Lecture 4: Simulated Annealing. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved

Size: px
Start display at page:

Download "Lecture 4: Simulated Annealing. An Introduction to Meta-Heuristics, Produced by Qiangfu Zhao (Since 2012), All rights reserved"

Transcription

1 Lecture 4: Simulated Annealing Lec04/1

2 Neighborhood based search Step 1: s=s0; Step 2: Stop if terminating condition satisfied; Step 3: Generate N(s); Step 4: s =FindBetterSolution(N(s)); Step 5: s=s ; Step 6: Return to Step 2. In Step 5, the new solution can be worse than the current one! The question is, can we get a better one later? Lec04/2

3 Meta-heuristics used in Tabu Search Short-term memory is used to prevent search from cycling (re-visit the same solution or same region). Medium-term memory is used to intensify the search by investigating some potentially good region in more detail. Long-term memory is used to diversify the search by investigating un-explored regions. These memories are used to control the search process, so that even if we may not find a better solution locally, in a long run we may find the global optimal solution. Lec04/3

4 Simulated annealing Simulated annealing (SA) is another meta-heuristic algorithm for finding the global optimal solutions. Different from TS, SA is memoryless. That is, we do not store the search history to escape from local optimum. The only thing to do is to accept some worse local solution with a certain probability. If we control this probability properly, we can get, theoretically, the global optimal solution. Lec04/4

5 History of SA SA was independently introduced by several persons: S. Kirkpatrick, C. D. Gellatt and M. P. Vecchi in V. Cerny in So far, SA has been applied to Graph partitioning and VLSI design. Solving combinatorial optimization problems. Solving continuous optimization problems. Lec04/5

6 What is annealing? In metallurgy, annealing is a technique to control the cooling process of a material. If the cooling process is properly controlled (slow cooling down), we can crystallize the material well, and obtain materials without defects (e.g. very hard steel). Solid state -> (melt, liquefy) liquid state -> (cool down) -> Another object Lec04/6

7 Why annealing? In fact, high temperature can cause atoms to become unstuck from their initial positions and wander randomly. Cooling down very slowly provides more chances of finding a configuration with lower internal energy (or a new equilibrium state). /press_release/2005/ Lec04/7

8 What is simulated annealing? SA is a computer simulation of the annealing process. We start from a high enough temperature, so that search can have better chance to find the rough position of the global optimal solution. Each potential solution is considered an atom. High temperature allows the solutions to change their positions more easily in the solution space. Cooling down the temperature slowly can obtain a globally good solution. Lec04/8

9 Probability of accepting a solution In SA, we accept a solution s in N(s) un-conditionally if it is better (i.e. f(s ) < f(s) ) than the current solution s. If s is worse (i.e. f(s ) > f(s) ), we accept it with a probability given by p s T = e (f s f s T ) where T is the temperature parameter. It has been proved theoretically (based on Markov chain theory) that SA asymptotically converges to the global optimal solution provided that T is reduced slowly enough. Lec04/9

10 Why accept worse solutions? Go towards the local minimum Escape from the local minimum Escape from global minimum (if T is high) Lec04/10

11 SA algorithm Step 1: Initialize s and T; Step 2: Find N(s); Find a new solution s in N(s) at random. If f(s )<f(s): s=s ; Else s=s with probability p(s T); Step 3: If not equilibrium state, return to Step 2; else, update T; Step 4: If terminating condition satisfied, stop. Lec04/11

12 Initialize the temperature The initial temperature cannot be too high, or search will become random walk. The initial temperature cannot be too low, or search will be done locally. To make a balance, some methods have been proposed in the literature. One method is to select T, such that the acceptance rate of a worse solution is between 0.4 and 0.5. Lec04/12

13 Equilibrium state To see if search is in an equilibrium state at a certain temperature, we need to find a large number of solutions, or transit a large number of times from the starting state. Theoretically, the number of solutions to find for each temperature is exponential to the problem size. In practice, we should make some balance between the computational cost and the solution quality. Lec04/13

14 Equilibrium state The simplest way is to define a number Q before search, and fix it during search. During search, we consider that solution is in equilibrium state after Q transitions. To reduce computational cost, some heuristics can be used. For example, we can cool down the temperature once we get a much better solution, without waiting for the equilibrium state. Lec04/14

15 Cooling control In SA, the temperature is decreased gradually such that T0>T1>T2>..>0 Slow cooling down is necessary to obtain the global optimal solution. In practice, again, we should make some compromise between the computational cost and the solution quality. Lec04/15

16 Strategies for cooling Linear T i = T 0 i x d, i=1,2,.. Geometric T i =at i-1, i=1,2,.. Logarithmic T i =T 0 /log(i), i=1,2,.. In metallurgy, the cooling process cannot be defined so easily like this! Lec04/16

17 Terminating condition The simplest way to stop search is to see if T is already zero or not. In practice, we may stop search if the probability of accepting a worse solution is almost zero. For example, we may stop when T is T min =0.01. Lec04/17

18 Example function y = f(x) y = (4-2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2; ObjectiveFunction X0 = [ ]; [x,fval,exitflag,output] = simulannealbnd(objectivefunction,x0) x = ( ) fval = Lec04/18

19 Results x = fval = exitflag = 1 output = iterations: 2875 funccount: 2898 message: 'Optimization terminated: change in best function value less than options.tolf ' rngstate: [1x1 struct] problemtype: 'unconstrained' temperature: [2x1 double] totaltime: Lec04/19

20 Homework Tabu search uses several memories to control the search process. SA is memoryless, but may need longer computing time to find good solutions. Do you have some idea to combine TS and SA? That is, to make some balance between memory and time cost? Submit your answer in hard copy before the class of next week. Lec04/20

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Real Annealing and Simulated Annealing Metropolis Algorithm Template of SA A Simple Example References

More information

SIMU L TED ATED ANNEA L NG ING

SIMU L TED ATED ANNEA L NG ING SIMULATED ANNEALING Fundamental Concept Motivation by an analogy to the statistical mechanics of annealing in solids. => to coerce a solid (i.e., in a poor, unordered state) into a low energy thermodynamic

More information

5. Simulated Annealing 5.2 Advanced Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.2 Advanced Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.2 Advanced Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Acceptance Function Initial Temperature Equilibrium State Cooling Schedule Stopping Condition Handling Constraints

More information

Artificial Intelligence Heuristic Search Methods

Artificial Intelligence Heuristic Search Methods Artificial Intelligence Heuristic Search Methods Chung-Ang University, Jaesung Lee The original version of this content is created by School of Mathematics, University of Birmingham professor Sandor Zoltan

More information

Methods for finding optimal configurations

Methods for finding optimal configurations CS 1571 Introduction to AI Lecture 9 Methods for finding optimal configurations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Search for the optimal configuration Optimal configuration search:

More information

Metaheuristics. 2.3 Local Search 2.4 Simulated annealing. Adrian Horga

Metaheuristics. 2.3 Local Search 2.4 Simulated annealing. Adrian Horga Metaheuristics 2.3 Local Search 2.4 Simulated annealing Adrian Horga 1 2.3 Local Search 2 Local Search Other names: Hill climbing Descent Iterative improvement General S-Metaheuristics Old and simple method

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 8: Simulated annealing Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation

More information

Finding optimal configurations ( combinatorial optimization)

Finding optimal configurations ( combinatorial optimization) CS 1571 Introduction to AI Lecture 10 Finding optimal configurations ( combinatorial optimization) Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Constraint

More information

Methods for finding optimal configurations

Methods for finding optimal configurations S 2710 oundations of I Lecture 7 Methods for finding optimal configurations Milos Hauskrecht milos@pitt.edu 5329 Sennott Square S 2710 oundations of I Search for the optimal configuration onstrain satisfaction

More information

Lin-Kernighan Heuristic. Simulated Annealing

Lin-Kernighan Heuristic. Simulated Annealing DM63 HEURISTICS FOR COMBINATORIAL OPTIMIZATION Lecture 6 Lin-Kernighan Heuristic. Simulated Annealing Marco Chiarandini Outline 1. Competition 2. Variable Depth Search 3. Simulated Annealing DM63 Heuristics

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Single Solution-based Metaheuristics

Single Solution-based Metaheuristics Parallel Cooperative Optimization Research Group Single Solution-based Metaheuristics E-G. Talbi Laboratoire d Informatique Fondamentale de Lille Single solution-based metaheuristics Improvement of a solution.

More information

Metaheuristics and Local Search. Discrete optimization problems. Solution approaches

Metaheuristics and Local Search. Discrete optimization problems. Solution approaches Discrete Mathematics for Bioinformatics WS 07/08, G. W. Klau, 31. Januar 2008, 11:55 1 Metaheuristics and Local Search Discrete optimization problems Variables x 1,...,x n. Variable domains D 1,...,D n,

More information

A.I.: Beyond Classical Search

A.I.: Beyond Classical Search A.I.: Beyond Classical Search Random Sampling Trivial Algorithms Generate a state randomly Random Walk Randomly pick a neighbor of the current state Both algorithms asymptotically complete. Overview Previously

More information

Metaheuristics and Local Search

Metaheuristics and Local Search Metaheuristics and Local Search 8000 Discrete optimization problems Variables x 1,..., x n. Variable domains D 1,..., D n, with D j Z. Constraints C 1,..., C m, with C i D 1 D n. Objective function f :

More information

Local Search. Shin Yoo CS492D, Fall 2015, School of Computing, KAIST

Local Search. Shin Yoo CS492D, Fall 2015, School of Computing, KAIST Local Search Shin Yoo CS492D, Fall 2015, School of Computing, KAIST If your problem forms a fitness landscape, what is optimisation? Local Search Loop Local Search Loop Start with a single, random solution

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 0, Winter 08 Design and Analysis of Algorithms Lecture 8: Consolidation # (DP, Greed, NP-C, Flow) Class URL: http://vlsicad.ucsd.edu/courses/cse0-w8/ Followup on IGO, Annealing Iterative Global Optimization

More information

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms 1 What is Combinatorial Optimization? Combinatorial Optimization deals with problems where we have to search

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 4 Metaheuristic Algorithms Sarah Gaggl Dresden, 5th May 2017 Agenda 1 Introduction 2 Constraint

More information

Lecture H2. Heuristic Methods: Iterated Local Search, Simulated Annealing and Tabu Search. Saeed Bastani

Lecture H2. Heuristic Methods: Iterated Local Search, Simulated Annealing and Tabu Search. Saeed Bastani Simulation Lecture H2 Heuristic Methods: Iterated Local Search, Simulated Annealing and Tabu Search Saeed Bastani saeed.bastani@eit.lth.se Spring 2017 Thanks to Prof. Arne Løkketangen at Molde University

More information

Simulated Annealing. Local Search. Cost function. Solution space

Simulated Annealing. Local Search. Cost function. Solution space Simulated Annealing Hill climbing Simulated Annealing Local Search Cost function? Solution space Annealing Annealing is a thermal process for obtaining low energy states of a solid in a heat bath. The

More information

Local and Stochastic Search

Local and Stochastic Search RN, Chapter 4.3 4.4; 7.6 Local and Stochastic Search Some material based on D Lin, B Selman 1 Search Overview Introduction to Search Blind Search Techniques Heuristic Search Techniques Constraint Satisfaction

More information

Introduction to Simulated Annealing 22c:145

Introduction to Simulated Annealing 22c:145 Introduction to Simulated Annealing 22c:145 Simulated Annealing Motivated by the physical annealing process Material is heated and slowly cooled into a uniform structure Simulated annealing mimics this

More information

Random Search. Shin Yoo CS454, Autumn 2017, School of Computing, KAIST

Random Search. Shin Yoo CS454, Autumn 2017, School of Computing, KAIST Random Search Shin Yoo CS454, Autumn 2017, School of Computing, KAIST Random Search The polar opposite to the deterministic, examineeverything, search. Within the given budget, repeatedly generate a random

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

Computational statistics

Computational statistics Computational statistics Combinatorial optimization Thierry Denœux February 2017 Thierry Denœux Computational statistics February 2017 1 / 37 Combinatorial optimization Assume we seek the maximum of f

More information

1 Heuristics for the Traveling Salesman Problem

1 Heuristics for the Traveling Salesman Problem Praktikum Algorithmen-Entwurf (Teil 9) 09.12.2013 1 1 Heuristics for the Traveling Salesman Problem We consider the following problem. We want to visit all the nodes of a graph as fast as possible, visiting

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria 12. LOCAL SEARCH gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley h ttp://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Local Search and Optimization

Local Search and Optimization Local Search and Optimization Outline Local search techniques and optimization Hill-climbing Gradient methods Simulated annealing Genetic algorithms Issues with local search Local search and optimization

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods p. /36 Markov Chain Monte Carlo Methods Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Markov Chain Monte Carlo Methods p. 2/36 Markov Chains

More information

Simulated Annealing. 2.1 Introduction

Simulated Annealing. 2.1 Introduction Simulated Annealing 2 This chapter is dedicated to simulated annealing (SA) metaheuristic for optimization. SA is a probabilistic single-solution-based search method inspired by the annealing process in

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

PHYSICS 653 HOMEWORK 1 P.1. Problems 1: Random walks (additional problems)

PHYSICS 653 HOMEWORK 1 P.1. Problems 1: Random walks (additional problems) PHYSICS 653 HOMEWORK 1 P.1 Problems 1: Random walks (additional problems) 1-2. Generating function (Lec. 1.1/1.2, random walks) Not assigned 27. Note: any corrections noted in 23 have not been made. This

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 2 (20) 49 498 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/iec

More information

Random Walks A&T and F&S 3.1.2

Random Walks A&T and F&S 3.1.2 Random Walks A&T 110-123 and F&S 3.1.2 As we explained last time, it is very difficult to sample directly a general probability distribution. - If we sample from another distribution, the overlap will

More information

Markov Chain Monte Carlo. Simulated Annealing.

Markov Chain Monte Carlo. Simulated Annealing. Aula 10. Simulated Annealing. 0 Markov Chain Monte Carlo. Simulated Annealing. Anatoli Iambartsev IME-USP Aula 10. Simulated Annealing. 1 [RC] Stochastic search. General iterative formula for optimizing

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. CS 1571 Introduction to AI Lecture 8 Constraint satisfaction search. Combinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Objective:

More information

Clustering using the Minimum Message Length Criterion and Simulated Annealing

Clustering using the Minimum Message Length Criterion and Simulated Annealing Clustering using the Minimum Message Length Criterion and Simulated Annealing Ian Davidson CSIRO Australia, Division of Information Technology, 723 Swanston Street, Carlton, Victoria, Australia 3053, inpd@mel.dit.csiro.au

More information

The Application of Meta Heuristic Global Optimization Algorithms to Scheduling Problems within the Brewing Industry. Graham Nash

The Application of Meta Heuristic Global Optimization Algorithms to Scheduling Problems within the Brewing Industry. Graham Nash The Application of Meta Heuristic Global Optimization Algorithms to Scheduling Problems within the Brewing Industry Graham Nash A thesis submitted to the Faculty of Science, University of the Witwatersrand,

More information

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14 LOCAL SEARCH Today Reading AIMA Chapter 4.1-4.2, 5.1-5.2 Goals Local search algorithms n hill-climbing search n simulated annealing n local beam search n genetic algorithms n gradient descent and Newton-Rhapson

More information

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1 Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1 Benjamin W. Wah 1, Yixin Chen 2 and Tao Wang 3 1 Department of Electrical and Computer Engineering and the Coordinated

More information

Lecture V: Multicanonical Simulations.

Lecture V: Multicanonical Simulations. Lecture V: Multicanonical Simulations. 1. Multicanonical Ensemble 2. How to get the Weights? 3. Example Runs (2d Ising and Potts models) 4. Re-Weighting to the Canonical Ensemble 5. Energy and Specific

More information

Local search algorithms

Local search algorithms Local search algorithms CS171, Winter 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop Reading: R&N 4.1-4.2 Local search algorithms In many optimization problems, the path to the goal

More information

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ]

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] Lecture 4-6B1 Evaluating Limits Limits x ---> a The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] the y values f (x) must take on every value on the

More information

Let's contemplate a continuous-time limit of the Bernoulli process:

Let's contemplate a continuous-time limit of the Bernoulli process: Mathematical Foundations of Markov Chains Thursday, September 17, 2015 2:04 PM Reading: Lawler Ch. 1 Homework 1 due Friday, October 2 at 5 PM. Office hours today are moved to 6-7 PM. Let's revisit the

More information

DISTRIBUTION SYSTEM OPTIMISATION

DISTRIBUTION SYSTEM OPTIMISATION Politecnico di Torino Dipartimento di Ingegneria Elettrica DISTRIBUTION SYSTEM OPTIMISATION Prof. Gianfranco Chicco Lecture at the Technical University Gh. Asachi, Iaşi, Romania 26 October 2010 Outline

More information

Computing the Initial Temperature of Simulated Annealing

Computing the Initial Temperature of Simulated Annealing Computational Optimization and Applications, 29, 369 385, 2004 c 2004 Kluwer Academic Publishers. Manufactured in he Netherlands. Computing the Initial emperature of Simulated Annealing WALID BEN-AMEUR

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems S 331: rtificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines Or

More information

Announcements. CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis. Today. Mathematical induction. Dan Grossman Spring 2010

Announcements. CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis. Today. Mathematical induction. Dan Grossman Spring 2010 Announcements CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis Dan Grossman Spring 2010 Project 1 posted Section materials on using Eclipse will be very useful if you have never used

More information

Motivation. Lecture 23. The Stochastic Neuron ( ) Properties of Logistic Sigmoid. Logistic Sigmoid With Varying T. Logistic Sigmoid T = 0.

Motivation. Lecture 23. The Stochastic Neuron ( ) Properties of Logistic Sigmoid. Logistic Sigmoid With Varying T. Logistic Sigmoid T = 0. Motivation Lecture 23 Idea: with low probability, go against the local field move up the energy surface make the wrong microdecision Potential value for optimization: escape from local optima Potential

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: I I Select a variable to change Select a new value for that variable Until a satisfying assignment

More information

Vehicle Routing and Scheduling. Martin Savelsbergh The Logistics Institute Georgia Institute of Technology

Vehicle Routing and Scheduling. Martin Savelsbergh The Logistics Institute Georgia Institute of Technology Vehicle Routing and Scheduling Martin Savelsbergh The Logistics Institute Georgia Institute of Technology Vehicle Routing and Scheduling Part II: Algorithmic Enhancements Handling Practical Complexities

More information

Pengju

Pengju Introduction to AI Chapter04 Beyond Classical Search Pengju Ren@IAIR Outline Steepest Descent (Hill-climbing) Simulated Annealing Evolutionary Computation Non-deterministic Actions And-OR search Partial

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

The Quadratic Assignment Problem

The Quadratic Assignment Problem The Quadratic Assignment Problem Joel L. O. ; Lalla V. ; Mbongo J. ; Ali M. M. ; Tuyishimire E.; Sawyerr B. A. Supervisor Suriyakat W. (Not in the picture) (MISG 2013) QAP 1 / 30 Introduction Introduction

More information

Simulated Annealing for Constrained Global Optimization

Simulated Annealing for Constrained Global Optimization Monte Carlo Methods for Computation and Optimization Final Presentation Simulated Annealing for Constrained Global Optimization H. Edwin Romeijn & Robert L.Smith (1994) Presented by Ariel Schwartz Objective

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM

6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM 6. Application to the Traveling Salesman Problem 92 6. APPLICATION TO THE TRAVELING SALESMAN PROBLEM The properties that have the most significant influence on the maps constructed by Kohonen s algorithm

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes The story of the film so far... Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 19 28 March 2012 We have been studying stochastic processes; i.e., systems whose time evolution has an element

More information

Ant Colony Optimization: an introduction. Daniel Chivilikhin

Ant Colony Optimization: an introduction. Daniel Chivilikhin Ant Colony Optimization: an introduction Daniel Chivilikhin 03.04.2013 Outline 1. Biological inspiration of ACO 2. Solving NP-hard combinatorial problems 3. The ACO metaheuristic 4. ACO for the Traveling

More information

Modelling data networks stochastic processes and Markov chains

Modelling data networks stochastic processes and Markov chains Modelling data networks stochastic processes and Markov chains a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) December 2011 Available online

More information

7.1 Basis for Boltzmann machine. 7. Boltzmann machines

7.1 Basis for Boltzmann machine. 7. Boltzmann machines 7. Boltzmann machines this section we will become acquainted with classical Boltzmann machines which can be seen obsolete being rarely applied in neurocomputing. It is interesting, after all, because is

More information

So in terms of conditional probability densities, we have by differentiating this relationship:

So in terms of conditional probability densities, we have by differentiating this relationship: Modeling with Finite State Markov Chains Tuesday, September 27, 2011 1:54 PM Homework 1 due Friday, September 30 at 2 PM. Office hours on 09/28: Only 11 AM-12 PM (not at 3 PM) Important side remark about

More information

Solve by equating exponents

Solve by equating exponents EXAMPLE 1 x Solve 4 = 1 Solve by equating exponents x 3 SOLUTION x 1 4 = x x 3 1 ( ) = ( ) x x + 3 = x = x + 3 x = 1 x 3 Write original equation. Rewrite 4 and base. 1 as powers with Power of a power property

More information

OPTIMIZATION OF STEEL PLANE TRUSS MEMBERS CROSS SECTIONS WITH SIMULATED ANNEALING METHOD

OPTIMIZATION OF STEEL PLANE TRUSS MEMBERS CROSS SECTIONS WITH SIMULATED ANNEALING METHOD OPTIMIZATION OF STEEL PLANE TRUSS MEMBERS CROSS SECTIONS WITH SIMULATED ANNEALING METHOD Snezana Mitrovic College of Civil Engineering and Geodesy, Belgrade, Serbia mitrozs@sezampro.rs Goran Cirovic College

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Microcanonical Mean Field Annealing: A New Algorithm for Increasing the Convergence Speed of Mean Field Annealing.

Microcanonical Mean Field Annealing: A New Algorithm for Increasing the Convergence Speed of Mean Field Annealing. Microcanonical Mean Field Annealing: A New Algorithm for Increasing the Convergence Speed of Mean Field Annealing. Hyuk Jae Lee and Ahmed Louri Department of Electrical and Computer Engineering University

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Markov chains. Randomness and Computation. Markov chains. Markov processes

Markov chains. Randomness and Computation. Markov chains. Markov processes Markov chains Randomness and Computation or, Randomized Algorithms Mary Cryan School of Informatics University of Edinburgh Definition (Definition 7) A discrete-time stochastic process on the state space

More information

A Structural Matching Algorithm Using Generalized Deterministic Annealing

A Structural Matching Algorithm Using Generalized Deterministic Annealing A Structural Matching Algorithm Using Generalized Deterministic Annealing Laura Davlea Institute for Research in Electronics Lascar Catargi 22 Iasi 6600, Romania )QEMPPHEZPIE$QEMPHRXMWVS Abstract: We present

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1 Section 9 A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

3E4: Modelling Choice. Introduction to nonlinear programming. Announcements

3E4: Modelling Choice. Introduction to nonlinear programming. Announcements 3E4: Modelling Choice Lecture 7 Introduction to nonlinear programming 1 Announcements Solutions to Lecture 4-6 Homework will be available from http://www.eng.cam.ac.uk/~dr241/3e4 Looking ahead to Lecture

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Coping With NP-hardness Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you re unlikely to find poly-time algorithm. Must sacrifice one of three desired features. Solve

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE. Bruce Hajek* University of Illinois at Champaign-Urbana

OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE. Bruce Hajek* University of Illinois at Champaign-Urbana OPTIMIZATION BY SIMULATED ANNEALING: A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE Bruce Hajek* University of Illinois at Champaign-Urbana A Monte Carlo optimization technique called "simulated

More information

Fundamentals of Metaheuristics

Fundamentals of Metaheuristics Fundamentals of Metaheuristics Part I - Basic concepts and Single-State Methods A seminar for Neural Networks Simone Scardapane Academic year 2012-2013 ABOUT THIS SEMINAR The seminar is divided in three

More information

Sequential Decision Problems

Sequential Decision Problems Sequential Decision Problems Michael A. Goodrich November 10, 2006 If I make changes to these notes after they are posted and if these changes are important (beyond cosmetic), the changes will highlighted

More information

Spin Glas Dynamics and Stochastic Optimization Schemes. Karl Heinz Hoffmann TU Chemnitz

Spin Glas Dynamics and Stochastic Optimization Schemes. Karl Heinz Hoffmann TU Chemnitz Spin Glas Dynamics and Stochastic Optimization Schemes Karl Heinz Hoffmann TU Chemnitz 1 Spin Glasses spin glass e.g. AuFe AuMn CuMn nobel metal (no spin) transition metal (spin) 0.1-10 at% ferromagnetic

More information

Lecture 9 Evolutionary Computation: Genetic algorithms

Lecture 9 Evolutionary Computation: Genetic algorithms Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Simulation of natural evolution Genetic algorithms Case study: maintenance scheduling with genetic

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Stochastic optimization Markov Chain Monte Carlo

Stochastic optimization Markov Chain Monte Carlo Stochastic optimization Markov Chain Monte Carlo Ethan Fetaya Weizmann Institute of Science 1 Motivation Markov chains Stationary distribution Mixing time 2 Algorithms Metropolis-Hastings Simulated Annealing

More information

Modelling data networks stochastic processes and Markov chains

Modelling data networks stochastic processes and Markov chains Modelling data networks stochastic processes and Markov chains a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) November 2016 Available online

More information

Local and Online search algorithms

Local and Online search algorithms Local and Online search algorithms Chapter 4 Chapter 4 1 Outline Local search algorithms Hill-climbing Simulated annealing Genetic algorithms Searching with non-deterministic actions Searching with partially/no

More information

Generalized Ensembles: Multicanonical Simulations

Generalized Ensembles: Multicanonical Simulations Generalized Ensembles: Multicanonical Simulations 1. Multicanonical Ensemble 2. How to get the Weights? 3. Example Runs and Re-Weighting to the Canonical Ensemble 4. Energy and Specific Heat Calculation

More information

Tabu Search. Biological inspiration is memory the ability to use past experiences to improve current decision making.

Tabu Search. Biological inspiration is memory the ability to use past experiences to improve current decision making. Tabu Search Developed by Fred Glover in the 1970 s. Dr Glover is a business professor at University of Colorado at Boulder. Developed specifically as a combinatorial optimization tool. Biological inspiration

More information

MCMC Simulated Annealing Exercises.

MCMC Simulated Annealing Exercises. Aula 10. Simulated Annealing. 0 MCMC Simulated Annealing Exercises. Anatoli Iambartsev IME-USP Aula 10. Simulated Annealing. 1 [Wiki] Salesman problem. The travelling salesman problem (TSP), or, in recent

More information

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models Today (Ch 14) Markov chains and hidden Markov models Graphical representation Transition probability matrix Propagating state distributions The stationary distribution Next lecture (Ch 14) Markov chains

More information

2.1 Laplacian Variants

2.1 Laplacian Variants -3 MS&E 337: Spectral Graph heory and Algorithmic Applications Spring 2015 Lecturer: Prof. Amin Saberi Lecture 2-3: 4/7/2015 Scribe: Simon Anastasiadis and Nolan Skochdopole Disclaimer: hese notes have

More information