Physics 486 Midterm Exam #1 Spring 2018 Thursday February 22, 9:30 am 10:50 am

Size: px
Start display at page:

Download "Physics 486 Midterm Exam #1 Spring 2018 Thursday February 22, 9:30 am 10:50 am"

Transcription

1 Physics 486 Midterm Exam #1 Spring 18 Thursday February, 9: am 1:5 am This is a closed book exam. No use of calculators or any other electronic devices is allowed. Work the problems only in your answer booklets only. The exam questions will not be collected at the end, so anything you write on these question pages will NOT be graded You have 8 minutes to work the problems. At the beginning of the exam: 1) Write your name and netid on your answer booklet(s). ) Turn your cell phone off. ) Put away all calculators, phones, computers, notes, and books. During the exam: 1) Show your work and/or reasoning. Answers with no work or explanation get no points. But... ) Don t write long essays explaining your reasoning. We only need to see enough work to confirm that you understand what you re doing and are not just guessing. (If you are guessing, explain that, then verify your guess explicitly.) A good annotated sketch is often the best explanation of all! ) All question parts on this exam are independent: you can get full points on any part even if your answers to all the other parts are incorrect. You should attempt all the question parts! If you get stuck, move on to the next one and come back later. The worst thing you can do is stall on one question and not get to others whose solution may be very simple. 4) Partial credit will be given for incorrect answers if the work is understandable and some of it is correct. IMPORTANT: If you think you ve made a mistake but can t find it, explain what you think is wrong you may well get partial credit for noticing your error! 5) It is fine to leave answers as radicals or irreducible fractions (e.g. 1 or 5/7), but you will lose points for not simplifying answers to an irreducible form (e.g. 4(x y ) / ( 9x Phys 486 Midterm #1 Spring 18 9y) is unacceptable.) When you re done with the exam: Academic Integrity: Turn in EVERYTHING : answer booklet and question pages The giving of assistance to or receiving of assistance from another person, or the use of unauthorized materials during University Examinations can be grounds for disciplinary action, up to and including expulsion from the University. Please be aware that prior to or during an examination, the instructional staff may wish to rearrange the student seating. Such action does not mean that anyone is suspected of inappropriate behavior.

2 Phys 486 Midterm #1 Spring 18

3 Problem 1 : Always Real Phys 486 Midterm #1 Spring 18 Any complex function ψ(x) can be expressed as the sum of a real part and an imaginary part: ψ (x) = f (x) + i g(x) where f (x) and g(x) are both real. Show that the expectation value of momentum, p, for any complex wavefunction ψ (x) = f (x) + i g(x) is a real number. Hint: You will need to use one integration by parts. Problem : Bohr Atom In Bohr s original model of the atom, electrons of charge e and mass m move in circular orbits of radius rn around a heavy, stationary nucleus of charge +Ze. Since the circular motion of the electrons is periodic in their azimuthal angle φ, the allowed values of the radius rn can be determined by applying the quantization rule p φ dφ = nh where generalized momentum pφ = angular momentum L = mvr. Using this quantization rule for angular momentum, and some very elementary classical mechanics expressions, calculate the allowed radii rn for the electron in terms of Z, e, m, n and physical/numerical constants. Problem : Infinite Well Consider a particle in this infinite potential well, which is symmetric around x = : for π V(x) = < x < π. elsewhere Determine the ground-state wavefunction, i.e. the wavefunction of lowest energy ψ1(x). You do NOT need to determine the ground-state energy OR the time-dependent part of the wavefunction... just find ψ1(x).

4 Problem 4 : A Minimalist Wave Packet Phys 486 Midterm #1 Spring 18 A free particle in a region with V = is approximately described by this wavefunction at t = : Ψ(x,) =ψ (x) = A( e i11x + e i1 x + e i1 x ) where A is a known constant. Work in units where the particle s mass m =.5 and the constant = 1. (a) Write down the time-dependent wavefunction Ψ(x, t) that describes how the starting wavefunction Ψ(x, ) given above will evolve with time. (b) At time t =, the probability distribution Ψ*Ψ of this wavefunction has a pretty sharp peak at x =. With what velocity does this peak move? Please give the approximate speed of the peak and the direction in which it moves (+x or x direction). Problem 5 : A Wavefunction to Play With At time t =, a particle is in a state with wavefunction ψ (x) = A e x +i5x where A is a constant of unspecified value. Hints for dealing with absolute values: It is always safest to deal with the two cases x > and x < separately. Alternatively, you may sometimes find it efficient to use the sign function sgn(x) to express both cases with one expression; it is defined as sgn(x) +1 for x > and 1 for x <. (It is undefined at x =.) (a) Find the standard deviation σx of the particle s position at time t =. (b) Find the mean momentum p of the particle at time t =. (c) What can you conclude about the value of the potential V(x) at x =? Hint: making a quick sketch of ψ(x) would be extremely helpful!

5 v v v v = df (x 1,..., x n ) = i=1 n i=1 ( v ˆr i ) ˆr i f x i i dl path = d l du du da = l u l v du dv dv = l u l v l du dvdw w Conceptual version: d l u l u du d l path = d l u d A = d l u d l v dv = (d l u d l v ) d l w Taylor f (x) = n= (1 + x) n 1+ nx sin x x cos x 1 x tan x x e x 1 + x f (n) (x ) (x x ) n n! 1 st order approx for x 1 : sin 1 x x cos 1 x π x tan 1 x x ln(1+ x) x sin cos tan 1 1 [ ] [ ] [ ] sin a sinb = 1 cos(a b) cos(a + b) cos a cosb = 1 cos(a + b) + cos(a b) sin a cosb = 1 sin(a + b) + sin(a b) Complex Numbers e iθ = cosθ + isinθ imag y z = x + iy = re iθ r x real z* x iy = re iθ z z * z = r θ cos = 1+ cosθ sin θ = 1 cosθ sin(a + b) = sin a cosb + cos asinb cos(a + b) = cos a cosb sin asinb Integral Table x x a = 1 a a cos 1 x sin φ dφ = cos φ dφ = π sin φ dφ = φ sin(φ) 4 cos φ dφ = φ + sin(φ) 4 sin θ dθ cos n θ sinθ dθ = cosn+1 θ n + 1 = cos θ cosθ cos θ dθ = sinθ sin θ ( ) x ± a = ln x + x ± a a x = x sin 1 a (a ± x) = 1 a ± x a + x = 1 x a tan 1 a a x = 1 a ln a + x a x (a ± x ) = x / a a ± x x a ± x = ± a ± x x (a ± x) = a a ± x + ln( a ± x) x a ± x = ± 1 ln ( a ± x ) x ( a ± x ) = 1 / a ± x ln(ax) = x ln(ax) x ln(ax) x = 1 [ ln(ax) ] a x = x a x + a x tan 1 a x x a x = x a x + a x tan 1 a x x ± a = x x ± a ± a ln x + x ± a (x acosθ) sinθ dθ (x + a ax cosθ) = 1 a x cosθ / x x + a ax cosθ

6 Old Quantum Theory (19 195) E = hf =!ω p = h λ =!k Quantization : Bohr E = nh Rules Wave Mechanics for a probability distribution P(x) : mean x = x max P(x) x, variance σ x x x x min Wilson- Sommerfeld! one period p q dq = n q h ( ) = x x, σ x standard deviation probability P(x,t) = Ψ(x,t) = Ψ* Ψ Schrödinger Equation! Ψ m x + VΨ = i! Ψ t operators: Ê = i! t, ˆp =! i x, ˆx = x expectation value Q of physical observable Q(x, p) : Q = Ψ* Heisenberg uncertainty principle : σ p σ x! / ˆQ x, i! x Ψ wavefunction boundary conditions : a. Wavefunctions are always continuous. b. Wavefunctions have continuous derivatives, except at points where V = c. Wavefunctions are zero in any region where V = ±. Miscellaneous Math Gaussian probability distribution: P(x; x,σ ) = 1 ( σ e x x ) / σ Sinusoidal π sin (aφ) cos (aφ) dφ = π sin(a) 4a π sin(nφ) sin(mφ) cos(nφ)cos(mφ) dφ = δ π nm sin(nφ) cos(mφ)dφ = Fourier f (x) = 1 A(k) e ikx dk where A(k) = 1 f (x)e ikx 1 e ik1x e ikx = δ k 1 k if k 1 = k ( ) = if k 1 k Exponential e ax = e ax a x e ax = e ax ( ax +1) a x e ax = e ax ( a x + ax + ) a Gaussian e ax bx = π b a e4a x e ax bx = π b b e 4a x e ax bx = a / b ( 4a )e π 4a 5/ a + b Classical Mechanics security blanket " L( q i,!q i,t) = T U Lagrange EOM: L q i = d dt H!q i ( L /!q i ) L equals T+U when! r a =! r a (q i ) dh / dt = L / t L!q i Generalized momentum p i L!q i, force Q i L q i Hamilton s EOM: H q i = dp i dt Special Relativity: E = (pc) + (mc ), H = dq i p i dt Common : F Forces grav = Gm m 1, F r elec = q q 1 4πε r, F = mv cf r γ = 1 1 (v / c), E = γ mc, p = γ mv, v = pc E

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes Math 8 Fall Hour Exam /8/ Time Limit: 5 Minutes Name (Print): This exam contains 9 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information

More information

h for integer values nq = 0, 1, 2,... one period

h for integer values nq = 0, 1, 2,... one period Physics 486 Homework #2 due in course homework box by Fri 1 pm All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points for poorly written solutions

More information

PHY413 Quantum Mechanics B Duration: 2 hours 30 minutes

PHY413 Quantum Mechanics B Duration: 2 hours 30 minutes BSc/MSci Examination by Course Unit Thursday nd May 4 : - :3 PHY43 Quantum Mechanics B Duration: hours 3 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO

More information

Spring 2016 Exam 1 without number 13.

Spring 2016 Exam 1 without number 13. MARK BOX problem points 0 5-9 45 without number 3. (Topic of number 3 is not on our Exam this semester.) Solutions on homepage (under previous exams). 0 0 0 NAME: 2 0 3 0 PIN: % 00 INSTRUCTIONS On Problem

More information

Problem Set 5: Solutions

Problem Set 5: Solutions University of Alabama Department of Physics and Astronomy PH 53 / eclair Spring 1 Problem Set 5: Solutions 1. Solve one of the exam problems that you did not choose.. The Thompson model of the atom. Show

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Physics 220. Take Home Exam #1. April 24, 2015

Physics 220. Take Home Exam #1. April 24, 2015 Physics Take Home xam #1 April 4, 15 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them. You must show all work and the work must be legible,

More information

OPTI 511R, Spring 2018 Problem Set 1 Prof. R.J. Jones

OPTI 511R, Spring 2018 Problem Set 1 Prof. R.J. Jones OPTI 511R, Spring 2018 Problem Set 1 Prof. R.J. Jones Due in class Thursday, Jan 18, 2018 Math Refresher The first 11 questions are just to get you to review some very basic mathematical concepts needed

More information

Summer Work Packet for MPH Math Classes

Summer Work Packet for MPH Math Classes Summer Work Packet for MPH Math Classes Students going into AP Calculus AB Sept. 018 Name: This packet is designed to help students stay current with their math skills. Each math class expects a certain

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY. PHYSICS 2750 FINAL EXAM - FALL December 13, 2007

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY. PHYSICS 2750 FINAL EXAM - FALL December 13, 2007 MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY PHYSICS 2750 FINAL EXAM - FALL 2007 - December 13, 2007 INSTRUCTIONS: 1. Put your name and student number on each page.

More information

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension 105A Practice Final Solutions March 13, 01 William Kelly Problem 1: Lagrangians and Conserved Quantities Consider the following action for a particle of mass m moving in one dimension S = dtl = mc dt 1

More information

Final exam for MATH 1272: Calculus II, Spring 2015

Final exam for MATH 1272: Calculus II, Spring 2015 Final exam for MATH 1272: Calculus II, Spring 2015 Name: ID #: Signature: Section Number: Teaching Assistant: General Instructions: Please don t turn over this page until you are directed to begin. There

More information

Spring 2018 Exam 1 MARK BOX HAND IN PART NAME: PIN:

Spring 2018 Exam 1 MARK BOX HAND IN PART NAME: PIN: problem MARK BOX points HAND IN PART - 65=x5 4 5 5 6 NAME: PIN: % INSTRUCTIONS This exam comes in two parts. () HAND IN PART. Hand in only this part. () STATEMENT OF MULTIPLE CHOICE PROBLEMS. Do not hand

More information

Spring 2018 Exam 1 MARK BOX HAND IN PART PIN: 17

Spring 2018 Exam 1 MARK BOX HAND IN PART PIN: 17 problem MARK BOX points HAND IN PART -3 653x5 5 NAME: Solutions 5 6 PIN: 7 % INSTRUCTIONS This exam comes in two parts. () HAND IN PART. Hand in only this part. () STATEMENT OF MULTIPLE CHOICE PROBLEMS.

More information

Physics 7B, Speliotopoulos Final Exam, Spring 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Spring 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Spring 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

MATH 1207 R02 FINAL SOLUTION

MATH 1207 R02 FINAL SOLUTION MATH 7 R FINAL SOLUTION SPRING 6 - MOON Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () Let f(x) = x cos x. (a)

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Final Exam May, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Fall 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

College of Sciences PHYS 206/456 General Phyisics IV S p r i n g S e m e s t e r Midterm Examination 2 April 25, 2013 Thursday, 18:30-20:30

College of Sciences PHYS 206/456 General Phyisics IV S p r i n g S e m e s t e r Midterm Examination 2 April 25, 2013 Thursday, 18:30-20:30 Name: Surname: Number: K O Ç U N I V E R S I T Y College of Sciences PHYS 206/456 General Phyisics IV S p r i n g S e m e s t e r 2 0 1 3 Midterm Examination 2 April 25, 2013 Thursday, 18:30-20:30 Please

More information

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number:

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number: Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April 6 2018 Give your name, TA and section number: Name: TA: Section number: 1. There are 6 questions for a total of 100 points. The value of

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 November 4th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Math 51 Second Exam May 18, 2017

Math 51 Second Exam May 18, 2017 Math 51 Second Exam May 18, 2017 Name: SUNet ID: ID #: Complete the following problems. In order to receive full credit, please show all of your work and justify your answers. You do not need to simplify

More information

Fall 2016 Exam 1 HAND IN PART NAME: PIN:

Fall 2016 Exam 1 HAND IN PART NAME: PIN: HAND IN PART MARK BOX problem points 0 15 1-12 60 13 10 14 15 NAME: PIN: % 100 INSTRUCTIONS This exam comes in two parts. (1) HAND IN PART. Hand in only this part. (2) STATEMENT OF MULTIPLE CHOICE PROBLEMS.

More information

MATH141: Calculus II Exam #4 7/21/2017 Page 1

MATH141: Calculus II Exam #4 7/21/2017 Page 1 MATH141: Calculus II Exam #4 7/21/2017 Page 1 Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner and sign the honor

More information

Without fully opening the exam, check that you have pages 1 through 13.

Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam November th, 08 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

Fall 2017 Exam 1 MARK BOX HAND IN PART NAME: PIN:

Fall 2017 Exam 1 MARK BOX HAND IN PART NAME: PIN: problem MARK BOX points HAND IN PART 0 30 1-10 50=10x5 11 10 1 10 NAME: PIN: % 100 INSTRUCTIONS This exam comes in two parts. (1) HAND IN PART. Hand in only this part. () STATEMENT OF MULTIPLE CHOICE PROBLEMS.

More information

MA EXAM 2 INSTRUCTIONS VERSION 01 March 9, Section # and recitation time

MA EXAM 2 INSTRUCTIONS VERSION 01 March 9, Section # and recitation time MA 16600 EXAM INSTRUCTIONS VERSION 01 March 9, 016 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a # pencil on the scantron sheet (answer sheet).. Check that the cover

More information

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1. Lecture 7 B. Zwiebach February 8, 06 Contents Wavepackets and Uncertainty Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 Wavepackets and Uncertainty A wavepacket is a superposition

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 EXAM I SPRING 2016 FEBRUARY 25, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

Fall 2018 Exam 1 NAME:

Fall 2018 Exam 1 NAME: MARK BOX problem points 0 20 HAND IN PART -8 40=8x5 9 0 NAME: 0 0 PIN: 0 2 0 % 00 INSTRUCTIONS This exam comes in two parts. () HAND IN PART. Hand in only this part. (2) STATEMENT OF MULTIPLE CHOICE PROBLEMS.

More information

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =...

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =... Physics 606, Quantum Mechanics, Final Exam NAME Please show all your work. (You are graded on your work, with partial credit where it is deserved.) All problems are, of course, nonrelativistic. 1. Consider

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 April th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all

More information

Without fully opening the exam, check that you have pages 1 through 10.

Without fully opening the exam, check that you have pages 1 through 10. MTH 234 Solutions to Exam 2 April 11th 216 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through

More information

Sample Quantum Chemistry Exam 2 Solutions

Sample Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 7 Dr. Jean M. Standard Name SAMPE EXAM Sample Quantum Chemistry Exam Solutions.) ( points) Answer the following questions by selecting the correct answer from the choices provided. a.)

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13.

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam 2 November 5, 207 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

Chemistry 3502/4502. Exam I. September 19, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam I. September 19, ) This is a multiple choice exam. Circle the correct answer. D Chemistry 350/450 Exam I September 9, 003 ) This is a multiple choice exam. Circle the correct answer. ) There is one correct answer to every problem. There is no partial credit. 3) A table of useful

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

RED. Math 113 (Calculus II) Final Exam Form A Fall Name: Student ID: Section: Instructor: Instructions:

RED. Math 113 (Calculus II) Final Exam Form A Fall Name: Student ID: Section: Instructor: Instructions: Name: Student ID: Section: Instructor: Math 3 (Calculus II) Final Exam Form A Fall 22 RED Instructions: For questions which require a written answer, show all your work. Full credit will be given only

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

First Midterm Examination October 17, There should be 19 pages to this exam, counting this cover sheet. Please check this exam NOW!

First Midterm Examination October 17, There should be 19 pages to this exam, counting this cover sheet. Please check this exam NOW! V25.0109: General Chemistry I (Honors) Professor M.E. Tuckerman First Midterm Examination October 17, 2008 NAME and ID NUMBER: There should be 19 pages to this exam, counting this cover sheet. Please check

More information

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!!

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!! Final Exam Math 222 Spring 2011 May 11, 2011 Name: Recitation Instructor s Initials: You may not use any type of calculator whatsoever. (Cell phones off and away!) You are not allowed to have any other

More information

Physics 486 Discussion 5 Piecewise Potentials

Physics 486 Discussion 5 Piecewise Potentials Physics 486 Discussion 5 Piecewise Potentials Problem 1 : Infinite Potential Well Checkpoints 1 Consider the infinite well potential V(x) = 0 for 0 < x < 1 elsewhere. (a) First, think classically. Potential

More information

Math 113/113H Winter 2006 Departmental Final Exam

Math 113/113H Winter 2006 Departmental Final Exam Name KEY Instructor Section No. Student Number Math 3/3H Winter 26 Departmental Final Exam Instructions: The time limit is 3 hours. Problems -6 short-answer questions, each worth 2 points. Problems 7 through

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2 Phys/Level /1/9/Semester, 009-10 (1 handout) UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS BSc and MPhys Undergraduate Programmes in Physics LEVEL HE PAPER 1 MATHEMATICAL,

More information

Winter 2014 Practice Final 3/21/14 Student ID

Winter 2014 Practice Final 3/21/14 Student ID Math 4C Winter 2014 Practice Final 3/21/14 Name (Print): Student ID This exam contains 5 pages (including this cover page) and 20 problems. Check to see if any pages are missing. Enter all requested information

More information

Department of Physics PRELIMINARY EXAMINATION 2014 Part I. Short Questions

Department of Physics PRELIMINARY EXAMINATION 2014 Part I. Short Questions Department of Physics PRELIMINARY EXAMINATION 2014 Part I. Short Questions Thursday May 15th, 2014, 14-17h Examiners: Prof. A. Clerk, Prof. M. Dobbs, Prof. G. Gervais (Chair), Prof. T. Webb, Prof. P. Wiseman

More information

Math 116 Second Midterm November 13, 2017

Math 116 Second Midterm November 13, 2017 On my honor, as a student, I have neither given nor received unauthorized aid on this academic work. Initials: Do not write in this area Your Initials Only: Math 6 Second Midterm November 3, 7 Your U-M

More information

Physics 351 Wednesday, April 22, 2015

Physics 351 Wednesday, April 22, 2015 Physics 351 Wednesday, April 22, 2015 HW13 due Friday. The last one! You read Taylor s Chapter 16 this week (waves, stress, strain, fluids), most of which is Phys 230 review. Next weekend, you ll read

More information

MATH Exam 2-3/10/2017

MATH Exam 2-3/10/2017 MATH 1 - Exam - 3/10/017 Name: Section: Section Class Times Day Instructor Section Class Times Day Instructor 1 0:00 PM - 0:50 PM M T W F Daryl Lawrence Falco 11 11:00 AM - 11:50 AM M T W F Hwan Yong Lee

More information

Rapid Review of Early Quantum Mechanics

Rapid Review of Early Quantum Mechanics Rapid Review of Early Quantum Mechanics 8/9/07 (Note: This is stuff you already know from an undergraduate Modern Physics course. We re going through it quickly just to remind you: more details are to

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lecture 3 Spring 5 Final exam, C. Bordel Tuesday, May, 5 8- am Make sure you show all your work and justify your answers in order to get full credit. Problem : Thermodynamic process ( points)

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

MATH 31B: BONUS PROBLEMS

MATH 31B: BONUS PROBLEMS MATH 31B: BONUS PROBLEMS IAN COLEY LAST UPDATED: JUNE 8, 2017 7.1: 28, 38, 45. 1. Homework 1 7.2: 31, 33, 40. 7.3: 44, 52, 61, 71. Also, compute the derivative of x xx. 2. Homework 2 First, let me say

More information

Math 41 Final Exam December 9, 2013

Math 41 Final Exam December 9, 2013 Math 41 Final Exam December 9, 2013 Name: SUID#: Circle your section: Valentin Buciumas Jafar Jafarov Jesse Madnick Alexandra Musat Amy Pang 02 (1:15-2:05pm) 08 (10-10:50am) 03 (11-11:50am) 06 (9-9:50am)

More information

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution PHYSICS 72/82 - Spring Semester 2 - ODU Graduate Quantum Mechanics II Midterm Exam - Solution Problem ) An electron (mass 5, ev/c 2 ) is in a one-dimensional potential well as sketched to the right (the

More information

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam I. February 6, ) Circle the correct answer on multiple-choice problems. D Chemistry 3502/4502 Exam I February 6, 2006 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lectures & 3 Spring 5 Midterm, C. Bordel Monday, April 6, 5 7pm-9pm Make sure you show all your work and justify your answers in order to get full credit. Problem esistance & current ( pts)

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

Phys 7221, Fall 2006: Midterm exam

Phys 7221, Fall 2006: Midterm exam Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.

More information

Problem 1. Part a. Part b. Wayne Witzke ProblemSet #4 PHY ! iθ7 7! Complex numbers, circular, and hyperbolic functions. = r (cos θ + i sin θ)

Problem 1. Part a. Part b. Wayne Witzke ProblemSet #4 PHY ! iθ7 7! Complex numbers, circular, and hyperbolic functions. = r (cos θ + i sin θ) Problem Part a Complex numbers, circular, and hyperbolic functions. Use the power series of e x, sin (θ), cos (θ) to prove Euler s identity e iθ cos θ + i sin θ. The power series of e x, sin (θ), cos (θ)

More information

MTH 133 Solutions to Exam 1 Feb. 25th 2015

MTH 133 Solutions to Exam 1 Feb. 25th 2015 MTH 133 Solutions to Exam 1 Feb. 5th 15 Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic

More information

PHYS 3313 Section 001 Lecture #20

PHYS 3313 Section 001 Lecture #20 PHYS 3313 Section 001 ecture #0 Monday, April 10, 017 Dr. Amir Farbin Infinite Square-well Potential Finite Square Well Potential Penetration Depth Degeneracy Simple Harmonic Oscillator 1 Announcements

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

The Bohr Model of Hydrogen, a Summary, Review

The Bohr Model of Hydrogen, a Summary, Review The Bohr Model of Hydrogen, a Summary, Review Allowed electron orbital radii and speeds: Allowed electron energy levels: Problems with the Bohr Model Bohr s model for the atom was a huge success in that

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A General Physics II 11 AM-1:15 PM TR Olin 101 Plan for Lecture 3 (Chapter 40-4): Some topics in Quantum Theory 1. Particle behaviors of electromagnetic waves. Wave behaviors of particles 3. Quantized

More information

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Solutions to Exam 2 April 9, 207 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Exam 1: Physics 2113 Spring :00 PM, Monday, February 3, Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6

Exam 1: Physics 2113 Spring :00 PM, Monday, February 3, Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Sec 6 Exam 1: Physics 2113 Spring 2016 6:00 PM, Monday, February 3, 2016 Last Name First Name Clearly circle your section: MON/WEDS/FRI SECTIONS TUES/THURS SECTIONS Abdelwahab Abdelwahab Lee Zuniga Tzanov Zuniga

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ MODEL SYSTEM: PARTICLE IN A BOX Important because: It illustrates quantum mechanical principals It illustrates the use of differential eqns. & boundary conditions to solve for ψ It shows how discrete energy

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Rutherford Model 1911

Rutherford Model 1911 Rutherford Model 1911 Positive charge is concentrated in a very small nucleus. So a- particles can sometimes approach very close to the charge Ze in the nucleus and the Coulomb force F 1 4πε o ( Ze)( Ze)

More information

Fall 2016 Exam 3 NAME: PIN:

Fall 2016 Exam 3 NAME: PIN: MARK BOX problem points 0 18 1 12 2-11 50=10(5) 12 10 13 10 % 100 NAME: PIN: HAND IN PART INSTRUCTIONS This exam comes in two parts. (1) HAND IN PART. Hand in only this part. (2) STATEMENT OF MULTIPLE

More information

Quantum Mechanics in One Dimension. Solutions of Selected Problems

Quantum Mechanics in One Dimension. Solutions of Selected Problems Chapter 6 Quantum Mechanics in One Dimension. Solutions of Selected Problems 6.1 Problem 6.13 (In the text book) A proton is confined to moving in a one-dimensional box of width.2 nm. (a) Find the lowest

More information

CHM320 PRACTICE EXAM #1 (SPRING 2018)

CHM320 PRACTICE EXAM #1 (SPRING 2018) CHM320 PRACTICE EXAM #1 (SPRING 2018) Name: Score: NOTE: You must show your work, with sufficient number of intermediate steps. No credit will be awarded if you simply write down the answers from memory

More information

MA EXAM 2 INSTRUCTIONS VERSION 01 March 10, Section # and recitation time

MA EXAM 2 INSTRUCTIONS VERSION 01 March 10, Section # and recitation time MA 66 EXAM INSTRUCTIONS VERSION March, Your name Student ID # Your TA s name Section # and recitation time. You must use a # pencil on the scantron sheet (answer sheet).. Check that the cover of your question

More information

HKUST. MATH1014 Calculus II. Directions:

HKUST. MATH1014 Calculus II. Directions: HKUST MATH114 Calculus II Midterm Eamination (Sample Version) Name: Student ID: Lecture Section: Directions: This is a closed book eamination. No Calculator is allowed in this eamination. DO NOT open the

More information

The Bohr Correspondence Principle

The Bohr Correspondence Principle The Bohr Correspondence Principle Kepler Orbits of the Electron in a Hydrogen Atom Deepak Dhar We consider the quantum-mechanical non-relativistic hydrogen atom. We show that for bound states with size

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Math 107: Calculus II, Spring 2015: Midterm Exam II Monday, April Give your name, TA and section number:

Math 107: Calculus II, Spring 2015: Midterm Exam II Monday, April Give your name, TA and section number: Math 7: Calculus II, Spring 25: Midterm Exam II Monda, April 3 25 Give our name, TA and section number: Name: TA: Section number:. There are 5 questions for a total of points. The value of each part of

More information