Powers with integer exponents

Size: px
Start display at page:

Download "Powers with integer exponents"

Transcription

1 Lüneburg, Fragment Powers with integer exponents -E

2 -E2

3 What should we know the properties of exponents, the scientific notation of real numbers, power rules. -E3

4 Why should we learn to use powers? Real numbers and algebraic expressions are often written with exponents. In this section we show, how such numbers, as for example M Earth kg, which describes the mass of the Earth, and me kg, which describes the electron mass, can be written in compact form: a 0 m, < a < 0, where m is an integer. -E4

5 Powers as a tool to simplify mathematical expressions Mathematics is sometimes quite complicated, but it is one of the tasks of mathematics to provide tools to simplify long and cumbersome expressions. One of these tools are powers. They are nothing else than a shorthand notation of some multiplications. For example, a repeated multiplication can be written in exponential form: Repeated multiplication: b b b b b4 (5 x ) (5 x) (5 x ) (5 x) 3 ( 3) ( 3) ( 3) ( 3) ( 3) Exponential form: ( 3) 5 ( ) 6 2

6 Integer Exponent Definition: We call the product of n equal factors b, n-th power of b, or b to the power of n bn = b b b... b, n ℕ { 0, }, b ℝ n times b is called base, n is called exponent. The operation to raise a base b to the power n is called exponentiation. Exponentiation is the task to calculate the power for a given base b and exponent n: p = bn The exponent of a number b says how many times the number is used in a multiplication. Examples: 3 2 = 2 2 2, 6 5 = , 0 3 = =.000, -2a () 7 4 = = =

7 Exponentiation Fig. -: Illustration of an exponentiation -2b

8 Powers of 0, scientific notation Powers of 0 are very efficient in writing large numbers and calculating with them. Instead of writing numbers with a lot of zeros, as for example , we write = = = The form, the number is written down, is called scientific notation or standard form. The scientific notation for a number has the form a 0 m, 2- < a < 0, m ℤ.

9 Physikal parameters in scientific notation: Example M Earth = kg Fig. -2: The Earth ( The mass of the Earth is M Earth = = = kg 2-2a 24 times

10 Physikal parameters in scientific notation: Example 2 M Saturn = kg Fig. -3: The Saturn The Saturn, the second largest planet of the Solar System, is over 95 times as massive as the Earth. Its mass is M Saturn = 2-2b = kg 95 M Earth

11 Physikal parameters in scientific notation: Example 3 Fig. -4: The Saturn and the Earth Average distance from Earth to Saturn: 2-2c d.43 billion km = km = km

12 Physikal parameters in scientific notation: Example 4 d = km Fig. -5: The solar system ( The average distance d from the Earth to the Sun is approximately 50 million kilometers. d 50 million km = km = km 2-2d

13 notation notation: or standard Tasks -4form Task : Write each number in scientific notation: a ) , b ) c ) , d ) Task 2: In one year there are hours or minutes. Write these numbers in scientific notation. Task 3: An asian elephant in Hagenbeck zoo in Hamburg has a weight of kg. Write down its weight in scientific notation. Task 4: Blue whales from the Northern Atlantic and Pacific have weights of about 70 tons and lengths of about 27 meters. Write their weight in kilos and the length in centimeters in scientific notation. 2-3a

14 notation notation: or standard Tasks 5-7form Task 5: Write the mass of the Sun in scientific notation: M Sun = kg Task 6: A light-year, i.e meters, is the distance travelled by light in vacuum in one year. Write this number in scientific notation. Task 7: Spinosaurus is a dinosaur which lived about 94 to 3 million years ago. Write down this time in scientific notation. 2-3b

15 notation notation:or Solutions standard, form 2 Solution : a ) = b ) =.43 0 c ) =.0 00 d ) = Solution 2: = h = min 2-4a

16 notation notation: or standard Solution form 3 Fig. -6: Elephant in Hagenbeck zoo, Hamburg The weight of an asian elephant in Hagenbeck zoo: 5400 = kg = 5.4 t t =.000 kg 2-4b

17 notation notation: or standard Solution form 4 Fig. -7: Blue whale The weight of a blue whale is about 70 tons. The length is about 27 meters: 70 t = = =,7 0 5 kg 2-4c 27 m = = cm

18 notation notation:or Solutions standard 5, form 6 Fig. -8: The Sun and the Earth Solution 5: M Sun = kg =, kg Solution 6: 2-4d m = 9,46 05 m

19 notation notation: or standard Solution form 7 Fig. -9: Spinosaurus 3 million years = = years 94 million years = = years 2-4e

20 notation notation: or standard Task 8 form Example: Write a product as a number. Solution: We can work with this product as follows: = ( ) = = Or we can move the decimal point 4 places to the right : Task 8: Write each number in decimal notation: 2-5a a ) , b ) 3, c ) , d ) 4,4 0 7

21 notation notation: or standard Solution form 8 a ) b ) 3, , , c ) = d ) 4,4 0 7 = b

22 2-5c

23 Definitions So far, the power concept has a definite meaning, if n is a natural number larger than. We now extend the definition of powers to exponents with any natural number including n = 0,, such that b = b, b ℝ and for all n : 0n = 0 n 0, n = Definition: Exponent Zero The zeroth power of a nonzero real number is equal to : b 0 =, 3- b ℝ, b 0

24 Powers Powers with negative base are positive when the exponent is even and negative when the exponent is odd. ( b) 2 n = b 2 n, ( b) 2 n+ = b 2 n + Often used special cases are ( ) 2 n =, for example ( ) 2 n+ = ( ) 4 = ( ) ( ) ( ) ( ) = ( ) 5 = ( ) ( ) ( ) ( ) ( ) = ( a) 3 = ( a) ( a) ( a) = a 3 3-2

25 Powers The expressions ( b) n and bn, b >0 do not mean the same. The sequence of the operations is important. In the first case, we raise the negative base b to the n-th power. The result is positive or negative depending on the exponent being even or odd. In the second case, we first build the power and multiply afterwards by = = 2 4 = = = 6 Here 2 is directly to the left of the exponent, meaning that only 2 is raised to the power 4. The minus sign is not raised to the power. Base and exponent of a power can not be interchanged bn nb 3-3

26 Powers with negative integer exponents The original definition of powers referred to integer positive exponents only, because a number b may appear 3 times, but not (-3) times as factor in a product. But it is useful for many problems, to introduce powers with exponents which are 0 or negative integers. Definition: If b is any real number and n is any positive integer, then b n = bn, bn = b n A negative exponent means a division by n factors b, instead of a multiplication. The only restriction, we have on b n is b 0, as we can not divide by zero. Examples: 0 3 = = 4- = 3 = = = 5 =

27 Powers with negative integer exponents Niels Bohr and his atomic model The electron is a particle with a negative elementary electric charge and a mass me = kg. 3 decimal places 4-2

28 Powers with negative integer exponents Illustration of alpha decay, a type of radioactive decay in which an atomic nucleus emits an alpha particle Alpha particles (denoted by the first letter in the Greek alphabet, α) consist of two protons and two neutrons bound together into a particle identical to a helium nucleus. Its mass is m = kg. 27 decimal places 4-3

29 notation notation: or standard Tasks 9, 0 form Example of writing a number smaller than in scientific notation: = Task 9: Write each number in scientific notation: a ) b ) c ) Task 0: Write the mass of an electron (in grams) in scientific notation: m e = g 28 decimal places 4-4a

30 notation notation:orsolutions standard9,form 0 Solution 9: a ) = b ) = c ) = Solution 0: m e = g = g 28 decimal places 4-4b

31 notation notation: or Task standard form Example: Write a product as a number. Solution: We can work with this product as follows: ( = ) = = Or we can move the decimal point 3 places to the left : Task : Write each number in decimal notation: 4-5a a ) , b ) 82, c ) , d ) 8, e ) , f ) 0, 0 9

32 notation notation: or standard Solution form Solution : a ) = b ) 82, = c ) = d ) 8, = e ) = = f ) 0, 0 9 = 0, b

33 notation notation: or Tasks standard 2, 3 form Task 2: Write a number in the form: a 0 n, a 0, n ℤ a ) , b ) c ) , d ) Task 3: Write the following numbers in scientific notation: a ) 37, 4-6a b) 48, c) 84, d ) 5.

34 notation notation: orsolutions standard2, form 3 Solution 2: a ) = b ) = c ) = d ) = Solution 3: a ) 3 7 = 287 = 2, b ) 4 8 = = 6, , c ) 8 4 = 4096 = 4, , 0 3 d ) 5 = 6.05 =, , b

35 Powers with negative integer exponents: Tasks 4-6 Task 4: Determine the numerical value of the powers a ) 0.5 2, b ) , c ) Task 5: Determine c a ) c = , 2 b ) c = Task 6: Determine the expressions using the definition of exponent zero 30, 4-7a a0, a b 0, a0 b0, a 0 a b 0 c 0

36 Powers with negative integer exponents: Solution 4 4-7b a ) b ) c ) (0.2) 3 = 2 2 = 4 4 = ( ) 3 5 = = 2 2 = 4 = 4 = ( 5 ) 3 = 4 4 = = 5 3 = 25

37 Powers with negative integer exponents: Solutions 5, 6 Solution 5: a ) 7 0 =, 2 2 = 4, c = b ) 0 2 = 0, 2 = = 4 3 = =, 4 2 = 6, 2 2 = c = = 0 6 Solution 6: 3 0 =, a 0 =, a 0 + b 0 = + = 2, 4-7c = 4 22 = (a b) 0 = a 0 + (a b) 0 + c 0 = + + = 3

38 4-8a

39 4-8b

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights?

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights? Scientific Notation Table of Contents Click on the topic to go to that section The purpose of scientific notation Scientific Notation How to write numbers in scientific notation How to convert between

More information

Exponents, Polynomials, and Polynomial Functions. Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 5.1, 1

Exponents, Polynomials, and Polynomial Functions. Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 5.1, 1 5 Exponents, Polynomials, and Polynomial Functions Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 5.1, 1 5.1 Integer Exponents R.1 Fractions and Scientific Notation Objectives 1. Use the product

More information

Objectives. Vocabulary. 1-5 Properties of Exponents. 1.5: Properties of Exponents. Simplify expressions involving exponents. Use scientific notation.

Objectives. Vocabulary. 1-5 Properties of Exponents. 1.5: Properties of Exponents. Simplify expressions involving exponents. Use scientific notation. Starter 1.5 HW 1.???, Short Quiz 1. & 1.4 Simplify. 1. 4 4 4 64 2.. 20 4. Objectives Simplify expressions involving exponents. Use 5. 6. 10 5 100,000 7. 10 4 0,000 scientific notation Vocabulary In an

More information

Measurement and Units. An Introduction to Chemistry By Mark Bishop

Measurement and Units. An Introduction to Chemistry By Mark Bishop Measurement and Units An Introduction to Chemistry By Mark Bishop Values from Measurements A value is a quantitative description that includes both a unit and a number. For 100 meters, the meter is a unit

More information

December 04, scientific notation present.notebook

December 04, scientific notation present.notebook Today we will review how to use Scientific Notation. In composition book, Title a new page Scientific notation practice lesson You will answer the questions that come up as we go and I will collect comp

More information

Exit Ticket. 1. a. Express the following in exponential notation: ( 13) ( 13) b. Will the product be positive or negative? 2. Fill in the blank: 2 3

Exit Ticket. 1. a. Express the following in exponential notation: ( 13) ( 13) b. Will the product be positive or negative? 2. Fill in the blank: 2 3 COMMON CORE MATHEMATICS CURRICULUM Lesson 1 8 1 Name Date Lesson 1: Exponential Notation Exit Ticket 1. a. Express the following in exponential notation: ( 13) ( 13) 35 times b. Will the product be positive

More information

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific notation in calculations. Significant figures - consist of

More information

Fission & Fusion Movie

Fission & Fusion Movie Fission & Fusion Movie Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to

More information

Physics 2A Chapter 1 Notes - Units Fall 2017

Physics 2A Chapter 1 Notes - Units Fall 2017 A summary of the topics in the following notes: Fundamental quantities are time, length and mass. Every other definition we will make this semester will be a combination of these. An expressed quantity

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

8th Grade Scientific Notation

8th Grade Scientific Notation Slide 1 / 137 Slide 2 / 137 8th Grade Scientific Notation 2015-11-20 www.njctl.org Slide 3 / 137 Table of Contents Click on the topic to go to that section Purpose of Scientific Notation Writing Numbers

More information

8th Grade Scientific Notation

8th Grade Scientific Notation Slide 1 / 137 Slide 2 / 137 8th Grade 2015-11-20 www.njctl.org Slide 3 / 137 Slide 4 / 137 Table of Contents Click on the topic to go to that section Purpose of Writing Numbers in Converting Between and

More information

Nuclear Energy. Nuclear Structure and Radioactivity

Nuclear Energy. Nuclear Structure and Radioactivity Nuclear Energy Nuclear Structure and Radioactivity I. Review - Periodic Table A. Atomic Number: The number of protons in the nucleus of an atom B. Atomic Mass: The sum of the mass of protons, neutrons

More information

Chemistry Review Unit 1 Study Guide

Chemistry Review Unit 1 Study Guide 1. Draw and label a Bohr model of a C 14 atom. 2. Describe the following about a proton a. mass: the mass of a proton is 1 atomic mass unit (AMU) b. charge: protons have a positive charge c. location:

More information

Name Date Class. N 10 n. Thus, the temperature of the Sun, 15 million kelvins, is written as K in scientific notation.

Name Date Class. N 10 n. Thus, the temperature of the Sun, 15 million kelvins, is written as K in scientific notation. 53 MATH HANDBOOK TRANSPARENCY MASTER 1 Scientists need to express small measurements, such as the mass of the proton at the center of a hydrogen atom (0.000 000 000 000 000 000 000 000 001 673 kg), and

More information

A Review of the Mathematics Used In AST 301

A Review of the Mathematics Used In AST 301 A Review of the Mathematics Used In AST 301 1 Units If you say that a car is traveling at a speed of 70, most people in the United States will assume you mean 70 miles per hour. In Europe Mexico, though,

More information

1. Which of the following best represents the speed of a banana slug?

1. Which of the following best represents the speed of a banana slug? Scientific Notation 1. Which of the following best represents the speed of a banana slug? A. 2 10-5 kilometers per second B. 2 10 5 meters per second C. 2 10-5 meters per second D. 2 10 5 kilometers per

More information

Eureka Math. Grade 8 Module 1 Student File_B. Student Workbook

Eureka Math. Grade 8 Module 1 Student File_B. Student Workbook A Story of Ratios Eureka Math Grade 8 Module Student File_B Student Workbook This file contains: G8-M Sprint and Fluency Resources G8-M Exit Tickets G8-M Mid-Module Assessment G8-M End-of-Module Assessment

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

Recursive Routines. line segments. Notice that as you move from left to right, the

Recursive Routines. line segments. Notice that as you move from left to right, the CONDENSED LESSON 6. Recursive Routines In this lesson you will explore patterns involving repeated multiplication write recursive routines for situations involving repeated multiplication look at tables

More information

2053 College Physics. Chapter 1 Introduction

2053 College Physics. Chapter 1 Introduction 2053 College Physics Chapter 1 Introduction 1 Fundamental Quantities and Their Dimension Length [L] Mass [M] Time [T] other physical quantities can be constructed from these three 2 Systems of Measurement

More information

Understanding the Atom

Understanding the Atom Name Date Period 3.1 Discovering Parts of an Atom Directions: On the line before each statement, write correct if the statement is correct or not correct if the statement is not correct. If the statement

More information

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! 2 Standards for Measurement Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! Chapter Outline 2.1 Scientific Notation 2.2 Measurement and

More information

Lesson 1.3: Algebra and Scientific Notation with Small Numbers

Lesson 1.3: Algebra and Scientific Notation with Small Numbers Specific Objectives Students will understand that in algebra, numbers and variables can be combined to produce expressions, equations and inequalities. numbers between 0 and 1 can be written using scientific

More information

Page 24 Monday August 03, 2015

Page 24 Monday August 03, 2015 Page Monday August 0, 05 Convert with-in the metric system Practice: How many. Practice: How many.. Centimeters in a meter?. Grams in Kilogram?. Liters in Kiloliter?. Meters in Kilometer? 5. Millimeters

More information

Sect Scientific Notation

Sect Scientific Notation 58 Sect 5.4 - Scientific Notation Concept # - Introduction to Scientific Notation In chemistry, there are approximately 602,204,500,000,000,000,000,000 atoms per mole and in physics, an electron weighs

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1 MULTIPLE CHOICE (Right answers are reported in red) 1.. A solar system contains a. primarily planets. b. large amounts of gas and dust

More information

Rational Expressions and Functions

Rational Expressions and Functions 1 Rational Expressions and Functions In the previous two chapters we discussed algebraic expressions, equations, and functions related to polynomials. In this chapter, we will examine a broader category

More information

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation greater than or equal to one, and less than 10 positive exponents: numbers greater than 1 negative exponents: numbers less than 1, (> 0) (fractions) 2 ways to write the same number: 6,500: standard form

More information

Brooklyn College Department of Mathematics. Precalculus. Preparatory Workbook. Spring Sandra Kingan

Brooklyn College Department of Mathematics. Precalculus. Preparatory Workbook. Spring Sandra Kingan Brooklyn College Department of Mathematics Precalculus Preparatory Workbook Spring 0 Sandra Kingan Supported by the CUNY Office of Academic Affairs through funding for the Gap Project CONTENTS. Review

More information

EQ: How do I convert between standard form and scientific notation?

EQ: How do I convert between standard form and scientific notation? EQ: How do I convert between standard form and scientific notation? HW: Practice Sheet Bellwork: Simplify each expression 1. (5x 3 ) 4 2. 5(x 3 ) 4 3. 5(x 3 ) 4 20x 8 Simplify and leave in standard form

More information

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement. Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000, etc.

More information

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K.

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K. (a) State, with a reason, whether or not protons and neutrons are fundamental particles....... [] (b) State two fundamental particles that can be classified as leptons.... [] (c) Some fruits, such as bananas,

More information

Name Chemistry-PAP Per. Notes: Atomic Structure

Name Chemistry-PAP Per. Notes: Atomic Structure Name Chemistry-PAP Per. I. Historical Development of the Atomic Model Ancient Greek Model Notes: Atomic Structure Democritus (460-370 BC) was an ancient Greek philosopher credited with the first particle

More information

Pre-Algebra Notes Integer Exponents and Scientific Notation

Pre-Algebra Notes Integer Exponents and Scientific Notation Pre-Algebra Notes Integer Exponents and Scientific Notation Rules of Exponents CCSS 8.EE.A.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions. Review with

More information

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #5, Friday, January 29 th, 2016 1) GRAVITY: (text pages 111-112, 123) 2) Isaac Newton s LAWS of MOTION (briefly) (text pages 115-117) 3) Distances

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure Defining the Atom I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the same element are chemically alike 3. Individual

More information

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents.

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents. Chapter 5 Section 5. Integer Exponents and Scientific Notation Objectives 2 4 5 6 Use the product rule for exponents. Define 0 and negative exponents. Use the quotient rule for exponents. Use the power

More information

: When electrons bombarded surface of certain materials, invisible rays were emitted

: When electrons bombarded surface of certain materials, invisible rays were emitted Nuclear Chemistry Nuclear Reactions 1. Occur when nuclei emit particles and/or rays. 2. Atoms are often converted into atoms of another element. 3. May involve protons, neutrons, and electrons 4. Associated

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure 3-1 The Atom: From Philosophical Idea to Scientific Theory I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the

More information

International System of Units (SI)

International System of Units (SI) Measurement International System of Units (SI) revised metric system proposed in 1960 widely used in science 7 base units SI Base Units Length Meter m Mass Kilogram kg Time Electrical current Second Ampere

More information

Nuclear Physics 3 8 O+ B. always take place and the proton will be emitted with kinetic energy.

Nuclear Physics 3 8 O+ B. always take place and the proton will be emitted with kinetic energy. Name: Date: Nuclear Physics 3. A student suggests that the following transformation may take place. Measurement of rest masses shows that 7 7 N+ He 8 O+ total rest mass( N 7 + He ) < total rest mass( O

More information

Fundamental Forces of the Universe

Fundamental Forces of the Universe Fundamental Forces of the Universe There are four fundamental forces, or interactions in nature. Strong nuclear Electromagnetic Weak nuclear Gravitational Strongest Weakest Strong nuclear force Holds the

More information

αα Measuring Global Temperatures 2.1 Measuring Global Temperatures Introductory Chemistry Fourth Edition Nivaldo J.

αα Measuring Global Temperatures 2.1 Measuring Global Temperatures Introductory Chemistry Fourth Edition Nivaldo J. Introductory Chemistry Fourth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK 2.1 Measuring Global Temperatures

More information

Atomic Theory. Contribution to Modern Atomic Theory

Atomic Theory. Contribution to Modern Atomic Theory Alief High School Chemistry STAAR Review Reporting Category 2: Atomic Structure and Nuclear Chemistry C.6.A Understand the experimental design and conclusions used in the development of modern atomic theory,

More information

Our Place in the Universe (Chapter 1) The Structure and Size of the Universe

Our Place in the Universe (Chapter 1) The Structure and Size of the Universe Our Place in the Universe (Chapter 1) The Structure and Size of the Universe Based on Chapter 1 This material will be useful for understanding Chapters 2, 3, and 13 on Years, Seasons, and Months, The Orbits

More information

CHAPTER 3. Scientific Notation

CHAPTER 3. Scientific Notation CHAPTER 3 Scientific Notation People who work in scientific fields often have to use very large and very small numbers. Look at some examples in the following table: Measurement Value Density of air at

More information

Contents Decimals Averages Percentages Metric Units Scientific Notation Dimensional Analysis

Contents Decimals Averages Percentages Metric Units Scientific Notation Dimensional Analysis This year in APES you will hear the two words most dreaded by high school students NO CALCULATORS! That s right, you cannot use a calculator on the AP Environmental Science exam. Since the regular tests

More information

Physics 11 Fall 2012 Practice Problems 4

Physics 11 Fall 2012 Practice Problems 4 Physics 11 Fall 2012 Practice Problems 4 1. Under what conditions can all the initial kinetic energy of an isolated system consisting of two colliding objects be lost in a collision? Explain how this result

More information

Pre-AP Algebra 2 Unit 9 - Lesson 9 Using a logarithmic scale to model the distance between planets and the Sun.

Pre-AP Algebra 2 Unit 9 - Lesson 9 Using a logarithmic scale to model the distance between planets and the Sun. Pre-AP Algebra 2 Unit 9 - Lesson 9 Using a logarithmic scale to model the distance between planets and the Sun. Objectives: Students will be able to read a graph with a logarithmic scale. Students will

More information

Introductory Chemistry Fifth Edition Nivaldo J. Tro

Introductory Chemistry Fifth Edition Nivaldo J. Tro Introductory Chemistry Fifth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK Reporting the Measure of Global

More information

Math 8 Notes Unit 3: Exponents and Scientific Notation

Math 8 Notes Unit 3: Exponents and Scientific Notation Math 8 Notes Unit : Exponents and Scientific Notation Writing Exponents Exponential form: a number is in exponential form when it is written with a base and an exponent. 5 ; the base is 5 and the exponent

More information

Chapter 1 : Introduction

Chapter 1 : Introduction Chapter 1 : Introduction It is doubtless fact that people always want to know about the mysteries of nature and the world around them since they are born. So they start thinking and formulating their views

More information

MEP Practice Book ES1. (h) (l) Simplify each of the following, leaving your answer in index notation.

MEP Practice Book ES1. (h) (l) Simplify each of the following, leaving your answer in index notation. Indices MEP Practice Book ES. Inde Notation. Write in a form using indices: a) b) c) d) 7 7 7 7 7 7 e) f) g) 7 7 7 7 h) i) 7 7 7 7 7 j) k) l). Find the value of the following: a) 7 b) c) d) 8 e) 7 0 f)

More information

APPENDIX B: Review of Basic Arithmetic

APPENDIX B: Review of Basic Arithmetic APPENDIX B: Review of Basic Arithmetic Personal Trainer Algebra Click Algebra in the Personal Trainer for an interactive review of these concepts. Equality = Is equal to 3 = 3 Three equals three. 3 = +3

More information

Atomic Structure & Nuclear Chemistry Unit 3 Notes

Atomic Structure & Nuclear Chemistry Unit 3 Notes Atomic Structure & Nuclear Chemistry Unit 3 Notes Academic Chemistry Name 52 24 Cr Mass Number Symbol Atomic Number Unit #3 Test Date You can never learn less, you can only learn more. R. Buckminster Fuller

More information

Unit 1, Activity 1, Rational Number Line Cards - Student 1 Grade 8 Mathematics

Unit 1, Activity 1, Rational Number Line Cards - Student 1 Grade 8 Mathematics Unit, Activity, Rational Number Line Cards - Student Grade 8 Mathematics Blackline Masters, Mathematics, Grade 8 Page - Unit, Activity, Rational Number Line Cards - Student Blackline Masters, Mathematics,

More information

Physics 1C. Lecture 29A. "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955

Physics 1C. Lecture 29A. Nuclear powered vacuum cleaners will probably be a reality within 10 years.  --Alex Lewyt, 1955 Physics 1C Lecture 29A "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955 The Nucleus All nuclei are composed of protons and neutrons (they can also be called

More information

Raymond A. Serway Chris Vuille. Chapter One. Introduction

Raymond A. Serway Chris Vuille. Chapter One. Introduction Raymond A. Serway Chris Vuille Chapter One Introduction Theories and Experiments The goal of physics is to develop theories based on experiments A physical theory, usually expressed mathematically, describes

More information

Atomic Structure 11/9/04 Name

Atomic Structure 11/9/04 Name Atomic Structure 11/9/04 Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The Greek philosopher Democritus coined what word for a tiny

More information

1 Tools for Success in ASTR 105G

1 Tools for Success in ASTR 105G Name: Date: 1 Tools for Success in ASTR 105G 1.1 Introduction Astronomy is a physical science. Just like biology, chemistry, geology, and physics, astronomers collect data, analyze that data, attempt to

More information

Unit 2 Exponents. NAME: CLASS: TEACHER: Ms. Schmidt _

Unit 2 Exponents. NAME: CLASS: TEACHER: Ms. Schmidt _ Unit 2 Exponents NAME: CLASS: TEACHER: Ms. Schmidt _ Understanding Laws of Exponents with Dividing Vocabulary: Expression Constant Coefficient Base Variable Exponent For each of the following expressions,

More information

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW)

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW) Friday, 05/06/16 1) Warm-up: If you start with 100g of a radioactive substance, how much will be left after 3 half-lives? 2) Review HW & Nuclear Notes 3) Complete Modeling Energy Investigation 4) Complete:

More information

Large and Small Numbers

Large and Small Numbers Astronomy Basics Large and Small Numbers Astronomers work with very large and very small numbers. For example: The radius of the sun is 70,000,000,000 centimeters The mass of the sun is 20,000,000,000,000,000,000,000,000,000,000,000

More information

EARLY VIEWS: The Ancient Greeks

EARLY VIEWS: The Ancient Greeks Feb 7 11:59 AM EARLY VIEWS: The Ancient Greeks Empedocles (c. 450 B.C.) proposed Four Element theory he thought that matter was composed of four elements: AIR, EARTH, FIRE and WATER elements mixed together

More information

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS UNIT 4 NOTES: PROPERTIES & EXPRESSIONS Vocabulary Mathematics: (from Greek mathema, knowledge, study, learning ) Is the study of quantity, structure, space, and change. Algebra: Is the branch of mathematics

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

Chapter 1 Matter and Energy. Classifying Matter An Exercise. Chemical Classifications of Matter

Chapter 1 Matter and Energy. Classifying Matter An Exercise. Chemical Classifications of Matter Chapter 1 Matter and Energy Matter and its Classification Physical and Chemical Changes and Properties of Matter Energy and Energy Changes Scientific Inquiry 1-1 Copyright The McGraw-Hill Companies, Inc.

More information

Chapter 2: Measurements & Calculations

Chapter 2: Measurements & Calculations Chapter 2: Measurements & Calculations LA-PRIVATE:sg:sg.02_Measurements_and_Calculations.docx (9/1/14) Chemistry Measurements & Calculations p.1 TABLE OF CONTENTS I. SCIENTIFIC METHOD... 2 II. METRIC UNITS

More information

Study Sheet for Modern Physics

Study Sheet for Modern Physics Study Sheet for Modern Physics Classical mechanics was meant to provide the general rules that govern the dynamics of all material bodies, such as cannon balls, planets, and pendulums, and is defined as

More information

Activity 3: Modeling the Sun/Earth System

Activity 3: Modeling the Sun/Earth System Activity 3: Modeling the Sun/Earth System Time: 2 class periods (1 class period = 45 min) Materials: Solar system model Sun poster (optional) Rolling measuring wheel or 100-meter measuring tape Modeling

More information

AP Environmental Science Math Prep

AP Environmental Science Math Prep AP Environmental Science Math Prep Courtesy of Kara House, Franklin Central High School, Indiana This year in APES you will hear the two words most dreaded by high school students NO CALCULATORS! That

More information

Everyday Conversion: Money

Everyday Conversion: Money Everyday Conversion: Money Everyday Measurement: Water Everyday Measurement: Water Everyday Accuracy: Weighing Scales The need to measure correctly and convert! Some Interesting Quantities Length Volume

More information

PHYS133 Lab 1 Math Review

PHYS133 Lab 1 Math Review PHYS133 Lab 1 Goal: To review mathematical concepts that will be used in this course. What You Turn In: The worksheet in this manual. Background: This course requires the use of several concepts from high

More information

How Old is the Solar System?

How Old is the Solar System? How Old is the Solar System? Earth s crust is constantly changing due to volcanoes, erosion, and plate tectonics. So Earth rocks do not preserve a record of the early days of the Solar System. Instead,

More information

Chapter 3 - Scientific measurement. Using and expressing measurements

Chapter 3 - Scientific measurement. Using and expressing measurements Chapter 3 - Scientific measurement Using and expressing measurements How far off was Usain Bolt from winning gold in the 100m last weekend? What is a measurement? How do scientists make reporting measurement

More information

Observations. Qualitative: descriptive observation that is not numerical. Quantitative: Numerical observation.

Observations. Qualitative: descriptive observation that is not numerical. Quantitative: Numerical observation. Mid-Term Topics Observations Qualitative: descriptive observation that is not numerical. Example: This apple is red. Quantitative: Numerical observation. Example: The temperature of this room is 23 C.

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

Ch. 1, Physics & Measurement

Ch. 1, Physics & Measurement Ch. 1, Physics & Measurement Outline Ch. 1, Physics & Measurement 1. Physics is an experimental science Measurements Units 2. Physics is a quantitative science Mathematics Algebra & Calculus 3. International

More information

Common Core Algebra 2. Chapter 5: Rational Exponents & Radical Functions

Common Core Algebra 2. Chapter 5: Rational Exponents & Radical Functions Common Core Algebra 2 Chapter 5: Rational Exponents & Radical Functions 1 Chapter Summary This first part of this chapter introduces radicals and nth roots and how these may be written as rational exponents.

More information

Astronomy Unit Notes Name:

Astronomy Unit Notes Name: Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)

More information

Use Scientific Notation

Use Scientific Notation 8.4 Use Scientific Notation Before You used properties of exponents. Now You will read and write numbers in scientific notation. Why? So you can compare lengths of insects, as in Ex. 51. Key Vocabulary

More information

Radioactive Decay What is Radioactivity? http://explorecuriocity.org/explore/articleid/3033 http://explorecuriocity.org/explore/articleid/3035 http://explorecuriocity.org/explore/articleid/2160 Quick Review

More information

Unit 4 Scientific Notation

Unit 4 Scientific Notation Unit 4 Scientific Notation NAME: GRADE: TEACHER: Ms. Schmidt _ 1 Introduction to Scientific Notation Vocabulary: Scientific Notation - Example: Scientific Notation Standard Form 2.59 11 = 259,000,000,000

More information

Lecture 3: Chapter 1- Charting the Heavens. Assignment: Read Chapter 1 of Astronomy Today

Lecture 3: Chapter 1- Charting the Heavens. Assignment: Read Chapter 1 of Astronomy Today Lecture 3: Chapter 1- Charting the Heavens Assignment: Read Chapter 1 of Astronomy Today 1.2 Scientific Theory and the Scientific Method Scientific number notation Measures of Distance 1.2 Scientific

More information

Introduction. The Scientific Method and Measurement

Introduction. The Scientific Method and Measurement Introduction The Scientific Method and Measurement Defining How We Look At The Universe Observation: seeing an event or process in nature we wish to explain Hypothesis: a tentative explanation based on

More information

Introduction to the World of Energy

Introduction to the World of Energy Introduction to the World of Energy 1.1 Ratios and per How can ratios simplify problem solving? How are ratios used to find efficiency? 1.2 Exponents and Scientific Notation Why is scientific notation

More information

USING THE EXCEL CHART WIZARD TO CREATE CURVE FITS (DATA ANALYSIS).

USING THE EXCEL CHART WIZARD TO CREATE CURVE FITS (DATA ANALYSIS). USING THE EXCEL CHART WIZARD TO CREATE CURVE FITS (DATA ANALYSIS). Note to physics students: Even if this tutorial is not given as an assignment, you are responsible for knowing the material contained

More information

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

Chapter Review. Write each expression using exponents SOLUTION: The base 6 is a factor 5 times. So, the exponent is 5.

Chapter Review. Write each expression using exponents SOLUTION: The base 6 is a factor 5 times. So, the exponent is 5. Write each expression using exponents. 1. 6 6 6 6 6 2. 4 The base 6 is a factor 5 times. So, the exponent is 5. 6 6 6 6 6 = 6 5 6 5 The base 4 is a factor 1 time. So, the exponent is 1. 4 = 4 1 4 1 3.

More information

Positive exponents indicate a repeated product 25n Negative exponents indicate a division by a repeated product

Positive exponents indicate a repeated product 25n Negative exponents indicate a division by a repeated product Lesson.x Understanding Rational Exponents Sample Lesson, Algebraic Literacy Earlier, we used integer exponents for a number or variable base, like these: x n Positive exponents indicate a repeated product

More information

History of Atomic Theory

History of Atomic Theory Unit 2 The Atom History of Atomic Theory A. Democritus and Aristotle Democritus named the "atom" - means indivisible Dalton (with work of Lavoisier, Proust, and Gay-Lussac) 1. atomic theory - first based

More information

Grade 7/8 Math Circles November 21/22/23, The Scale of Numbers

Grade 7/8 Math Circles November 21/22/23, The Scale of Numbers Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Centre for Education in Mathematics and Computing Last week we quickly

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law 5-10 Types of Forces in Nature Modern physics now recognizes four fundamental forces: 1. Gravity 2. Electromagnetism 3. Weak nuclear force (responsible for some types of radioactive decay) 4. Strong nuclear

More information

2-1 The Nature of Matter

2-1 The Nature of Matter Biology 1 of 40 2 of 40 The study of chemistry begins with the basic unit of matter, the atom. The Greek philosopher Democritus called the smallest fragment of matter the atom, from the Greek word atomos.

More information

Today is Thursday, February 11 th, 2016

Today is Thursday, February 11 th, 2016 In This Lesson: Scientific Notation and Unit Analysis (Lesson 4 of 6) Today is Thursday, February 11 th, 2016 Stuff You Need: Calculator Paper Towel Pre-Class: By now you ve probably heard of scientific

More information

Ex.1 identify the terms and coefficients of the expression.

Ex.1 identify the terms and coefficients of the expression. Modeling with expressions An expression is a mathematical phrase that contains numbers or variables. Terms are the parts being added. Coefficient is the number in front of the variable. A constant is a

More information

Solutions to Homework #2, AST 203, Spring 2009

Solutions to Homework #2, AST 203, Spring 2009 Solutions to Homework #2, AST 203, Spring 2009 Due on February 24, 2009 General grading rules: One point off per question (e.g., a or 2c) for egregiously ignoring the admonition to set the context of your

More information