecular potential for NO and N 2 O 2 Rigid molecules No account of the polarity of the molecule (µ ( =.159 D for NO) NO: a unique 6-12 Lennard-Jones center N 2 O 2 : two NO 6-12 Lennard-Jones centers separated by Å Several sets of parameters are available in the literature: σ (Å) ε/k (K) Kohler et al. (1987) Hirshfelder (1954) Hirshfelder (1954) one IFPEN force field Lennard-Jones center 2 Lennard-Jones center NO NO Å NO 17

18 -NO mixtures Simulation of the NO + N 2 O 2 system Liquid-vapor equilibrium properties Simultaneous use of the ReMC and GEMC methods N 2 O 2 mole fraction New force field Kohler force field Hirschfelder 1 force field Hirschfelder 2 force field Exp. data / Smith, Temperature (K) 18

19 -NO mixtures Simulation of the NO + N 2 O 2 system LVE properties: use of the ReMC and GEMC methods 18 Temperature (K) New force field Kohler force field Hirschfelder 1 force field Hirschfelder 2 force field Experimental data ρ (kg.m -3 ) Psat (MPa) 1.1 New force field Kohler force field Kohler force field (Lísal et al.) Hirschfelder 1 force field Hirschfelder 2 force field Experimental data H vap (kj.mol -1 ) New force field Kohler force field Hirschfelder 1 force field Hirschfelder 2 force field Experimental data /T (K -1 ) Temperature (K) 19

20 -NO mixtures Study of -NO mixtures Pressure-composition and pressure-density diagrams P (MPa) Sim. / K Sim. / K Sim. / K P (MPa) Sim. / K Sim. / K Sim. / K x,y (NO) ρ (kg.m -3 ) 2

21 -NO mixtures Study of -NO mixtures Densities and viscosities Pressure-density and pressure-viscosity diagram at 263 K and 273 K of a -NO mixture with 1 mol% of NO ρ (kg.m -3 ) NO / Sim. / K / Sim. / K / Experimental data -NO / Sim. / K / Sim. / K / Experimental data η (mpa.s).8.4 -NO / Sim. / K / Sim. / K / Experimental data -NO / Sim. / K / Sim. / K / Experimental data P (MPa) P (MPa) Excellent agreement between experimental and simulated data for pure Significant impact of NO on both liquid densities and viscosities Exp data for : NIST website 21

22 Thermal conductivities Intermolecular potentials for O 2, N 2, and H 2 S Rigid molecules O 2 N 2 H 2 S [1] [2] [3] 2 Lennard-Jones centers (σ Ο = 3.11 Å and ε O = 43.2 K) 2 Lennard-Jones centers (σ Ν = 3.33 Å and ε N = 36. K) 1 Lennard-Jones center (σ S = 3.73 Å and ε S = 25. K) O O N N q = -.9 e S q = e q = 4.2 e q = e q = e q = 1.15 e q = e H H q =.25 e q =.25 e q = -.9 e [1] Boutard et al., Fluid Phase Equilibria 236, (25). [2] Delhommelle, PhD Thesis, France (2). [3] Kristof T., Liszi J., J. Phys. Chem. B 11, 548 (1997). 22

23 Thermal conductivities Study of + N 2 systems bar, 288K 15 bar, 288K.1 McLoughlin NEMD λ (W/m*K) λ (W/m*K) McLaughlin NEMD X N2 13 bar, 293K 15 bar, 293K X N2 λ (W/m*K) McLaughlin NEMD λ (W/m*K) McLaughlin NEMD X N2 X N2 23

24 Thermal conductivities Study of + O 2 systems 13 bar, 288K 13 bar, 293K λ (W/m*K) McLaughlin NEMD λ (W/m*K) McLaughlin NEMD X O2 X O2 24

25 Thermal conductivities Study of + H 2 S systems 13 bar, 288K 13 bar, 293K Li NEMD.21 Li NEMD λ (W/m*K) λ (W/m*K) φ H2S φ H2S 25

26 Conclusion and perspectives Development of new force fields and prediction of some property values for CO + N 2 2 O and + NO mixtures. All results have been published: V. Lachet,, B. Creton, T. de Bruin,, E. Bourasseau,, N. Desbiens, Ø. Wilhelmsen,, M. Hammer, Equilibrium and transport properties of CO +N 2 2 O and +NO mixtures: molecular simulation and equation of state modelling study, Fluid Phase Equilibria , (212). Calculation of thermal conductivities for binary mixtures such as + N, 2 + O 2 and + H 2 S. A publication is currently in preparation in collaboration with SINTEF. 26

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 1 David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Time/s Multi-Scale Modeling Based on SDSC Blue Horizon (SP3) 1.728 Tflops

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Thermodynamic Phase Equilibria Certain thermodynamic states

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Thermodynamic and transport properties of carbon dioxide from molecular simulation

Thermodynamic and transport properties of carbon dioxide from molecular simulation Thermodynamic and transport properties of carbon dioxide from molecular simulation Carlos Nieto-Draghi, Theodorus de Bruin, Javier Pérez-Pellitero, Josep Bonet Avalos, and Allan D. Mackie Citation: The

More information

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Fluid Phase Equilibria 178 (2001) 87 95 Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Jian Chen a,, Jian-Guo Mi

More information

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2975-2979, Oct-Dec 2013 Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane +

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases MD Simulation of Diatomic Gases Bull. Korean Chem. Soc. 14, Vol. 35, No. 1 357 http://dx.doi.org/1.51/bkcs.14.35.1.357 Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases Song

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State 23 Bulletin of Research Center for Computing and Multimedia Studies, Hosei University, 28 (2014) Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State Yosuke

More information

Emeric Bourasseau, Mehalia Haboudou, Anne Boutin, and Alain H. Fuchs

Emeric Bourasseau, Mehalia Haboudou, Anne Boutin, and Alain H. Fuchs JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 7 15 FEBRUARY 2003 New optimization method for intermolecular potentials: Optimization of a new anisotropic united atoms potential for olefins: Prediction

More information

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS THERMAL SCIENCE: Year 07, Vo., No. 6B, pp. 85-858 85 DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS Introduction by Bo SONG, Xiaopo WANG *,

More information

Francis, 2008, 34 (02), pp < / >. <hal > HAL Id: hal

Francis, 2008, 34 (02), pp < / >. <hal > HAL Id: hal Optimisation of the dynamical behaviour of the Anisotropic United Atom Model of branched alkanes. Application to the molecular simulation of fuel gasoline Carlos Nieto-Draghi, Anthony Bocahut, Benoît Creton,

More information

Mutual diffusion in the ternary mixture of water + methanol + ethanol: Experiments and Molecular Simulation

Mutual diffusion in the ternary mixture of water + methanol + ethanol: Experiments and Molecular Simulation - 1 - Mutual diffusion in the ternary mixture of water + methanol + ethanol: Experiments and Molecular Simulation Tatjana Janzen, Gabriela Guevara-Carrión, Jadran Vrabec University of Paderborn, Germany

More information

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering InPROMT 2012, Berlin, 16. November 2012 DFG Transregio CRC 63 Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering Hans Hasse 1, Martin Horsch 1, Jadran Vrabec 2 1 Laboratory

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid

Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid MOLECULAR PHYSICS, 1989, VOL. 68, No. 3, 629-635 Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid by E. N. RUDISILL and P. T. CUMMINGS

More information

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation J. Comput. Chem. Jpn., Vol. 8, o. 3, pp. 97 14 (9) c 9 Society of Computer Chemistry, Japan An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation Yosuke KATAOKA* and Yuri YAMADA

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study

Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study Thorsten Merker, Jadran Vrabec, and Hans Hasse Laboratory of Engineering Thermodynamics, University of

More information

Melting line of the Lennard-Jones system, infinite size, and full potential

Melting line of the Lennard-Jones system, infinite size, and full potential THE JOURNAL OF CHEMICAL PHYSICS 127, 104504 2007 Melting line of the Lennard-Jones system, infinite size, and full potential Ethan A. Mastny a and Juan J. de Pablo b Chemical and Biological Engineering

More information

2-412 PHYSICAL AND CHEMICAL DATA

2-412 PHYSICAL AND CHEMICAL DATA 2-412 PHYSICAL AND CHEMICAL DATA TABLE 2-304 Saturated Solid/Vapor Water* Volume, Enthalpy, Entropy, Temp., Pressure, ft 3 /lb Btu/lb Btu/(lb)( F) F lb/in 2 abs. Solid Vapor Solid Vapor Solid Vapor 160

More information

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec Atomistic molecular simulations for engineering applications: methods, tools and results Jadran Vrabec Motivation Simulation methods vary in their level of detail The more detail, the more predictive power

More information

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES V.V. Korenkov 1,3, a, E.G. Nikonov 1, b, M. Popovičová 2, с 1 Joint Institute for Nuclear

More information

DIRECT EVALUATION OF VAPOUR-LIQUID EQUILIBRIA BY MOLECULAR DYNAMICS USING GIBBS-DUHEM INTEGRATION

DIRECT EVALUATION OF VAPOUR-LIQUID EQUILIBRIA BY MOLECULAR DYNAMICS USING GIBBS-DUHEM INTEGRATION Molecular Simulation, 1996, Vol. 17, pp. 21-39 Reprints available directly from the publisher Photocopying permitted by license only 0 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published

More information

School of Chemical Engineering, Universidad del Valle, Ciudad Universitaria Melendez, Building 336, Apartado 25360, Cali, Colombia

School of Chemical Engineering, Universidad del Valle, Ciudad Universitaria Melendez, Building 336, Apartado 25360, Cali, Colombia Vapor-phase chemical equilibrium and combined chemical and vapor-liquid equilibrium for the ternary system ethylene + water + ethanol from reaction-ensemble and reactive Gibbs-ensemble molecular simulations

More information

UB association bias algorithm applied to the simulation of hydrogen fluoride

UB association bias algorithm applied to the simulation of hydrogen fluoride Fluid Phase Equilibria 194 197 (2002) 249 256 UB association bias algorithm applied to the simulation of hydrogen fluoride Scott Wierzchowski, David A. Kofke Department of Chemical Engineering, University

More information

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES Atichat Wongkoblap*, Worapot Intomya, Warangkhana Somrup, Sorod Charoensuk, Supunnee Junpirom and Chaiyot Tangsathitkulchai School of Chemical

More information

Molecular simulation of adsorption from dilute solutions

Molecular simulation of adsorption from dilute solutions Vol. 52 No. 3/2005 685 689 on-line at: www.actabp.pl Molecular simulation of adsorption from dilute solutions Werner Billes Rupert Tscheliessnig and Johann Fischer Institut für Verfahrens- und Energietechnik

More information

Molecular Dynamics Simulation of Methanol-Water Mixture

Molecular Dynamics Simulation of Methanol-Water Mixture Molecular Dynamics Simulation of Methanol-Water Mixture Palazzo Mancini, Mara Cantoni University of Urbino Carlo Bo Abstract In this study some properties of the methanol-water mixture such as diffusivity,

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

EQUATION OF STATE DEVELOPMENT

EQUATION OF STATE DEVELOPMENT EQUATION OF STATE DEVELOPMENT I. Nieuwoudt* & M du Rand Institute for Thermal Separation Technology, Department of Chemical Engineering, University of Stellenbosch, Private bag X1, Matieland, 760, South

More information

2D Clausius Clapeyron equation

2D Clausius Clapeyron equation 2D Clausius Clapeyron equation 1/14 Aim: Verify the Clausius Clapeyron equation by simulations of a 2D model of matter Model: 8-4 type potential ( Lennard-Jones in 2D) u(r) = 1 r 8 1 r 4 Hard attractive

More information

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures Available online at www.sciencedirect.com Energy Procedia 26 (2012 ) 90 97 2 nd Trondheim Gas Technology Conference Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic

More information

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Liquids and Solids Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gases, Liquids and Solids Gases are compressible fluids. They have no proper volume and proper

More information

Simulation of Chemical Reaction Equilibria by the Reaction Ensemble Monte Carlo Method: A Review

Simulation of Chemical Reaction Equilibria by the Reaction Ensemble Monte Carlo Method: A Review Simulation of Chemical Reaction Equilibria by the Reaction Ensemble Monte Carlo Method: A Review C. Heath Turner* Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL

More information

The gas-liquid surface tension of argon: A reconciliation between experiment and simulation

The gas-liquid surface tension of argon: A reconciliation between experiment and simulation THE JOURNAL OF CHEMICAL PHYSICS 140, 44710 (014) The gas-liquid surface tension of argon: A reconciliation between experiment and simulation Florent Goujon, 1,a) Patrice Malfreyt, 1 and Dominic J. Tildesley

More information

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores CARBON Providence, Rhode Island Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores D. D. Do* and H. D. Do, University of Queensland, St. Lucia, Qld 7, Australia

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

2D Clausius Clapeyron equation

2D Clausius Clapeyron equation 2D Clausius Clapeyron equation 1/14 Aim: Verify the Clausius Clapeyron equation by simulations of a 2D model of matter Model: 8-4 type potential ( Lennard-Jones in 2D) u(r) = 1 r 8 1 r 4 Hard attractive

More information

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry JNCASR August 20, 21 2009 Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles Srikanth Sastry Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

More information

From Dynamics to Thermodynamics using Molecular Simulation

From Dynamics to Thermodynamics using Molecular Simulation From Dynamics to Thermodynamics using Molecular Simulation David van der Spoel Computational Chemistry Physical models to describe molecules Software to evaluate models and do predictions - GROMACS Model

More information

Table of Contents Preface PART I. MATHEMATICS

Table of Contents Preface PART I. MATHEMATICS Table of Contents Preface... v List of Recipes (Algorithms and Heuristics)... xi PART I. MATHEMATICS... 1 Chapter 1. The Game... 3 1.1 Systematic Problem Solving... 3 1.2 Artificial Intelligence and the

More information

Joy Billups Woller A THESIS. Presented to the Faculty of. The Graduate College in the University of Nebraska

Joy Billups Woller A THESIS. Presented to the Faculty of. The Graduate College in the University of Nebraska DETERMINATION OF THE THERMODYNAMIC PROPERTIES OF FLUIDS BY GIBBS ENSEMBLE MONTE CARLO COMPUTER SIMULATIONS by Joy Billups Woller A THESIS Presented to the Faculty of The Graduate College in the University

More information

IMPROVED METHOD FOR CALCULATING SURFACE TENSION AND APPLICATION TO WATER

IMPROVED METHOD FOR CALCULATING SURFACE TENSION AND APPLICATION TO WATER IMPROVED METHOD FOR CALCULATING SURFACE TENSION AND APPLICATION TO WATER ABSTRACT Hong Peng 1, Anh V Nguyen 2 and Greg R Birkett* School of Chemical Engineering, The University of Queensland Brisbane,

More information

3.5. Kinetic Approach for Isotherms

3.5. Kinetic Approach for Isotherms We have arrived isotherm equations which describe adsorption from the two dimensional equation of state via the Gibbs equation (with a saturation limit usually associated with monolayer coverage). The

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

On the Calculation of the Chemical Potential. Using the Particle Deletion Scheme

On the Calculation of the Chemical Potential. Using the Particle Deletion Scheme On the Calculation of the Chemical Potential Using the Particle Deletion Scheme Georgios C. Boulougouris,2, Ioannis G. Economou and Doros. Theodorou,3,* Molecular Modelling of Materials Laboratory, Institute

More information

Theory of infinite dilution chemical potential

Theory of infinite dilution chemical potential Fluid Phase Equilibria Journal Volume 85, 141-151, 1993 141 Esam Z. Hamada and G.Ali Mansoorib, * a Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi

More information

Molecular dynamics simulation of the liquid vapor interface: The Lennard-Jones fluid

Molecular dynamics simulation of the liquid vapor interface: The Lennard-Jones fluid Molecular dynamics simulation of the liquid vapor interface: The Lennard-Jones fluid Matthias Mecke and Jochen Winkelmann a) Institut für Physikalische Chemie, Universität Halle-Wittenberg, Geusaer Str.,

More information

Monte Carlo (MC) Simulation Methods. Elisa Fadda

Monte Carlo (MC) Simulation Methods. Elisa Fadda Monte Carlo (MC) Simulation Methods Elisa Fadda 1011-CH328, Molecular Modelling & Drug Design 2011 Experimental Observables A system observable is a property of the system state. The system state i is

More information

Dependence of the surface tension on curvature

Dependence of the surface tension on curvature Dependence of the surface tension on curvature rigorously determined from the density profiles of nanodroplets Athens, st September M. T. Horsch,,, S. Eckelsbach, H. Hasse, G. Jackson, E. A. Müller, G.

More information

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo Molecular Dynamics Time is of the essence in biological processes therefore how do we understand time-dependent processes at the molecular level? How do we do this experimentally? How do we do this computationally?

More information

Monte Carlo simulations of vapor-liquid-liquid equilibrium of ternary

Monte Carlo simulations of vapor-liquid-liquid equilibrium of ternary 1 Monte Carlo simulations of vapor-- equilibrium of ternary petrochemical mixtures Suren Moodley a, Kim Bolton b, and Deresh Ramjugernath a a Thermodynamics Research Unit, School of Chemical Engineering,

More information

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Minh Triet Dang, 1 Ana Vila Verde, 2 Van Duc Nguyen, 1 Peter G. Bolhuis, 3 and Peter Schall 1

More information

New from Ulf in Berzerkeley

New from Ulf in Berzerkeley New from Ulf in Berzerkeley from crystallization to statistics of density fluctuations Ulf Rørbæk Pedersen Department of Chemistry, University of California, Berkeley, USA Roskilde, December 16th, 21 Ulf

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

1 Points to Remember Subject: Chemistry Class: XI Chapter: States of matter Top concepts 1. Intermolecular forces are the forces of attraction and repulsion between interacting particles (atoms and molecules).

More information

Interface Film Resistivities for Heat and Mass TransferssIntegral Relations Verified by Non-equilibrium Molecular Dynamics

Interface Film Resistivities for Heat and Mass TransferssIntegral Relations Verified by Non-equilibrium Molecular Dynamics 18528 J. Phys. Chem. B 2006, 110, 18528-18536 Interface Film Resistivities for Heat and Mass ransferssintegral Relations Verified by Non-equilibrium Molecular Dynamics J. M. Simon,*,, D. Bedeaux, S. Kjelstrup,

More information

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol) Ch 11 (Sections 11.1 11.5) Liquid Phase Volume and Density - Liquid and solid are condensed phases and their volumes are not simple to calculate. - This is different from gases, which have volumes that

More information

Hands-on : Model Potential Molecular Dynamics

Hands-on : Model Potential Molecular Dynamics Hands-on : Model Potential Molecular Dynamics OUTLINE 0. DL_POLY code introduction 0.a Input files 1. THF solvent molecule 1.a Geometry optimization 1.b NVE/NVT dynamics 2. Liquid THF 2.a Equilibration

More information

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases.

B. Correct! Good work. F = C P + 2 = = 2 degrees of freedom. Good try. Hint: Think about the meaning of components and phases. Physical Chemistry - Problem Drill 06: Phase Equilibrium No. 1 of 10 1. The Gibbs Phase Rule is F = C P + 2, how many degrees of freedom does a system have that has two independent components and two phases?

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 02 Capabilities of Classical Molecular Simulation These notes created by David Keffer, University of Tennessee, Knoxville, 2009. Outline Capabilities of Classical

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Surface property corrected modification of the classical nucleation theory

Surface property corrected modification of the classical nucleation theory CCP5 Annual Meeting Surface property corrected modification of the classical nucleation theory Sheffield Hallam University, September 15, 2010 Martin Horsch, Hans Hasse, and Jadran Vrabec The critical

More information

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2

CHEMISTRY. CHM202 Class #2 CHEMISTRY. Chapter 10. Chapter Outline for Class #2 CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies CHM202 Class #2 1 Chemistry, 5 th Edition Copyright 2017, W. W. Norton & Company CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter

More information

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE Tatsuto Kimura* and Shigeo Maruyama** *Department of Mechanical Engineering, The University of Tokyo 7-- Hongo,

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

arxiv: v1 [physics.comp-ph] 22 Apr 2009

arxiv: v1 [physics.comp-ph] 22 Apr 2009 Comprehensive study of the vapour-liquid equilibria of the pure two-centre Lennard-Jones plus pointdipole fluid Jürgen Stoll, Jadran Vrabec, Hans Hasse arxiv:0904.3413v1 [physics.comp-ph] 22 Apr 2009 Institut

More information

Dynamic viscosity estimation of hydrogen sulfide using a predictive scheme based on molecular dynamics.

Dynamic viscosity estimation of hydrogen sulfide using a predictive scheme based on molecular dynamics. Dynamic viscosity estimation of hydrogen sulfide using a predictive scheme based on molecular dynamics. Guillaume Galliéro, Christian Boned To cite this version: Guillaume Galliéro, Christian Boned. Dynamic

More information

Nonequilibrium Molecular Dynamics Simulations of Shear Viscosity: Isoamyl Alcohol, n-butyl Acetate and Their Mixtures

Nonequilibrium Molecular Dynamics Simulations of Shear Viscosity: Isoamyl Alcohol, n-butyl Acetate and Their Mixtures Draft Date: October 5, 1999 Nonequilibrium Molecular Dynamics Simulations of Shear Viscosity: Isoamyl Alcohol, n-butyl Acetate and Their Mixtures Y. Yang 1, T. A. Pakkanen, 2 and R. L. Rowley 1,3 Draft

More information

Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores by Martin Lísal, John K. Brennan, and William R. Smith ARL-RP-147 September 2006 A reprint from

More information

Supporting Information

Supporting Information Projection of atomistic simulation data for the dynamics of entangled polymers onto the tube theory: Calculation of the segment survival probability function and comparison with modern tube models Pavlos

More information

A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information

A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information John Blamey 1, Ming Zhao 2, Vasilije Manovic 3, Edward J. Anthony 3, Denis R. Dugwell

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

Phase transitions of quadrupolar fluids

Phase transitions of quadrupolar fluids Phase transitions of quadrupolar fluids Seamus F. O Shea Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4 Girija S. Dubey Brookhaven National Laboratory, Upton, New

More information

Monte Carlo Calculations of Effective Surface Tension for Small Clusters

Monte Carlo Calculations of Effective Surface Tension for Small Clusters Monte Carlo Calculations of Effective Surface Tension for Small Clusters Barbara N. Hale Physics Department and Cloud and Aerosol Science Laboratory, University of Missouri- Rolla, Rolla, MO 65401, USA

More information

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity Draft: September 29, 1999 The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity N. G. Fuller 1 and R. L. Rowley 1,2 Abstract The influence of model flexibility upon simulated viscosity

More information

Computer simulations as concrete models for student reasoning

Computer simulations as concrete models for student reasoning Computer simulations as concrete models for student reasoning Jan Tobochnik Department of Physics Kalamazoo College Kalamazoo MI 49006 In many thermal physics courses, students become preoccupied with

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 2 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 2-6. Paraphrase: How

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: applications

Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: applications Fluid Phase Equilibria 200 (2002) 93 110 Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: applications Loukas I. Kioupis, Gaurav Arya, Edward J. Maginn Department

More information

DETERMINATION OF CRITICAL CONDITIONS FOR THE ESTERIFICATION OF ACETIC ACID WITH ETHANOL IN THE PRESENCE OF CARBON DIOXIDE

DETERMINATION OF CRITICAL CONDITIONS FOR THE ESTERIFICATION OF ACETIC ACID WITH ETHANOL IN THE PRESENCE OF CARBON DIOXIDE Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 23, No. 03, pp. 359-364, July - September, 2006 DETERMINATION OF CRITICAL CONDITIONS FOR THE ESTERIFICATION

More information

Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation*

Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation* Pure Appl. Chem., Vol. 76, No. 1, pp. 203 213, 2004. 2004 IUPAC Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation* Michalis Chalaris and Jannis Samios Physical

More information

Solutions to Problem Set 9

Solutions to Problem Set 9 Solutions to Problem Set 9 1. When possible, we want to write an equation with the quantity on the ordinate in terms of the quantity on the abscissa for each pf the labeled curves. A B C p CHCl3 = K H

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam The International Association for the Properties of Water and Steam Gaithersburg, Maryland, USA September 2001 Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water 2001 International

More information

Molecular Simulation Study of the Vapor Liquid Interfacial Behavior of a Dimer-forming Associating Fluid

Molecular Simulation Study of the Vapor Liquid Interfacial Behavior of a Dimer-forming Associating Fluid Molecular Simulation, Vol. 30 (6), 15 May 2004, pp. 343 351 Molecular Simulation Study of the Vapor Liquid Interfacial Behavior of a Dimer-forming Associating Fluid JAYANT K. SINGH and DAVID A. KOFKE*

More information

There are five problems on the exam. Do all of the problems. Show your work.

There are five problems on the exam. Do all of the problems. Show your work. CHM 3410 - Physical Chemistry 1 Second Hour Exam October 22, 2010 There are five problems on the exam. Do all of the problems. Show your work. R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride - 1 - PLMMP 2016, Kyiv Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride Jadran Vrabec Tatjana Janzen, Gabriela Guevara-Carrión,

More information

An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases

An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases Korean J. Chem. Eng., 23(3), 447-454 (2006) SHORT COMMUNICATION An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic

More information

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i Set the initial conditions r i t 0, v i t 0 Update neighborlist Get new forces F i r i Solve the equations of motion numerically over time step t : r i t n r i t n + v i t n v i t n + Perform T, P scaling

More information

ScienceDirect. Modelling CO 2 Water Thermodynamics Using SPUNG Equation of State (EoS) concept with Various Reference Fluids

ScienceDirect. Modelling CO 2 Water Thermodynamics Using SPUNG Equation of State (EoS) concept with Various Reference Fluids Available online at www.sciencedirect.com ScienceDirect Energy Procedia 51 (2014 ) 353 362 7th Trondheim CCS Conference, TCCS-7, June 5-6 2013, Trondheim, Norway Modelling CO 2 Water Thermodynamics Using

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 2003.3.28 Source of the lecture note. J.M.Prausnitz and others, Molecular Thermodynamics of Fluid Phase Equiliria Atkins, Physical Chemistry Lecture

More information