Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Size: px
Start display at page:

Download "Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom"

Transcription

1 Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or Happy April Fools Day

2 Example / Worked Problems What is the ratio of the energy of the 3rd to the 2nd excited states of a harmonic oscillator? The harmonic oscillator energy levels are E n = (n+½)ħω, with ω 2 = k'/m. The ground state is n = 0, the second excited state is n = 2, and the third excited state is n = 3. Thus: r = E 3 /E 2 = (3+½)/(2+½) = 7/5. What energy photon is given off when an electron in an infinite 1-D square well transitions from the 2nd excited state to the ground state? The infinite square well energy levels are E n = n 2 ħ 2 π 2 /2mL 2. The ground state is n = 1, and the second excited state is n = 3. Thus the photon or transition energy is E γ = E n=3 - E n=1 = ( )ħ 2 π 2 /2mL 2 = 8ħ 2 π 2 /2mL 2 = 4ħ 2 π 2 /ml 2.

3 Example / Worked Problems What is the ratio of the energy of the 3rd to the 2nd excited states of a harmonic oscillator? The ground state is n = 0. What energy photon is given off when an electron in an infinite 1-D square well transitions from the 2nd excited state to the ground state? The ground state is n = 1. While we use n to denote the levels, note that for some potentials we use n = 0 for the ground state, while for other potentials we use n = 1 for the ground state. On a test, we will expect you to know n of the ground state.

4 Example / Worked Problems II What is the momentum of an electron in the 1 st excited state of an infinite square well potential? The infinite square well energy levels are E n = n 2 ħ 2 π 2 /2mL 2. The first excited state is n = 2. The only way we know how to get the momentum is from the energy. The kinetic energy in this state is E 2 = 4ħ 2 π 2 /2mL 2 = 2ħ 2 π 2 / ml 2. So we expect the magnitude of the momentum is p = (2mE) ½ = 2πħ/L = h/l. But is this the answer to the question? You need to be careful about how it is asked. If the "expectation value" of the momentum is requested, this is the signed momentum, not the magnitude, and the answer is 0. Since the particle in a box isn't going anywhere, its average momentum must be 0, although the average magnitude of the momentum is non-0. Be careful about whether the average momentum or the magnitude of the momentum is requested. If you have this on a test, and are not sure, ASK!

5 3D Quantum Mechanics When we go from 1D to 3D, we need to take the 3D derivative. We need vector calculus since the derivative can be different in different directions. We use the gradient operator: = x ˆx + yŷ + zẑ The time-independent S.E. now becomes 2 2m 2 ψ(x )+U(x)ψ(x )=Eψ(x ) or, for a 3D square well potential we can write 2 2m 2 ψ(x )= E U(x ) ψ(x ) where inside the box U 0 = 0, and outside the box U 0 =.

6 Infinite 3D Square Well Let's consider a simple cubical box, each side of length L, and the box extending from 0 to L in x, y, and z directions. Again, as in the 1D case, outside the box U =, so the differential equation is solved if the wave function ψ(x) = 0. Thus the particle is in the box and we require ψ(x) = 0 at x (or y or z) = 0 or x (or y or z) = L. In the box U(x) = 0, so S.E. is simply: 2 2m 2 ψ(x )=Eψ(x ) We again need a wave function that has the same form as its 2nd derivative, and the right boundary conditions. It is similar to the 1D case, and we can guess the result: ψ(x) = (2/L) 3/2 sin(qπx/l) sin(rπy/l) sin(sπz/l) Note the new indices: q in x, r in y, and s in z directions.

7 Infinite 3D Square Well Energy Levels In the 1D case, we had k = qπ/l, ψ(x) = (2/L) 1/2 sin(qπx/l), and E q = q 2 ħ 2 π 2 /2mL 2, with q = 1, 2, 3... What happens now with the 3D case where ψ(x) = (2/L) 3/2 sin(qπx/l) sin(rπy/l) sin(sπz/l)? The three directions are independent, so we will have k x = qπ/l, ψ x (x) = (2/L) 1/2 sin(qπx/l), and E qx = q 2 ħ 2 π 2 /2mL 2, with q = 1, 2, 3... and similar in the y and z directions. Then E qrs = E q + E r + E s = (q 2 +r 2 +s 2 )ħ 2 π 2 /2mL 2. The g.s. will have q=r=s=1, and E 111 = 3ħ 2 π 2 /2mL 2.

8 iclicker E qrs = E q + E r + E s = (q 2 +r 2 +s 2 )ħ 2 π 2 /2mL 2. The g.s. will have q=r=s=1, and E 111 = 3ħ 2 π 2 /2mL 2. What is the energy of the 1st excited state? How many of them are there? a) E 2 = E gs, 1 b) E 2 = 2E gs, 1 c) E 2 = 4E gs, 1 d) E 2 = 2E gs, 3 e) E 2 = 4E gs, 3

9 Degenerate States States of the same energy are called "degenerate states". Is is possible to break the degeneracy by having all 3 sides of the box different lengths, so that E qrs = E qx + E ry + E sz = (q 2 +r 2 +s 2 )ħ 2 π 2 /2mL 2 E qrs = E qx + E ry + E sz = (q 2 /L x 2 +r 2 /L y 2 +s 2 /L z2 ) ħ 2 π 2 /2m.

10 Probability Distributions Again in 3D QM, as in the 1D case, the probability of finding a particle at some point x 0, y 0, z 0 in space is given by ψ*ψ = ψ 2 at that point. Note an odd feature of QM: the particle in, e.g., the ψ 2,1,1 state can never be found in the x=l/2 plane, but it can be on one side or the other, and one expects moves between the two sides. It crosses the plane, but it is never found there!

11 A 3D spherical box A complication, not covered in the textbook, is to have a 3D spherical box. Now using x, y, z makes the problem more difficult since the, e.g., x limits depend on the y and z values. Instead we use spherical coordinates, r, θ, φ. The 3D Laplacian operator operating on ψ makes S.E., slightly rearranged, of the form: 2 ψ(x )= 1 r 2 r r 2 ψ r + 1 r 2 sin θ θ sin θ ψ θ + 1 r 2 sin 2 θ 2 ψ φ 2 = 2mE 2 ψ It is natural to guess the solution is of the form ψ(r,θ,φ) = R(r)Θ(θ)Φ(φ). Since each term differentiates only one of the three functions, we come up with 3 independent equations, like in the 3D cubical box case. The radial function R needs to go to 0 at the edge of the box, r = r 0, but not at the center, r=0. The angular dependences are usually written as "spherical harmonics" Y lm (θ,φ), which you might have encountered elsewhere. The are of the form of Legendre polynomials times e ±imφ. (Actually solving the equations is too much math for us.)

12 The Hydrogen Atom For hydrogen, like the spherical box, we have spherical symmetry, but the potential energy is the Coulomb potential energy between opposite charges: U(r) = -e 2 /4πε 0 r. The radial wave function R(r) must go to 0 at large r, since the electrons are bound to the protons, but does not necessarily go to 0 at the origin. The angular functions must be finite and periodic in φ, with a period of 2π. The wave functions are characterized by 3 quantum numbers...

13 The Principal Quantum Number n = 1, 2, 3,...: The wave function is of the form of a polynomial series in r ( i=0,...n-1 c i r i ) (some c i are 0) times an exponential exp(-r/na 0 ). Here a 0 is the Bohr radius, nm. The resulting energies are the same as in the Bohr model, E n = ev / n 2. n = 1 n = 2 n = 3 examples of wave functions We refer to the n=1, 2, 3... sets of states as the K, L, M, N,... shells.

14 The Orbital Angular Momentum Quantum Number l = 0, 1,... n-1: (Or if you fix l, then n = l, l+1, l+2,...) Formally, the orbital angular momentum in quantum mechanics is not actually lħ, but is rather L = [l(l+1)] ½ ħ. But we commonly refer to: l = as an s p d f g h... state (or L/ħ = ) and say the orbital angular momentum is quantized to integral multiples of ħ. In the Bohr model each value of n describes a circular orbit with a particle speed and radius and orbital angular momentum. With the S.E., each orbital (each particular value of n) has n different possible degenerate orbital angular momenta states.

15 The Magnetic Quantum Number m l = 0, ±1,... ±l: "magnetic" or "zcomponent of angular momentum" quantum number. The z-projection of the orbital angular momentum has magnitude m l ħ. The azimuthal direction of the angular momentum L is arbitrary, and if, e.g., there is a magnetic field in the z direction the angular momentum will precess about the z direction. In the semiclassical picture shown, the angular momentum of an l = 2 state with m l = +2 makes an angle of cosθ = 2/ 6 = θ = 35 o with the z-axis. For m l = +1, cosθ = 1/ 6 = θ = 66 o.

16 Summary of Hydrogen States States within the same shell are degenerate. Shell n l m l notation K s L s " 2 1 0, ±1 2p M s " 3 1 0, ±1 3p " 3 2 0, ±1, ±2 3d N s etc...

17 iclicker How many degenerate states are there in the n=3 shell? (If you know about the spin of the electron, ignore it.) Shell n l m l notation K s L s " 2 1 0, ±1 2p M s " 3 1 0, ±1 3p " 3 2 0, ±1, ±2 3d N s etc... a) 1 b) 5 c) 9 d) 12 e) 14

18 More probability distributions In the case of xyz coordinate systems, the probability is ψ*ψ because the volume element is constant. But for spherical coordinates systems, the volume integral uses: dv = r 2 dr dcosθ dφ so the probability distribution uses r 2 ψ*ψ in the plots to the right. Thus all the distributions go to 0 at the origin. If we just showed ψ or ψ*ψ, you would see the s orbits do not go to 0 at the origin, but the p, d, f... orbits do. Why is this?

19 More probability distributions sphere To indicate the 3D nature of the distributions, we can show them in the xz plane. Rotate the image around the z axis for the 3D view. sphere + shell donut dumbbell

20 iclicker What angle does the angular momentum make with the z- axis in the semi-classical picture for the m l = 0 2p state? a) There is no 2p state, you need at least 3p b) cosθ = 1/ 2 c) sinθ = 1/ 2 d) 0 o e) 90 o

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Hydrogen Atom Part I John von Neumann 1903-1957 One-Dimensional Atom To analyze the hydrogen atom, we must solve the Schrodinger equation for the Coulomb potential

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8 CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates 8.2 Schrödinger's Equation in Spherical Coordinate 8.3 Separation of Variables 8.4 Three Quantum Numbers 8.5 Hydrogen Atom Wave Function 8.6 Electron Spin

More information

5.111 Lecture Summary #6

5.111 Lecture Summary #6 5.111 Lecture Summary #6 Readings for today: Section 1.9 (1.8 in 3 rd ed) Atomic Orbitals. Read for Lecture #7: Section 1.10 (1.9 in 3 rd ed) Electron Spin, Section 1.11 (1.10 in 3 rd ed) The Electronic

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor A Quantum Mechanical Model for the Vibration and Rotation of Molecules Harmonic Oscillator Rigid Rotor Degrees of Freedom Translation: quantum mechanical model is particle in box or free particle. A molecule

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Atoms 2012 update -- start with single electron: H-atom

Atoms 2012 update -- start with single electron: H-atom Atoms 2012 update -- start with single electron: H-atom x z φ θ e -1 y 3-D problem - free move in x, y, z - easier if change coord. systems: Cartesian Spherical Coordinate (x, y, z) (r, θ, φ) Reason: V(r)

More information

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4 H atom solution Contents 1 Introduction 2 2 Coordinate system 2 3 Variable separation 4 4 Wavefunction solutions 6 4.1 Solution for Φ........................... 6 4.2 Solution for Θ...........................

More information

Lecture 18: 3D Review, Examples

Lecture 18: 3D Review, Examples Lecture 18: 3D Review, Examples A real (2D) quantum dot http://pages.unibas.ch/physmeso/pictures/pictures.html Lecture 18, p 1 Lect. 16: Particle in a 3D Box (3) The energy eigenstates and energy values

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

quantization condition.

quantization condition. /8/016 PHYS 34 Modern Physics Atom II: Hydrogen Atom Roadmap for Exploring Hydrogen Atom Today Contents: a) Schrodinger Equation for Hydrogen Atom b) Angular Momentum in Quantum Mechanics c) Quantum Number

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z.

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z. Angular momentum is an important concept in quantum theory, necessary for analyzing motion in 3D as well as intrinsic properties such as spin Classically the orbital angular momentum with respect to a

More information

atoms and light. Chapter Goal: To understand the structure and properties of atoms.

atoms and light. Chapter Goal: To understand the structure and properties of atoms. Quantum mechanics provides us with an understanding of atomic structure and atomic properties. Lasers are one of the most important applications of the quantummechanical properties of atoms and light.

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

The Hydrogen Atom. Thornton and Rex, Ch. 7

The Hydrogen Atom. Thornton and Rex, Ch. 7 The Hydrogen Atom Thornton and Rex, Ch. 7 Applying Schrodinger s Eqn to the Hydrogen Atom The potential: -1 e 2 V(r) = 4p e0 r Use spherical polar coordinates (with y(x,y,z) => y(r,q,f) ): 1 y 1 y ( r

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Summary: angular momentum derivation

Summary: angular momentum derivation Summary: angular momentum derivation L = r p L x = yp z zp y, etc. [x, p y ] = 0, etc. (-) (-) (-3) Angular momentum commutation relations [L x, L y ] = i hl z (-4) [L i, L j ] = i hɛ ijk L k (-5) Levi-Civita

More information

Particle in a 3 Dimensional Box just extending our model from 1D to 3D

Particle in a 3 Dimensional Box just extending our model from 1D to 3D CHEM 2060 Lecture 20: Particle in a 3D Box; H atom L20-1 Particle in a 3 Dimensional Box just extending our model from 1D to 3D A 3D model is a step closer to reality than a 1D model. Let s increase the

More information

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t.

Physics 2203, 2011: Equation sheet for second midterm. General properties of Schrödinger s Equation: Quantum Mechanics. Ψ + UΨ = i t. General properties of Schrödinger s Equation: Quantum Mechanics Schrödinger Equation (time dependent) m Standing wave Ψ(x,t) = Ψ(x)e iωt Schrödinger Equation (time independent) Ψ x m Ψ x Ψ + UΨ = i t +UΨ

More information

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom Announcements! HW7 : Chap.7 18, 20, 23, 32, 37, 38, 45, 47, 53, 57, 60! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz 2 (average: 9), Quiz 3: 4/19 *** Course

More information

Fun With Carbon Monoxide. p. 1/2

Fun With Carbon Monoxide. p. 1/2 Fun With Carbon Monoxide p. 1/2 p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results C V (J/K-mole) 35 30 25

More information

Atoms 09 update-- start with single electron: H-atom

Atoms 09 update-- start with single electron: H-atom Atoms 09 update-- start with single electron: H-atom VII 33 x z φ θ e -1 y 3-D problem - free move in x, y, z - handy to change systems: Cartesian Spherical Coordinate (x, y, z) (r, θ, φ) Reason: V(r)

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Physics 2203, Fall 2012 Modern Physics

Physics 2203, Fall 2012 Modern Physics Physics 03, Fall 01 Modern Physics. Monday, Oct. 8 th, 01. Finish up examples for Ch. 8 Computer Exercise. Announcements: Take home Exam #1: Average 84.1, Average both 63.0 Quiz on Friday on Ch. 8 or Ch.

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

The Hydrogen Atom Chapter 20

The Hydrogen Atom Chapter 20 4/4/17 Quantum mechanical treatment of the H atom: Model; The Hydrogen Atom Chapter 1 r -1 Electron moving aroundpositively charged nucleus in a Coulombic field from the nucleus. Potential energy term

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

Chapter 6: Quantum Theory of the Hydrogen Atom

Chapter 6: Quantum Theory of the Hydrogen Atom Chapter 6: Quantum Theory of the Hydrogen Atom The first problem that Schrödinger tackled with his new wave equation was that of the hydrogen atom. The discovery of how naturally quantization occurs in

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

8.1 The hydrogen atom solutions

8.1 The hydrogen atom solutions 8.1 The hydrogen atom solutions Slides: Video 8.1.1 Separating for the radial equation Text reference: Quantum Mechanics for Scientists and Engineers Section 10.4 (up to Solution of the hydrogen radial

More information

Atoms 2010 update -- start with single electron: H-atom

Atoms 2010 update -- start with single electron: H-atom VII 33 Atoms 2010 update -- start with single electron: H-atom x z φ θ e -1 y 3-D problem - free move in x, y, z - easier if change coord. systems: Cartesian Spherical Coordinate (x, y, z) (r, θ, φ) Reason:

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE SUBJECT CODE PH 05 PHYSICAL SCIENCE TEST SERIES # Quantum, Statistical & Thermal Physics Timing: 3: H M.M: 00 Instructions. This test

More information

QUANTUM MECHANICS AND ATOMIC STRUCTURE

QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 CHAPTER QUANTUM MECHANICS AND ATOMIC STRUCTURE 5.1 The Hydrogen Atom 5.2 Shell Model for Many-Electron Atoms 5.3 Aufbau Principle and Electron Configurations 5.4 Shells and the Periodic Table: Photoelectron

More information

k m Figure 1: Long problem L2 2 + L2 3 I 1

k m Figure 1: Long problem L2 2 + L2 3 I 1 LONG PROBLEMS 1: Consider the system shown in Figure 1: Two objects, of mass m 1 and m, can be treated as point-like. Each of them is suspended from the ceiling by a wire of negligible mass, and of length

More information

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle.

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle. Worked out examples (Quantum mechanics). A microscope, using photons, is employed to locate an electron in an atom within a distance of. Å. What is the uncertainty in the momentum of the electron located

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23)

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23) Vibrational motion Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion F == dv where k Parabolic V = 1 f k / dx = is Schrodinge h m d dx ψ f k f x the force constant x r + ( 拋物線 ) 1 equation

More information

Physics 4617/5617: Quantum Physics Course Lecture Notes

Physics 4617/5617: Quantum Physics Course Lecture Notes Physics 467/567: Quantum Physics Course Lecture Notes Dr. Donald G. Luttermoser East Tennessee State University Edition 5. Abstract These class notes are designed for use of the instructor and students

More information

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial: St Hugh s 2 nd Year: Quantum Mechanics II Reading The following sources are recommended for this tutorial: The key text (especially here in Oxford) is Molecular Quantum Mechanics, P. W. Atkins and R. S.

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

Physics 43 Exam 2 Spring 2018

Physics 43 Exam 2 Spring 2018 Physics 43 Exam 2 Spring 2018 Print Name: Conceptual Circle the best answer. (2 points each) 1. Quantum physics agrees with the classical physics limit when a. the total angular momentum is a small multiple

More information

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web:

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web: Test Series: CSIR NET/JRF Exam Physical Sciences Test Paper: Quantum Mechanics-I Instructions: 1. Attempt all Questions. Max Marks: 185 2. There is a negative marking of 1/4 for each wrong answer. 3. Each

More information

Chapter 5. Atomic spectra

Chapter 5. Atomic spectra Atomic spectra Sommerfelds relativistic model Sommerfeld succeeded partially in explaining fine structure by extending Bohr Theory i) He allowed the possibility of elliptical orbits for the electrons in

More information

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas Chapter 8: Quantum Theory: Techniques and Applications TRANSLATIONAL MOTION wavefunction of free particle, ψ k = Ae ikx + Be ikx,

More information

1 Reduced Mass Coordinates

1 Reduced Mass Coordinates Coulomb Potential Radial Wavefunctions R. M. Suter April 4, 205 Reduced Mass Coordinates In classical mechanics (and quantum) problems involving several particles, it is convenient to separate the motion

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 335 Today s Lecture: Hydrogen Atom Pt 1 Sad, quantum surfer, Alone, forlorn on the beach, His wave form collapsed. ThinkGeek.com via Ben Wise AnNouncements Reading Assignment for Nov

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Separation of Variables in Polar and Spherical Coordinates

Separation of Variables in Polar and Spherical Coordinates Separation of Variables in Polar and Spherical Coordinates Polar Coordinates Suppose we are given the potential on the inside surface of an infinitely long cylindrical cavity, and we want to find the potential

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY. PHYSICS 2750 FINAL EXAM - FALL December 13, 2007

MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY. PHYSICS 2750 FINAL EXAM - FALL December 13, 2007 MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY PHYSICS 2750 FINAL EXAM - FALL 2007 - December 13, 2007 INSTRUCTIONS: 1. Put your name and student number on each page.

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

(Refer Slide Time: 1:20) (Refer Slide Time: 1:24 min)

(Refer Slide Time: 1:20) (Refer Slide Time: 1:24 min) Engineering Chemistry - 1 Prof. K. Mangala Sunder Department of Chemistry Indian Institute of Technology, Madras Lecture - 5 Module 1: Atoms and Molecules Harmonic Oscillator (Continued) (Refer Slide Time:

More information

The Central Force Problem: Hydrogen Atom

The Central Force Problem: Hydrogen Atom The Central Force Problem: Hydrogen Atom B. Ramachandran Separation of Variables The Schrödinger equation for an atomic system with Z protons in the nucleus and one electron outside is h µ Ze ψ = Eψ, r

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I 1 CHEM-UA 127: Advanced General Chemistry I Notes for Lecture 11 Nowthatwehaveintroducedthebasicconceptsofquantummechanics, wecanstarttoapplythese conceptsto build up matter, starting from its most elementary

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

Angular momentum and spin

Angular momentum and spin Luleå tekniska universitet Avdelningen för Fysik, 007 Hans Weber Angular momentum and spin Angular momentum is a measure of how much rotation there is in particle or in a rigid body. In quantum mechanics

More information

Spherical Coordinates and Legendre Functions

Spherical Coordinates and Legendre Functions Spherical Coordinates and Legendre Functions Spherical coordinates Let s adopt the notation for spherical coordinates that is standard in physics: φ = longitude or azimuth, θ = colatitude ( π 2 latitude)

More information

Physics 401: Quantum Mechanics I Chapter 4

Physics 401: Quantum Mechanics I Chapter 4 Physics 401: Quantum Mechanics I Chapter 4 Are you here today? A. Yes B. No C. After than midterm? 3-D Schroedinger Equation The ground state energy of the particle in a 3D box is ( 1 2 +1 2 +1 2 ) π2

More information

Magnetic Moments and Spin

Magnetic Moments and Spin Magnetic Moments and Spin Still have several Homeworks to hand back Finish up comments about hydrogen atom and start on magnetic moment + spin. Eleventh Homework Set is due today and the last one has been

More information

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015 Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015 Next review time for the exam: December 2nd between 14:00-16:00 in my room. (This info is also available on the course homepage.) Examinator:

More information

1.4 Solution of the Hydrogen Atom

1.4 Solution of the Hydrogen Atom The phase of α can freely be chosen to be real so that α = h (l m)(l + m + 1). Then L + l m = h (l m)(l + m + 1) l m + 1 (1.24) L l m = h (l + m)(l m + 1) l m 1 (1.25) Since m is bounded, it follow that

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Lecture #21: Hydrogen Atom II

Lecture #21: Hydrogen Atom II 561 Fall, 217 Lecture #21 Page 1 Lecture #21: Hydrogen Atom II Last time: TISE For H atom: final exactly solved problem Ĥ in spherical polar coordinates Separation: ψ nlml ( r,θ,φ) = R nl (r)y m l (θ,φ)

More information

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom PHYS 34 Modern Physics Atom III: Angular Momentum and Spin Roadmap for Exploring Hydrogen Atom Today Contents: a) Orbital Angular Momentum and Magnetic Dipole Moment b) Electric Dipole Moment c) Stern

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Lecture 37. Physics 2170 Fall

Lecture 37.  Physics 2170 Fall Lecture 37 Will do hydrogen atom today After Thanksgiving break we have only two weeks before finals. We will talk about multielectron atoms, Pauli Exclusion Principle, etc. up thru Chapter 10. A few interesting

More information