Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

Size: px
Start display at page:

Download "Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases"

Transcription

1 Okinawa School in Physics 2017 Coherent Quantum Dynamics Cold ydberg gases 1. Basics of ydberg atoms 2. ydberg atoms in external fields. ydberg-ydberg interaction Wenhui Li Centre for Quantum Technologies Department of Physics National University of Singapore

2 Outline ydberg-ydberg interaction Long-range dipole dipole interaction between ydberg atoms. Some current research topics with interacting ydberg atoms/ensembles

3 Long-range dipole dipole interaction between ydberg atoms

4 Interaction of two classical static dipoles V dd 1 2 Some special cases: μ 1 μ 2 Attractive epulsive

5 Permanent Dipole of ydberg Stark states in E-field Permanent Dipoles in E fields esonant dipole-dipole (almost like classical interaction between static dipoles) μ 2 The resulting of linear Stark effects have permanent electric dipoles: ψ ± r ψ ± 0 while ψ ± are superposition of different l states. μ 1 E

6 Interaction of two synchronously oscillating classical dipoles 1 z1 cost z cost 2 2 μ 2 V dd μ 1 The interaction is essentially the same but reduced by a factor of two due to the time averaging of the dipoles. NOTE We always assume that we are in the near field regime. 2c and we ignore the radiation field.

7 Dipole dipole interaction of two ydberg atoms The quantum version of oscillating dipoles is the interaction between transition dipole moments. One example Atomic states np ns ns, np μ 1μ 2 and ns, np V dd np, ns 0 np, ns = ns μ 1 np np μ 2 ns 0 E( ns, np ) = E( np, ns ) States of two atoms (Pair states or Diatomic states) Atom 1 ns, np Pair states d-d interaction or nsnp np, ns Atom 2 npns H V dd nsnp npns 12 0 n 4, E ± = ± μ 1μ 2

8 Another example Atomic states np ns, ns V dd np, n 1 p 0 Atom 1 ns, ns Pair states or ns d-d interaction np, n 1 p Atom 2 (n-1)p or n 1 p, np ns, ns μ 1μ 2 np, (n 1)p = ns μ 1 np ns μ 2 (n 1)p 0 E( ns, ns ) - E( np, n 1 p ) = Δ H nsns 0 12 np(n - 1)p 12 nsns Δ np(n-1)p (n-1)pnp 12 Vdd ~ 1/ n n 4,

9 esonance d-d interaction vs Van der Waals interaction resonance dipole-dipole interactions van der Waals (off-resonance d-d) 20 S + 20 S 19 P + 20 P Hamiltonian Potential Curves 20p 20s H 20s20s p20p Sodium 19p 12 Vdd ~ 1/ n n 4, 4 n ~ n (d - d) 11 ~ 6 (vdw) Safinya et al., PL 47, 2405 (1981) Huge interaction, ~ GHz ( n ~ 40, ~ 1 m) Easily tuned by: external E field (), n (V dd, ), or (V dd )

10 esonance d-d interaction vs Van der Waals interaction resonance dipole-dipole interactions van der Waals (off-resonance d-d) If V dd (at large ) H Hamiltonian 20s20s Vdd ~ 1/ n 19p20p 12 n 4, Potential Curves 4 n ~ 12 n (d - d) 11 ~ 6 (vdw) W = V dd 2 W = ± V dd 2, + V 2 dd ~ n11 6 So van der Waals interaction, C 6 6 Where C 6 n 11 If V dd (at small ) W = ±V dd ~ n4 Dipole-dipole interaction

11 Energy Energy Tuning the dipole-dipole interaction with E-field Energy 2 E np (F 0 ) = E ns (F 0 ) + E (n+1)s (F 0 ) E (n+1)s (F) E np (F) E ns (F) (n+1)s (n-1)d 5/2 np /2 ns H V dd ss' pp n 21 2 F 4 E pp pp ss' 2 ss' V 2 dd F 0 (n-1)d 5/2 (n-1)d 5/2 2V dd + For n = 42 Pour n 42 ns (n 1)s - ss np /2 np /2 F F 0 F

12 Some details of dipole-dipole interaction Consider the nsnp npns pair states, which are coupled by the dipole-dipole coupling ns, np V dd np, ns = µ 2 E( ns, np ) = E( np, ns ) µ nsnp V dd npns nsnp 1 2 npns There are two natural choices for an axis of quantization The internuclear axis The direction suggested by a field, which might produce the dipoles, messy but possible.

13 The internuclear axis as the quantization axis The nsnp npns pair states with the internuclear axis chosen as the quantization axis, in the z direction. The dipole dipole matrix element becomes = x1x 2 + y1 y2-2z1z2 nsnp Vdd npns = nsnp npns nsnp V npns = ns np V np ns dd dd ns x np np x ns + ns y np np y ns - 2 ns z np np z ns Angular momentum is conserved, so we construct states of total angular momentum M along the quantization axis using M = m1+ m2

14 Using basis states of the form nsnp there are six states, two each of M=0, 1, and -1. For example the M=0 states are nsnp 0 and np 0 ns, with the Hamiltonian matrix H nsnp 0 V dd 0 V np Where the matrix element is given explicitly by 0 0 dd ns The two M=0 eigenvalues and eigen states are 2 W Vdd nsnp npns 2 nsnp npns 2,, One of the eigenstates is symmetric in the interchange of the two atoms, and one is antisymmetric, W W V dd 2 2 Vdd antisymmetric V dd = - 2 ns z np np z ns symmetric

15 There are analogous 2x2 matrices for the M=1 and M=-1 states, which also give symmetric and antisymmetric states symmetric antisymmetric Solid lines are M=0 states Broken lines are M=1 and -1 states. There are two M=1 and two M=-1 states.

16 eturn to the case of the nsns np(n-1)p pairs M=0 for example Δ nsns np(n-1)p (n-1)pnp The Hamiltonian matrix of the three M=0 states where H nsns 0 V V dd dd np 0 (n-1)p 0 V dd 0 (n-1)p 0 np 0 V dd 0 V dd = - 2 ns z np np z ns The three eigen energies are W W V dd

17 The energy levels Δ nsns np(n1)p (n-1)pnp There is a state with no shift degeneracy of the p pairs The shift changes from 1/ 6 to 1/ when V~Δ, from a van der Waals to a dipole-dipole interaction

18 Fine, but quite real details The spin orbit splittings must be taken into account Often only one spin orbit coupled state is important. In b and Cs np /2 np /2 Is resonant with ns(n+1)s but np 1/2 np 1/2 is not.. There are smaller matrix elements. There are more states. The Zeeman degeneracy leads to states with no shift. -Kiffner, Walker and Saffman We have already seen an example of this.

19 Calculated van der Waals shifts from Walker and Saffman (2007) Note these are calculated with the internuclear axis as the quantization axis

20

21 (GHz) Dipole Blockade and Collective Excitation Energy n ~ 40 r,r r,r g,r, r,g g,g Interatomic Spacing (m) r g Single Atom + = 1/2 ( g,r + r,g) + 2 Two Atoms 2 g,g - Blockade: a deterministic way to make entanglement abi Oscillation / Time

22 Dipole blockade in mesoscopic ensembles (principle) Only one ydberg atom can be excited inside the blockade sphere.

23 Dipole blockade in mesoscopic ensembles (possible applications) If the radius is smaller than the blockade radius, the only accessible state is the symmetric Dicke state with 1 ydberg excitation. Generalization of the 2 atoms case to N atoms Collective excitation with abi frequency: Ω coll = NΩ Ψ coll = 1 N eik.r 1 rgg g + e ik.r 2 grg g + + e ik.rn ggg r r 1 g N 1 All the N-1 other states with one excitation are uncoupled to ground state because of symmetry properties r 1 g N 1 NΩ g N

24 Fast Quantum Gate D. Jaksch, J.I. Cirac, P. Zoller, S.L. olston,. Cote, M.D. Lukin, Fast quantum gates for neutral atoms, Phys. ev. Lett. 85, 2208 (2000). 1 st 2 r,1 r,0 V dd All pulses: 0 r r 1,1 0,1 1,0 0, nd r,1 1,r r,0 r,r V dd No excitation Due to blockade - two q-bit states, 0 and 1 coupled differently to ydberg state r two atoms individually addressible 1,1 0,1 1,0 0,0 2 1 st r,1 r, ,1 0,1 1,0 0,0 V dd Phase Gate 1,1 1,1 0,1-0,1 1,0-1,0 0,0-0,0

25 Frozen ydberg gases and dipole-dipole energy transfer

26 P P P P P P P S S P P P P P P S P P P P S P P S P P P S S P P P S S S M M Many-body effects Dipole-dipole allowed ppss ps s p pssp Many-body effects in the frozen ydberg gas Frozen ydberg gas: atoms move only a few percent of internuclear distance in a MOT

27 Early experimental studies Observing Förster resonance in cold atomic ensemble in magneto-optical tramp

28

29 954 Principle : Absorption imaging in presence of coupling light ydberg atoms Ground state atoms

30 Energy (n-1)d 5/2 (n-1)d 5/2 Pour n For 42 n = 7 ns (n 1)s np /2 np /2 F 0 F

31 a) b) The light-harvesting apparatus of green sulphur bacteria and the Fenna-Matthews-Olson (FMO) protein. The excitations from absorbed light are transported through the FMO protein with detailed shown on the right. b) The pictorial representation of Förster energy transfer in the FMO protein. M. Sarovar, A. Ishizaki, G.. Fleming, and K. B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes, Nature Physic, 6, 462 (2010); E. Collini, Spectroscopic signatures of quantum-coherent energy transfer, Chem. Soc. ev. 42, 492 (201)

32 Excitation blockade and collective excitations

33 Early experimental evidence When the volume size is larger than the blockade radius, several atoms can excited to the ydberg states in the atomic cloud. However, there is rapid saturation of the excitation. Number of excited atoms ~ V sample /V blockade Blockade sphere Proper definition of dipole blockade radius b is: Ω N b = C p b p where N b is the number of atoms contained in the blockade sphere.

34

35

36

37 Dipole blockade in mesoscopic ensembles Hundreds of atoms! Ω N Ω

38

39 Single photon filter and deterministic single photon source 2 AUGUST 2012 VOL 488 NATUE 57 Only one photon can be present at a time in the atomic sample polaritons propagate one by one! The time difference between output single photons is determined by the time traveled by each polariton inside the medium. Transmission of the probe beam versus probe beam frequency for different incoming photon rates (Attenuation length l a = 1/(n a σ 0 ) of a few microns when one polariton is already excited) Blockade condition is b > l a, τ d = 00 ns between output pulses Dimensions σ r σ ax = 10 4 μm 2

40 Long range molecules

41 Ultralong-range ydberg Molecules Ground state atom ydberg atom Covalently bond molecules Macrodimers b(nl) + b(5s) Trilobite-like

42 Non-polar molecule Trilobite-like ydberg Molecules b(nl) + b(5s) (l 2) Polar molecule b(nl) + b(5s) (l >2) C.H. Greene et al. PL 85, 2458 (2000) Dipole moment ~ 1KD

43 Trilobite-like ydberg Molecules Bendkowsky V. et al. Nature 458, (2009) M.A. Bellos et al. PL 111, (201) Excitation to Trilobite-like 5s+5p Photoassociation Population in vibrational levels (FI detection) Spontaneous decay 5s+5s Population in vibrational levels (FI detection)

44

45

46

47 Spontaneous evolution of a cold ydberg gas into a cold plasma

48 Dipolar forces Attractive epulsive

49 Spontaneous formation of Ultra-cold plasmas Spontaneous ionization g BB e - Potential energy Black-body Collisions with background gas Dipole-dipole collisions Trapping of electrons in space charge Direct photoionization? Expansion k B T electron 511 nm Ionization threshold ydberg n~0 6p /2 Trapping laser 6s 1/2

50 Ionization due to dipolar forces Cs( np ) Cs( np ) Cs Cs( n ' l ') n' n / 2 / 2 Ultracoldplasma No plasma

51 Ultracold neutral plasmas Direct photoionization of a gas of cold atoms Strongly-coupled plasmas? coupling parameter: =Coulomb Energy/Thermal Energy e a /k B T 1 Wigner Crystallization of neutral plasma? Killian, Science

Chapter 2: Interacting Rydberg atoms

Chapter 2: Interacting Rydberg atoms Chapter : Interacting Rydberg atoms I. DIPOLE-DIPOLE AND VAN DER WAALS INTERACTIONS In the previous chapter, we have seen that Rydberg atoms are very sensitive to external electric fields, with their polarizability

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS 4th GDR - IQFA Paris 7 November 20, 2013 RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS Sylvain Ravets, Henning Labuhn, Daniel Barredo, Lucas Beguin, Aline Vernier, Florence Nogrette, Thierry Lahaye,

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 ATOMS Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 Spectroscopic notation: 2S+1 L J (Z 40) L is total orbital angular momentum

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Interacting Cold Rydberg Atoms: a Toy Many-Body System

Interacting Cold Rydberg Atoms: a Toy Many-Body System Bohr, 1913-2013, Séminaire Poincaré XVII (2013) 125 144 Séminaire Poincaré Interacting Cold Rydberg Atoms: a Toy Many-Body System Antoine Browaeys and Thierry Lahaye Institut d Optique Laboratoire Charles

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Slow and stored light using Rydberg atoms

Slow and stored light using Rydberg atoms Slow and stored light using Rydberg atoms Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania April 28, 2016 Julius Ruseckas (Lithuania) Rydberg slow light April

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

Andy Schwarzkopf Raithel Lab 1/20/2010

Andy Schwarzkopf Raithel Lab 1/20/2010 The Tip Experiment: Imaging of Blockade Effects in a Rydberg Gas Andy Schwarzkopf Raithel Lab 1/20/2010 Rydberg Atoms Highly-excited atoms with large n n scaling dependencies: Orbital radius ~ n2 Dipole

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2 PHYSICAL REVIEW A VOLUME 53, NUMBER 5 MAY 1996 Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2 E. R. I. Abraham, 1 W. I. McAlexander, 1 H. T. C. Stoof, 2 and R. G. Hulet 1 1 Physics

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Dipole-dipole interactions with cold Rydberg atoms. Frozen Rydberg gas or dipole gas

Dipole-dipole interactions with cold Rydberg atoms. Frozen Rydberg gas or dipole gas Cold Rydberg atoms Dipole-dipole interactions with cold Rydberg atoms Frozen Rydberg gas or dipole gas Resonant collisions (Cs: n < 42) by adding a small electric field 2 x E(np 3/2 ) = E(ns) + E((n+1)s)

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Part I. Principles and techniques

Part I. Principles and techniques Part I Principles and techniques 1 General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker 1.1 Introduction Optical magnetometry encompasses

More information

MOLECULES. ENERGY LEVELS electronic vibrational rotational

MOLECULES. ENERGY LEVELS electronic vibrational rotational MOLECULES BONDS Ionic: closed shell (+) or open shell (-) Covalent: both open shells neutral ( share e) Other (skip): van der Waals (He-He) Hydrogen bonds (in DNA, proteins, etc) ENERGY LEVELS electronic

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Ultracold Plasmas ( Zafar Yasin)

Ultracold Plasmas ( Zafar Yasin) Ultracold Plasmas ( Zafar Yasin) Outline - Creation and why considered important? - Characterization. - Modeling. -My Past Research. - Current Research Trends. Why this topic? - Ultracold Plasmas of astrophysical

More information

Resonant energy transport in aggregates of ultracold Rydberg-Atoms

Resonant energy transport in aggregates of ultracold Rydberg-Atoms Resonant energy transport in aggregates of ultracold Rydberg-Atoms C.S. Hofmann, G. Günter, H. Schempp, N. Müller, O. Mülken 1, A. Blumen 1, A. Eisfeld 2, T. Amthor, and M. Weidemüller Quantum dynamics

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Rydberg atoms: excitation, interactions, trapping

Rydberg atoms: excitation, interactions, trapping Rydberg atoms: excitation, interactions, trapping Mark Saffman I: Coherent excitation of Rydberg states II: Rydberg atom interactions III: Coherence properties of ground and Rydberg atom traps 1: Coherent

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

arxiv: v1 [quant-ph] 22 May 2012

arxiv: v1 [quant-ph] 22 May 2012 Non-linear optics using cold Rydberg atoms Jonathan D. Pritchard, 1 Kevin J. Weatherill, 2 and Charles S. Adams 2, 1 Department of Physics, University of Strathclyde, Glasgow, G4 0NG 2 Department of Physics,

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

Chapter4: Quantum Optical Control

Chapter4: Quantum Optical Control Chapter4: Quantum Optical Control Laser cooling v A P3/ B P / C S / Figure : Figure A shows how an atom is hit with light with momentum k and slows down. Figure B shows atom will absorb light if frequency

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Xiaozhen Xu Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 xzxu@unm.edu We consider the nonlinearity

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips Atom trifft Photon Rydberg blockade Michael Rips 1. Introduction Atom in Rydberg state Highly excited principal quantum number n up to 500 Diameter of atom can reach ~1μm Long life time (~µs ~ns for low

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

Excitation of high angular momentum Rydberg states

Excitation of high angular momentum Rydberg states J. Phys. B: At. Mol. Phys. 19 (1986) L461-L465. Printed in Great Britain LE ITER TO THE EDITOR Excitation of high angular momentum Rydberg states W A Molanderi, C R Stroud Jr and John A Yeazell The Institute

More information

Generation of maximally entangled GHZ (Greenberger-Horne-Zeilinger) states of divalent atoms

Generation of maximally entangled GHZ (Greenberger-Horne-Zeilinger) states of divalent atoms Generation of maximally entangled GHZ (Greenberger-Horne-Zeilinger) states of divalent atoms Turker Topcu Department of Physics, University of Nevada, Reno, NV 89557, USA UNR: Turker Topcu, Andrei Derevianko

More information

International Physics Course Entrance Examination Questions

International Physics Course Entrance Examination Questions International Physics Course Entrance Examination Questions (May 2010) Please answer the four questions from Problem 1 to Problem 4. You can use as many answer sheets you need. Your name, question numbers

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 008 4.4.5 Fluorescence radiation The excited molecule: - is subject to collisions with the surrounding molecules and gives up energy by decreasing the vibrational levels

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Atomic Physics 3 rd year B1

Atomic Physics 3 rd year B1 Atomic Physics 3 rd year B1 P. Ewart Lecture notes Lecture slides Problem sets All available on Physics web site: http:www.physics.ox.ac.uk/users/ewart/index.htm Atomic Physics: Astrophysics Plasma Physics

More information

Kevin J. Weatherill. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University

Kevin J. Weatherill. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University Non-equilibrium phase transition in a dilute thermal gas. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University Non-equilibrium phase transition in a dilute thermal gas. Talk

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Part IV. Fundamentals of Laser Spectroscopy

Part IV. Fundamentals of Laser Spectroscopy IV 1 Part IV. Fundamentals of Laser Spectroscopy We have gone through the fundamentals of atomic spectroscopy and molecular spectroscopy, in which we emphasize the quantum physics and principles that govern

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Golden chain of strongly interacting Rydberg atoms

Golden chain of strongly interacting Rydberg atoms Golden chain of strongly interacting Rydberg atoms Hosho Katsura (Gakushuin Univ.) Acknowledgment: Igor Lesanovsky (MUARC/Nottingham Univ. I. Lesanovsky & H.K., [arxiv:1204.0903] Outline 1. Introduction

More information

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION

QUANTUM THEORY OF LIGHT EECS 638/PHYS 542/AP609 FINAL EXAMINATION Instructor: Professor S.C. Rand Date: April 5 001 Duration:.5 hours QUANTUM THEORY OF LIGHT EECS 638/PHYS 54/AP609 FINAL EXAMINATION PLEASE read over the entire examination before you start. DO ALL QUESTIONS

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 3 February 06 Modern Physics IV Lecture 4 Agenda Administrative

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Experiment: Joseph D. Whalen, F. Camargo, R. Ding, T. C. Killian, F. B. Dunning Theory: J. Pérez Ríos, S. Yoshida, J.

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

Molecular Physics. Attraction between the ions causes the chemical bond.

Molecular Physics. Attraction between the ions causes the chemical bond. Molecular Physics A molecule is a stable configuration of electron(s) and more than one nucleus. Two types of bonds: covalent and ionic (two extremes of same process) Covalent Bond Electron is in a molecular

More information

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston Origin of Optical Enhancement by Metal Nanoparticles Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm Photonics 1ns 100ps 10ps 1ps 100fs 10fs 1fs Time

More information

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field Interference effects on the probe absorption in a driven three-level atomic system by a coherent pumping field V. Stancalie, O. Budriga, A. Mihailescu, V. Pais National Institute for Laser, Plasma and

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) 2 2. Circular dichroism (optical activity) CD / ORD 3 3. Fluorescence spectroscopy and energy transfer Electromagnetic Spectrum Electronic Molecular

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017 Quantum Optics exam M LOM and Nanophysique 8 November 017 Allowed documents : lecture notes and problem sets. Calculators allowed. Aux francophones (et francographes) : vous pouvez répondre en français.

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

arxiv: v3 [cond-mat.quant-gas] 5 May 2015

arxiv: v3 [cond-mat.quant-gas] 5 May 2015 Quantum walk and Anderson localization of rotational excitations in disordered ensembles of polar molecules T. Xu and R. V. Krems 1 arxiv:151.563v3 [cond-mat.quant-gas] 5 May 215 1 Department of Chemistry,

More information