There are statistical tests that compare prediction of a model with reality and measures how significant the difference.

Size: px
Start display at page:

Download "There are statistical tests that compare prediction of a model with reality and measures how significant the difference."

Transcription

1 Statistical Methods in Business Lecture 11. Chi Square, χ 2, Goodness-of-Fit Test There are statistical tests that compare prediction of a model with reality and measures how significant the difference. Also, there are statistical methods that are capable of operating under any probability law, they are known as non-parametric methods. The chi-square goodness-of-fit test is a non-parametric test to measure the difference between a model prediction versus reality. It works reliably when we have large samples (more than 20 observations). Let a population have different categories, a.k.a. classes, of a characteristic. The general structure of the chi-square test would be a follows: H 0 : There is no significant difference between the model predictions and reality. H 1 : There is a significant difference between the model predictions and reality. Level of significance: Test statistic: = Σ : ; (=> :? ) B C Where i denotes the index that points at the category-i, fo G denotes the observed frequency of the category-i, i.e. the number of observations in the category-i, and fe G denotes the expected frequency of the category-i, i.e. number of observations expected to be in the category-i, predicted by the model. The expected frequency for a category must be five or greater. Otherwise chi-square test would become unreliable. The test statistic is subject to a chi-square probability law, identified by its degrees of freedom, df (which is a function of the number of categories), denoted by χ I=. Hence, the critical level to compare the test statistic with is χ JKL5LJ6M = χ ;I= i.e. χ JKL5LJ6M is the value that generates amount of right tail area under the probability density function of χ I=. Decision Rule: If > χ JKL5LJ6M, then reject H 0. 1 P age

2 or, compute the p-value: p-value = P (χ > ) and write the decision rule: if p-value <, then reject H 0. - which indicates that the H 0 has a very small chance to be the true statement. Business applications of the chi-square test are many, however, the most common applications are as following examples: Example 1) Uniform distribution ( Fairness ): Model: Assume we have a fair die. Experiment: Roll the die 120 times. Outcome: Each category is identified by a face number. Category: 1, 2, 3, 4, 5, 6. fo G : 13, 33, 14,, 36, 1. Question: Is this die fair? Investigate at the 95% confidence level. H 0 : The die is fair. H 1 : The die is not fair. = 0.05 Test statistic: The model assumes that all categories have equal number of elements. 5P56M QRSTUK PV PT4UKW65LPQ4 Thus, fe G =. QRSTUK PV J65UXPKLU4 i.e. fe G = 10 Y = 20, for all i. Let the number of categories be k = 6. We have df = k 1 = 5. Then, = Y (=> :? ) B = Ga1 = (1b?0)B (1c?0)B 0. 2 P age

3 And, p-value = p (χ > 34.40), subject to a chi-square probability law with 5 degrees of freedom. p-value = Decision Rule: If p-value <, then reject H 0. Or, If > χ JKL5LJ6M, then reject H 0. Decision: Since p-value <, we reject H 0 at 5% level of significance. We are 95% confident that this die is not a fair die (based on this evidence). Example 2) Grades on the Curve. In this sentence, the curve refers to the Gaussian (normal) probability law. MODEL: Grades are distributed according to a NORMAL PROBABILITY DISTRIBUTION Assume the performance of a student is measured by a numerical grade, representing the degree of learning, from 0 to 100. Higher numbers indicate higher degree of learning. LETTER GRADE CATEGORIES: A, B+, B, C+, C, D, F. PERFORMANCE MEASURE: [90,100], [85,90), [80, 85), [5, 80), [60, 5), [50,60), [0,50) (Numerical Categorization) EXPERIMENT: In a class of 100 undergraduate students, the final performance measures are: LETTER GRADE CATEGORY: A B+ B C+ C D F fo G : 10, 10, 16, 1, 2, 13, Assume that the average grade is 80 out of 100, and the standard deviation of the grade is 5 out 100, based on all students. MODEL: X ~Ɲ (80, 5 ). 3 P age

4 Where the random variable X denotes the performance measure, grade. EXPECTED FREQUENCIES FOR LETTER GRADE CATEGORIES: fe 6 = P (90 X 100) x (NUMBER OF STUDENTS), fe Tp = P (85 X < 90) x (NUMBER OF STUDENTS), fe T = P (80 X < 85) x (NUMBER OF STUDENTS), fe Jp = P (5 X < 80) x (NUMBER OF STUDENTS), fe J = P (60 X < 5) x (NUMBER OF STUDENTS), fe r = P (50 X < 60) x (NUMBER OF STUDENTS), fe V = P (0 X < 50) x (NUMBER OF STUDENTS). P (0 X < 50) = x P (50 X < 60) = x 10-5 P (60 X < 5) = P (5 X < 80) = P (80 X < 85) = P (85 X < 90) = P (90 X 100) = Also: P (- < X < 0 ) = x P (100 < X < ) = ( ) = x 10-5 fe 6 = , fe Tp = , fe T = , fe Jp = , fe J = , fe r = , fe V = , Hence, we have the goodness of fit test: H 0 : Grades are distributed on the curve. H 1 : Grades are not distributed on the curve. Level of significance: = 0.05 Test statistic: = c (=> :? ) B Ga1 = P age

5 CRITICAL VALUE: χ JKL5LJ6M = χ 0.0t,Y = p-value = P (χ > ) 0 Decision Rule: If p-value <, then reject H 0. Or, if > χ JKL5LJ6M, then reject H 0. Decision: Since p-value <, we reject H 0 at 5% level of significance. Based on this evidence, we are 95% confident that these grades are not distributed on the curve. Example 3) Comparing probability of successes: Assume that there are three different banks in our neighborhood. Let the customer satisfaction be the success event for a bank. We want to compare the proportion of satisfied customers for these three banks, with 95% confidence. Let the probability of success (proportion of the satisfied customers) be π w for the bank j; j=1,2,3. We collect the following data Bank -1 Bank-2 Bank-3 Total SUCCESS FAILURE TOTAL This is a contingency table, informing us about two events happening simultaneously; Event-1= Bank patronage and Event-2= State of satisfaction. 5 P age

6 Each combination of these two events is a joint event, and represents one category. For example, there are 128 number of satisfied customers of the Bank-1 and 66 unsatisfied customers of the Bank-3. The margins of this contingency table eliminates one factor information. For example, there are 513 total number of satisfied customers for all these three banks. The GRAND TOTAL is the sum of marginal numbers and it indicates the total number of customers, in our example the grand total is 00 customers. We have fo 1 = 128, fo = 199, fo b = 186, fo x = 88, fo t = 33, fo Y = 66. We can compute the expected frequency of each category by using the contingency table information as follows: fe G = ; (K>y 5>z{ ) : } (J> ~ 5>z{ ) : C XK6Qr 5P56M fe 1 = (t1b)(1y) fe x = (1 c)(1y), fe = (t1b)(b), fe b = (t1b)(t), fe t = (1 c)(b) (1 c)(t), fe Y = These computations are generated by the independence assumption of two factors; customer satisfaction and bank selection. The contingency table data has two rows, r=2, denoting customer satisfaction factor, and three columns, representing the bank selection factor, c=3, and the test statistic, ~ χ (?1)(ƒ?1). Let π w be the probability of SUCCESS for the bank-j; j=1,2,3. H 0 : π 1 = π = π b. H 1 : Not all π w are equal. Level of significance: = P age

7 Test Statistic: = Y ; (=> :? ) B Ga1 C = χ JKL5LJ6M = χ 0.0t ; (2-1) (3-1) = χ 0.0t ; 2 = p-value = P (χ > ) = 1.84 x 10-9 Decision Rule: If p-value <, then reject H 0. Or, if > χ JKL5LJ6M, then reject H 0. Decisions: Since X 4565 > X JKL5LJ6M, we reject H 0 at 5% level of significance. Based on this evidence, we are 95% confident that not all three banks have the same proportion of satisfied customers. Marascuilo Procedure: We can compare and identify significantly different probability of success for each pair of banks. Let (j, j ) identify a pair of (Bank-j, Bank- j ), for all j j. Also, let p j be the sample proportion of success for a Bank-j. Decision Criterion: If p w - p w > critical range (j, j ), then π w and π w are significantly different. Where, critical range (j, j ) = χ JKL5LJ6M 1p š + (1p ) n w is the number of customers for the bank-j, j=1,2,3, and n w is the number of customers for the bank-j, j =1,2,3. χ JKL5LJ6M = = œχ ; (r 1)(c 1) P age

8 p 1 = = 1 1Y, n 1 = 216 p = = 1ŸŸ b, n = 232 p b = = 1 Y t, n b = 252 p 1 - p = p 1 - p b = p - p b = Critical range (1,2) = χ JKL5LJ6M (1p ) + B(1p B ) B Critical range (1,3) = χ JKL5LJ6M (1p ) + (1p ) Critical range (2,3) = χ JKL5LJ6M B (1p B ) + (1p ) B Hence, π 1 and π are significantly different, but π 1 and π b, and π and π b are not significantly different. Example 4) Independence Test: We can continue with the previous example and investigate whether the customer satisfaction factor and the bank selection factor are independent. H 0 : There is no significant relationship between the customer satisfaction factor and the bank selection factor. H 1 : There is significant relationship between the customer satisfaction factor and the bank selection factor. Level of significance: = P age

9 Contingency Table for Dissatisfaction: Reason Bank-1 Bank-2 Bank-3 TOTAL Price Location Service Other TOTAL (r=4, c=3) degrees of freedom = (r-1) (c-1) = 6. Test Statistic: = 1 [ (=> :? ) B Ga1 ] = χ JKL5LJ6M = χ 0.0t,Y = Decision Rule: If > χ JKL5LJ6M, then reject H 0. Or, if p-value <, then reject H 0. Decision: Since > χ JKL5LJ6M, we reject H 0 at 5% level of significance. Based on this evidence, we are 95% confident that the customer satisfaction rate and the bank selection are not independent factors. The chi-square goodness-of-fit test provides an easy to use statistical method for variety of different cases, in order to compare the distance between predictions of a model versus reality. Yet, there are important shortcomings of this method, it is an asymptotic method, indicating that the test statistic is subject to a chi-square probability law in the convergence of distribution sense, thus a large sample is required. Also, the expected frequency of a category should be at least five, otherwise the chi-square test would be unstable and unreliable. The trade-off between simplicity versus usefulness must be observed for any statistical method when one is making decisions based on a sample. 9 P age

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model. Statistical Methods in Business Lecture 5. Linear Regression We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

More information

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS CDR4_BERE601_11_SE_C1QXD 1//08 1:0 PM Page 1 110: (Student CD-ROM Topic) Chi-Square Goodness-of-Fit Tests CD1-1 110 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS In this section, χ goodness-of-fit

More information

Quantitative Analysis and Empirical Methods

Quantitative Analysis and Empirical Methods Hypothesis testing Sciences Po, Paris, CEE / LIEPP Introduction Hypotheses Procedure of hypothesis testing Two-tailed and one-tailed tests Statistical tests with categorical variables A hypothesis A testable

More information

Statistics for Managers Using Microsoft Excel

Statistics for Managers Using Microsoft Excel Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap

More information

Topic 21 Goodness of Fit

Topic 21 Goodness of Fit Topic 21 Goodness of Fit Contingency Tables 1 / 11 Introduction Two-way Table Smoking Habits The Hypothesis The Test Statistic Degrees of Freedom Outline 2 / 11 Introduction Contingency tables, also known

More information

Example. χ 2 = Continued on the next page. All cells

Example. χ 2 = Continued on the next page. All cells Section 11.1 Chi Square Statistic k Categories 1 st 2 nd 3 rd k th Total Observed Frequencies O 1 O 2 O 3 O k n Expected Frequencies E 1 E 2 E 3 E k n O 1 + O 2 + O 3 + + O k = n E 1 + E 2 + E 3 + + E

More information

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric Assumptions The observations must be independent. Dependent variable should be continuous

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

STP 226 EXAMPLE EXAM #3 INSTRUCTOR:

STP 226 EXAMPLE EXAM #3 INSTRUCTOR: STP 226 EXAMPLE EXAM #3 INSTRUCTOR: Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned. Signed Date PRINTED

More information

Lecture 28 Chi-Square Analysis

Lecture 28 Chi-Square Analysis Lecture 28 STAT 225 Introduction to Probability Models April 23, 2014 Whitney Huang Purdue University 28.1 χ 2 test for For a given contingency table, we want to test if two have a relationship or not

More information

Chi-Squared Tests. Semester 1. Chi-Squared Tests

Chi-Squared Tests. Semester 1. Chi-Squared Tests Semester 1 Goodness of Fit Up to now, we have tested hypotheses concerning the values of population parameters such as the population mean or proportion. We have not considered testing hypotheses about

More information

Research Methodology: Tools

Research Methodology: Tools MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 05: Contingency Analysis March 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide

More information

Multiple Sample Categorical Data

Multiple Sample Categorical Data Multiple Sample Categorical Data paired and unpaired data, goodness-of-fit testing, testing for independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 6: Tests of Hypotheses Contingency Analysis Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

An ordinal number is used to represent a magnitude, such that we can compare ordinal numbers and order them by the quantity they represent.

An ordinal number is used to represent a magnitude, such that we can compare ordinal numbers and order them by the quantity they represent. Statistical Methods in Business Lecture 6. Binomial Logistic Regression An ordinal number is used to represent a magnitude, such that we can compare ordinal numbers and order them by the quantity they

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

2 and F Distributions. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006

2 and F Distributions. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006 and F Distributions Lecture 9 Distribution The distribution is used to: construct confidence intervals for a variance compare a set of actual frequencies with expected frequencies test for association

More information

Tables Table A Table B Table C Table D Table E 675

Tables Table A Table B Table C Table D Table E 675 BMTables.indd Page 675 11/15/11 4:25:16 PM user-s163 Tables Table A Standard Normal Probabilities Table B Random Digits Table C t Distribution Critical Values Table D Chi-square Distribution Critical Values

More information

Weldon s dice. Lecture 15 - χ 2 Tests. Labby s dice. Labby s dice (cont.)

Weldon s dice. Lecture 15 - χ 2 Tests. Labby s dice. Labby s dice (cont.) Weldon s dice Weldon s dice Lecture 15 - χ 2 Tests Sta102 / BME102 Colin Rundel March 6, 2015 Walter Frank Raphael Weldon (1860-1906), was an English evolutionary biologist and a founder of biometry. He

More information

Lecture 7: Hypothesis Testing and ANOVA

Lecture 7: Hypothesis Testing and ANOVA Lecture 7: Hypothesis Testing and ANOVA Goals Overview of key elements of hypothesis testing Review of common one and two sample tests Introduction to ANOVA Hypothesis Testing The intent of hypothesis

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables. Chapter 10 Multinomial Experiments and Contingency Tables 1 Chapter 10 Multinomial Experiments and Contingency Tables 10-1 1 Overview 10-2 2 Multinomial Experiments: of-fitfit 10-3 3 Contingency Tables:

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. er15 Chapte Chi-Square Tests d Chi-Square Tests for -Fit Uniform Goodness- Poisson Goodness- Goodness- ECDF Tests (Optional) Contingency Tables A contingency table is a cross-tabulation of n paired observations

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

CHI SQUARE ANALYSIS 8/18/2011 HYPOTHESIS TESTS SO FAR PARAMETRIC VS. NON-PARAMETRIC

CHI SQUARE ANALYSIS 8/18/2011 HYPOTHESIS TESTS SO FAR PARAMETRIC VS. NON-PARAMETRIC CHI SQUARE ANALYSIS I N T R O D U C T I O N T O N O N - P A R A M E T R I C A N A L Y S E S HYPOTHESIS TESTS SO FAR We ve discussed One-sample t-test Dependent Sample t-tests Independent Samples t-tests

More information

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 I. χ 2 or chi-square test Objectives: Compare how close an experimentally derived value agrees with an expected value. One method to

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 1 1-1 Basic Business Statistics 11 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Basic Business Statistics, 11e 009 Prentice-Hall, Inc. Chap 1-1 Learning Objectives In this chapter,

More information

Inferential statistics

Inferential statistics Inferential statistics Inference involves making a Generalization about a larger group of individuals on the basis of a subset or sample. Ahmed-Refat-ZU Null and alternative hypotheses In hypotheses testing,

More information

Frequency Distribution Cross-Tabulation

Frequency Distribution Cross-Tabulation Frequency Distribution Cross-Tabulation 1) Overview 2) Frequency Distribution 3) Statistics Associated with Frequency Distribution i. Measures of Location ii. Measures of Variability iii. Measures of Shape

More information

Introduction to Business Statistics QM 220 Chapter 12

Introduction to Business Statistics QM 220 Chapter 12 Department of Quantitative Methods & Information Systems Introduction to Business Statistics QM 220 Chapter 12 Dr. Mohammad Zainal 12.1 The F distribution We already covered this topic in Ch. 10 QM-220,

More information

Lecture 9. Selected material from: Ch. 12 The analysis of categorical data and goodness of fit tests

Lecture 9. Selected material from: Ch. 12 The analysis of categorical data and goodness of fit tests Lecture 9 Selected material from: Ch. 12 The analysis of categorical data and goodness of fit tests Univariate categorical data Univariate categorical data are best summarized in a one way frequency table.

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Regression Analysis. BUS 735: Business Decision Making and Research. Learn how to detect relationships between ordinal and categorical variables.

Regression Analysis. BUS 735: Business Decision Making and Research. Learn how to detect relationships between ordinal and categorical variables. Regression Analysis BUS 735: Business Decision Making and Research 1 Goals of this section Specific goals Learn how to detect relationships between ordinal and categorical variables. Learn how to estimate

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary Patrick Breheny October 13 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction Introduction What s wrong with z-tests? So far we ve (thoroughly!) discussed how to carry out hypothesis

More information

Sampling Distributions

Sampling Distributions Sampling Error As you may remember from the first lecture, samples provide incomplete information about the population In particular, a statistic (e.g., M, s) computed on any particular sample drawn from

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

Marketing Research Session 10 Hypothesis Testing with Simple Random samples (Chapter 12)

Marketing Research Session 10 Hypothesis Testing with Simple Random samples (Chapter 12) Marketing Research Session 10 Hypothesis Testing with Simple Random samples (Chapter 12) Remember: Z.05 = 1.645, Z.01 = 2.33 We will only cover one-sided hypothesis testing (cases 12.3, 12.4.2, 12.5.2,

More information

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not?

Question. Hypothesis testing. Example. Answer: hypothesis. Test: true or not? Question. Average is not the mean! μ average. Random deviation or not? Hypothesis testing Question Very frequently: what is the possible value of μ? Sample: we know only the average! μ average. Random deviation or not? Standard error: the measure of the random deviation.

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Lecture 26: Chapter 10, Section 2 Inference for Quantitative Variable Confidence Interval with t

Lecture 26: Chapter 10, Section 2 Inference for Quantitative Variable Confidence Interval with t Lecture 26: Chapter 10, Section 2 Inference for Quantitative Variable Confidence Interval with t t Confidence Interval for Population Mean Comparing z and t Confidence Intervals When neither z nor t Applies

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

QUIZ 4 (CHAPTER 7) - SOLUTIONS MATH 119 SPRING 2013 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ 4 (CHAPTER 7) - SOLUTIONS MATH 119 SPRING 2013 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ 4 (CHAPTER 7) - SOLUTIONS MATH 119 SPRING 013 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% 1) We want to conduct a study to estimate the mean I.Q. of a pop singer s fans. We want to have 96% confidence

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 1 HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 7 steps of Hypothesis Testing 1. State the hypotheses 2. Identify level of significant 3. Identify the critical values 4. Calculate test statistics 5. Compare

More information

CONTINUOUS RANDOM VARIABLES

CONTINUOUS RANDOM VARIABLES the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET STATISTICS (AQA) CONTINUOUS RANDOM VARIABLES The main ideas are: Properties of Continuous Random Variables Mean, Median and Mode

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and can be printed and given to the

More information

Module 10: Analysis of Categorical Data Statistics (OA3102)

Module 10: Analysis of Categorical Data Statistics (OA3102) Module 10: Analysis of Categorical Data Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 14.1-14.7 Revision: 3-12 1 Goals for this

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers Nominal Data Greg C Elvers 1 Parametric Statistics The inferential statistics that we have discussed, such as t and ANOVA, are parametric statistics A parametric statistic is a statistic that makes certain

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

11-2 Multinomial Experiment

11-2 Multinomial Experiment Chapter 11 Multinomial Experiments and Contingency Tables 1 Chapter 11 Multinomial Experiments and Contingency Tables 11-11 Overview 11-2 Multinomial Experiments: Goodness-of-fitfit 11-3 Contingency Tables:

More information

Cohen s s Kappa and Log-linear Models

Cohen s s Kappa and Log-linear Models Cohen s s Kappa and Log-linear Models HRP 261 03/03/03 10-11 11 am 1. Cohen s Kappa Actual agreement = sum of the proportions found on the diagonals. π ii Cohen: Compare the actual agreement with the chance

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 4 Tests of Hypotheses The Normal Curve Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Lecture 41 Sections Mon, Apr 7, 2008

Lecture 41 Sections Mon, Apr 7, 2008 Lecture 41 Sections 14.1-14.3 Hampden-Sydney College Mon, Apr 7, 2008 Outline 1 2 3 4 5 one-proportion test that we just studied allows us to test a hypothesis concerning one proportion, or two categories,

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Module 4 Practice problem and Homework answers

Module 4 Practice problem and Homework answers Module 4 Practice problem and Homework answers Practice Problems, pages 2 3 OBSERVED cat no cat total over 3 7 10 under 9 3 12 total 12 10 22 The observed table simply summarizes the data from page 1.

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

10.2 Hypothesis Testing with Two-Way Tables

10.2 Hypothesis Testing with Two-Way Tables 10.2 Hypothesis Testing with Two-Way Tables Part 2: more examples 3x3 Two way table 2x3 Two-way table (worksheet) 1 Example 2: n Is there an association between the type of school area and the students'

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COURSE: CBS 221 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate

More information

STAT 212 Business Statistics II 1

STAT 212 Business Statistics II 1 STAT 1 Business Statistics II 1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA STAT 1: BUSINESS STATISTICS II Semester 091 Final Exam Thursday Feb

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Probability and Inference. POLI 205 Doing Research in Politics. Populations and Samples. Probability. Fall 2015

Probability and Inference. POLI 205 Doing Research in Politics. Populations and Samples. Probability. Fall 2015 Fall 2015 Population versus Sample Population: data for every possible relevant case Sample: a subset of cases that is drawn from an underlying population Inference Parameters and Statistics A parameter

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49 4 HYPOTHESIS TESTING 49 4 Hypothesis testing In sections 2 and 3 we considered the problem of estimating a single parameter of interest, θ. In this section we consider the related problem of testing whether

More information

Lecture 2. Estimating Single Population Parameters 8-1

Lecture 2. Estimating Single Population Parameters 8-1 Lecture 2 Estimating Single Population Parameters 8-1 8.1 Point and Confidence Interval Estimates for a Population Mean Point Estimate A single statistic, determined from a sample, that is used to estimate

More information

STP 226 ELEMENTARY STATISTICS NOTES

STP 226 ELEMENTARY STATISTICS NOTES STP 226 ELEMENTARY STATISTICS NOTES PART 1V INFERENTIAL STATISTICS CHAPTER 12 CHI SQUARE PROCEDURES 12.1 The Chi Square Distribution A variable has a chi square distribution if the shape of its distribution

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

χ L = χ R =

χ L = χ R = Chapter 7 3C: Examples of Constructing a Confidence Interval for the true value of the Population Standard Deviation σ for a Normal Population. Example 1 Construct a 95% confidence interval for the true

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

15: CHI SQUARED TESTS

15: CHI SQUARED TESTS 15: CHI SQUARED ESS MULIPLE CHOICE QUESIONS In the following multiple choice questions, please circle the correct answer. 1. Which statistical technique is appropriate when we describe a single population

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

Normal (Gaussian) distribution The normal distribution is often relevant because of the Central Limit Theorem (CLT):

Normal (Gaussian) distribution The normal distribution is often relevant because of the Central Limit Theorem (CLT): Lecture Three Normal theory null distributions Normal (Gaussian) distribution The normal distribution is often relevant because of the Central Limit Theorem (CLT): A random variable which is a sum of many

More information

Statistical Concepts. Distributions of Data

Statistical Concepts. Distributions of Data Module : Review of Basic Statistical Concepts. Understanding Probability Distributions, Parameters and Statistics A variable that can take on any value in a range is called a continuous variable. Example:

More information

Bivariate Relationships Between Variables

Bivariate Relationships Between Variables Bivariate Relationships Between Variables BUS 735: Business Decision Making and Research 1 Goals Specific goals: Detect relationships between variables. Be able to prescribe appropriate statistical methods

More information

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015 Probability Refresher Kai Arras, University of Freiburg Winter term 2014/2015 Probability Refresher Introduction to Probability Random variables Joint distribution Marginalization Conditional probability

More information

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts

Statistical methods for comparing multiple groups. Lecture 7: ANOVA. ANOVA: Definition. ANOVA: Concepts Statistical methods for comparing multiple groups Lecture 7: ANOVA Sandy Eckel seckel@jhsph.edu 30 April 2008 Continuous data: comparing multiple means Analysis of variance Binary data: comparing multiple

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 12/15/2008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Chapter 10. Prof. Tesler. Math 186 Winter χ 2 tests for goodness of fit and independence

Chapter 10. Prof. Tesler. Math 186 Winter χ 2 tests for goodness of fit and independence Chapter 10 χ 2 tests for goodness of fit and independence Prof. Tesler Math 186 Winter 2018 Prof. Tesler Ch. 10: χ 2 goodness of fit tests Math 186 / Winter 2018 1 / 26 Multinomial test Consider a k-sided

More information

Ch. 11 Inference for Distributions of Categorical Data

Ch. 11 Inference for Distributions of Categorical Data Ch. 11 Inference for Distributions of Categorical Data CH. 11 2 INFERENCES FOR RELATIONSHIPS The two sample z procedures from Ch. 10 allowed us to compare proportions of successes in two populations or

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#7:(Mar-23-2010) Genome Wide Association Studies 1 The law of causality... is a relic of a bygone age, surviving, like the monarchy,

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Lecture 1 Introduction to Probability and Set Theory Text: A Course in Probability by Weiss

Lecture 1 Introduction to Probability and Set Theory Text: A Course in Probability by Weiss Lecture 1 to and Set Theory Text: A Course in by Weiss 1.2 2.3 STAT 225 to Models January 13, 2014 to and Whitney Huang Purdue University 1.1 Agenda to and 1 2 3 1.2 Motivation Uncertainty/Randomness in

More information

Finding Relationships Among Variables

Finding Relationships Among Variables Finding Relationships Among Variables BUS 230: Business and Economic Research and Communication 1 Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions, hypothesis

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Chapter 8 Student Lecture Notes 8-1. Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance

Chapter 8 Student Lecture Notes 8-1. Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance Chapter 8 Student Lecture Notes 8-1 Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing

More information

Ling 289 Contingency Table Statistics

Ling 289 Contingency Table Statistics Ling 289 Contingency Table Statistics Roger Levy and Christopher Manning This is a summary of the material that we ve covered on contingency tables. Contingency tables: introduction Odds ratios Counting,

More information

An introduction to biostatistics: part 1

An introduction to biostatistics: part 1 An introduction to biostatistics: part 1 Cavan Reilly September 6, 2017 Table of contents Introduction to data analysis Uncertainty Probability Conditional probability Random variables Discrete random

More information

Content by Week Week of October 14 27

Content by Week Week of October 14 27 Content by Week Week of October 14 27 Learning objectives By the end of this week, you should be able to: Understand the purpose and interpretation of confidence intervals for the mean, Calculate confidence

More information

How do we compare the relative performance among competing models?

How do we compare the relative performance among competing models? How do we compare the relative performance among competing models? 1 Comparing Data Mining Methods Frequent problem: we want to know which of the two learning techniques is better How to reliably say Model

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 1/15/008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information