Rutherford Model 1911

Size: px
Start display at page:

Download "Rutherford Model 1911"

Transcription

1 Rutherford Model 1911 Positive charge is concentrated in a very small nucleus. So a- particles can sometimes approach very close to the charge Ze in the nucleus and the Coulomb force F 1 4πε o ( Ze)( Ze) Can be large enough to cause large angle deflections. r Nuclear model of the atom Detailed calculations now show that there is a non-negligible probability of large angle scattering

2 Stability problem (I) If electrons are stationary, there is nothing to prevent them from responding to the Coulomb force of attraction and being sucked into the nucleus. But the atomic diameter would then be ~ nuclear diameter. (II) If the electrons are in orbit, they are continuously being accelerated and therefore, classically, should emit radiation. They should lose energy and spiral into the nucleus!

3 Bohr s postulates Bohr 1913: circumvented stability problem by making two postulates: 1. An electron in an atom moves in a circular orbit for which its angular momentum is an intergral multiple of h. An electron in one of these orbits is stable. But if it discontinuously changes its orbit from one where energy is E i to one whose energy is E f, energy is emitted or absorbed in quanta satisfying: Ei E f hν

4

5 Analysis based on Bohr postulates: for hydrogen-like atom (1 electron) Force of attraction F 1 4 πε o Ze r mv r m mass of electron KE 1 mv 1 1 4πε o Ze r PE 1 4πε o Ze r Total E 1 4 πε Ze r o

6 mvr nh and mv 1 4πε o Ze r m n m h r 1 4πε o Ze r r 4πε o n h mze E 1 (4πε o mz ) n e h 4

7 For convienience we define the Bohr Radius as: 4πεoh a nm me And the energy unit 1 Rydberg (1Ry) as: (4πε me o ) 4 h 13.6eV r n Z a and E Ry Z n

8 n n1 n3

9 excited states aradius of ground state (n1) orbit for hydrogen (Z1) ground state 1 Ry13.6eV is the ground state (n1) binding energy for hydrogen (agrees with experiment) For larger Z-values, radius of orbit shrinks for given n. Binding energies get much bigger

10 Electron velocity: obtained from mvr nh v nh mr nhze 4πε n h 4 Ze o πε o nh Z1, n1 e 4 πε on h ms 1 This is less than 1% of c ( ms ) suggesting that a calculation involving non-relativistic mechanics is valid

11 Emission Spectra Electron makes transition from initial qu. State n i to final state n f. The frequency ν of the photon emitted satisfies: ) (4 1 i f o f i n n e mz E E h h πε ν ) (4 1 1 i f o n n c e mz πh πε λ Express this in terms of wavelength

12 1 λ 1 1 n f n i R Z 4 1 me o ) 4πh R m (4πε c Is the Rydberg constant This generates various families of spectral lines.

13

14 Note that in each case there is a series limit corresponding to For the Lyman series, this is at 1 λ R 91nm Well within the UV range The Balmer series lies in the near UV and visible region, and the others are all in the infrared. At time of Bohr s proposal, only Balmer-Paschen series were known, and the series were therefore predicted in advance of the discovery (triumph for Bohr theory).

15 Books Physics of Atoms and Molecules, Bransden and Joachain, ~pp 1-50 (Longman). Quantum Mechanics, Rae, 3rd edition (first chapter) NOTE: THESE ARE ADVANCED TEXTS AND I AM ONLY RECOMMENDING YOU READ FIRST SECTIONS OF EACH BOOK.

16 Absorption spectrum General formula above also applies to the case where an electron gains the energy of a suitable photon having energy hν exactly equal to the difference between initial and final states. Normally, electron will start off in ground state so only the Lyman series is observed in absorption spectrum.

17 Finite Nuclear Mass In the theory above, we assumed that the nucleus is so massive that it is effectively at rest. But the mass of the nucleus is finite and the classical model of the atom therefore envisages that the electron and the nucleus both revolve around their common centre of mass. Therefore, any theory should be modified by replacing the mass of the electron by the reduced mass of the system. µ mm m + M m m 1+ M

18 n f n i R Z λ c e R o 3 4 ) 4 (4 1 πh µ πε M m M m M m R R µ

19 R is the limit of R as M tends to infinity R Difference between R and is small (~ 1 part in 1800) but shows up in precise measurements of spectral lines. For hydrogen R m 1 Cf. R m 1

20 Example Positron atom system containing 1 positron (like an e- with a positive charge) and 1 electron. How does emission spectrum differ from hydrogen? Set Mm, so R R 1+ m M R 1 λ R n f n i previous formula

21 All wavelengths are doubled Effect on energy and radii of quantum states? We replace m in the formulae above by µ m Therefore, all energies are halved in magnitude, radii doubled.

22 Fine Structure This is the splitting of the spectral lines into several components, when measured with equipment of high resolution. Explanation: each energy level actually consists of several distinct states with almost the same energy. When viewed at high resolution, transitions split. Transitions between any two Bohr energy states involve several spectral lines.

23 Theoretical explanation: modification of simple Bohr theory by Wilson and Sommerfeld: electron orbits can be elliptical, of which a circular orbit is a special case. Each orbit is specified by parameters instead of 1. Geometrically by semi-major and semi-minor axes a,b, no just radius r. Thus, energy levels turn out to be dependent on two quantum numbers, but only when one takes relativsitic considerations into account. Without relativity, we get the same formula for E as before. Relativistic correction: electrons in very eccentric orbits have large velocities when they are near the nucleus, so v/c is NOT negligible.

24 Ry n n n Z n Z E θ α Can show Where n is the principal quantum number 1,, 3... is the azimuthal quantum number 1,,.n n θ c e πε o h α Fine structure constant

25 But note that not all possible transitions occur in practice. The allowed transitions are shown in the diagram: these are the transitions for which: n θ f n θ i ±1 This is due to the operation of a selection rule, which states that transitions can only occur between states for which nθ changes by ± 1

26 The only Dane ever to win the Nobel Prize in Physics

27 Why does the Bohr theory work? More precisely, why does the Bohr theory generate the correct formula for the energy levels in a hydrogen atom? mvr nh Answer: because the Bohr condition: inadvertently makes use of the wave associated with an electron. Supposing the classical orbit is circular: we assume that the associated wave is a standing wave following the motion. But in order for the wave to return to its initial value (i.e. we are requiring that the wave be single valued), we require that πr circumference nλ

28 p h λ λ h p h mv πrmv nh mvr nh The Bohr condition

29 Inadequacies of the Bohr Theory 1. Does well to describe hydrogen, but can be extended only to 1-electron atoms, i.e. hydrogen-like, with higher Z values. Can treat alkali atoms with some success, but only because they have 1 electron only outside closed shells. Fails to account for spectra of other atoms.. Theory does not explain rate at which transitions occur between states, i.e. the relative intensities of spectral lines. 3. The theory is ad hoc and lacks a satisfying basis. Superseded by Quantum Mechanics, initiated by de Broglie (194) and Schrodinger (196).

30 In Schrodinger s theory, the electron is described by a wavefunction Ψ(r) which is the solution of SchrÖdinger s equation: d dx Ψ + m h [ E V ( x) ] Ψ( x) 0 In 1D The electron does not move on well-defined orbital paths as in the Bohr theory, one can only speak of the probability density Ψ(x) of finding the electron in any region of space in the neighbourhood of the nucleus.

31 This is the modern view of the behaviour of electrons in atoms and in similar situations on an atomic scale. The classical view of particles subject to Newtonian mechanics and electromagnetic forces has been replaced by a wave picture in which the behaviour of the electron is governed by the behaviour of the associated wave. Note: discrete wavelengths and energies are associated with particles which are confined to a finite region. Analogy with waves on strings. Confinement leads to standing NOT travelling waves.

32 Particle confined to 1D Suppose particle is confined to a region between x0 and xl. x0 xl If there is no chance of the particle lying outside this region, the associated wave must vanish: l nλ n 1,,3... p E and p m h λ

33 h h n n h E mλ m l 8ml So, like the hydrogen atom, energy is quantised and the quantum number arises from the confinement of the particle. Energy level diagram n Excited states n1 E0 Ground state

34 Note minimum energy E h 8ml zero point energy Even at T0, particle must have at least this energy Explained by Uncertainty Principle. E p 0 0 p 0, p m 0. x ~ l Contradiction of Heisenberg Uncertainty Principle

35 Examples of Zero Point energy 1. Nucleus can t contain electrons. [between structure of the nucleus wasn t known, since neutron had not been discovered. Nucleus mixture of protons and electrons? But then each electron would have zero point energy ~0MeV whereas β-decay shows electron energies are all ~1MeV.. Liquid He doesn t solidify at T0, except at very high pressure.

36 Wavefunctions: for particle in a 1D potential well Ψ n ( x) Asin nπx l Note: this leads to standing waves. As time proceeds, get oscillations in the usual way. Since Ψ gives probability of particle being found, this also varies...

37 Notes: n0 not relevant (wave doesn t exist!) Strong analogy with standing wave on a stretched string But analogy not complete since in quantum case: hν E ν n E n n string ν n E n n

38 Example: calculate wavelength of photon emitted when electron in potential well of width 1nm undergoes a transition from n to n1. n n1 E0 34 E h ( ) n n n ml (10 ) J E n n eV E eV E E 1. 1eV 1

39 Wavelength λ given by: hc h ν 1.1eV λ 1. 1µ m λ Note variation with l: if we change l from 1nm to 0.5nm, due to factor of l in denominator all energies are x4, so wavelengths reduced by a factor of 4. Quantum dots: practical example of an electron (or several electrons) being confined to a region 10nm thick. Such devices are increasingly important in quantum engineering, I.e. in devices which exploit quantum physics.

40 Quantum Tunneling Wave associated with a particle : what equation does it satisfy? Answer: Schrodinger s equation. No derivation here (too complex). Subject of equation in 1D is in 1D Ψ(x) Ψ( x, t) gives probability that particle will be found at position x at a time t. For a fixed time t, the profile of d dx Ψ + m h Ψ is given by: [ E V ( x) ] Ψ 0 Where m is the mass, V(x) is the potential energy function, E total energy

41 Note that: E V ( x) KE E KE + V (x) Classically allowed region E V ( x) 0 Classically forbidden region E V ( x) 0 Nature of the solution Ψ(x) in classically allowed region Suppose d Ψ( x) Ψ(x) is positive, then < 0 dx d Ψ( x) d dψ( x) dx dx dx d Ψ( x) dx slope

42 Also, d Ψ( x) dx measures rate of change. So if this means that the slope is decreasing Ψ(x) d dx dψ( x) dx < 0 x The REVERSE holds when ( ) < 0 Ψ( x) Ψ x > 0 d dx Therefore throughout classically allowed region be oscillatory. Ψ(x) must

43 Ψ(x) in a classically forbidden region Ψ( x) > 0 d Ψ( x) dx > 0 Exponential increase Exponential decrease: this one makes sense

44 d Ψ( x) Similarly if Ψ( x) < 0 < 0 dx Ψ(x) Near a potential barrier Main point is that the particle has a finite probability of being in a region which is inaccessible classically, and of tunneling from one classically allowed region to another. Known as barrier penetration.

45 W V 0 D / < x < + D / V W x D /, x + D / Wavefunction oscillatory inside, decays exponentially outside ψ, dψ dx continuous

46 Applications/Illustrations (a) 38 9 U Th + 4 He α-particle V V 0 Distance from nucleus

47 Cold electron emission Direct a strong electric field towards a metal surface V Potential energy of an electron near the surface of metal Cold electron emission: scanning tunnelling microscope

48 schematic.html

49 schematic.html

50 Quantum puzzles and Mysteries 1. Meaning of the Uncertainty Principle. p. x h Extent to which position x is unpredictable Sometimes expressed: impossible to determine simultaneously the position and momentum of a particle with arbritary accuracy (Copenhagen Interpretation). Supported by argument involving Heisenberg microscope.

51 Resolving power of microscope is: x λ sinθ Recoil momentum of particle is uncertain to an extent: p x h λ sin θ h λ x. px sinθ. λ sin θ h But is this a simultaneous measurement? Alternative viewpoint: (statistical interpretation) x is a standard deviation for an ensemble of particles, i.e. it is a statistical property.

52 Ψ probability Implies a statistical population To verify experimentally, we would have to measure x for a large number of particles and build up a histogram. Do the same for p x Check x. p x h But: no simultaneous measurements!

53 Einstein-Podolsky-Rosen (EPR) Paradox (thought experiment) Firstly, concept of spin: non-classical property of electrons, protons etc. Nearest classical analogue: spin of the Earth. But this is not a good analogy since the electron is a point particle. Can have: correlated system of electrons,such that total spin component in a certain direction is zero. (in the up-down direction say). So if one electron has a spin up the other has spin-down

54 Now suppose we prepare such a pair of electrons and separate them. Measure spin of one - say up other has spin down Therefore, 1st measurement determines (immediately) the result of the second, no matter how far apart the electrons are! But: perhaps this is the same as for a completely classical system - e.g. boxes, one with something in it, the other empty. So make hypothesis: each electron in the EPR thought experiment has a definite spin state, even before one looks Determined by Hidden variables

55 Then we find Bell s theorem hypothesis is correct. predictions if this 1. Measure one particle effects other particle. Measure one particle only gives us knowledge of other (true before measurement) 1. Relates to QM,. Is classical Hence forced to accept that QM is non-local, which is disturbing.

56 3. Schrodinger s Cat (Thought Experiment) Logical problem. The atom at any time has decayed or it has not The cat at any time, is either alive or dead Defies common sense! Can partly evade this problem by emphasising that the wavefunction describes an ensemble of radioactive atoms, accompanied by an ensemble of cats. A certain fraction will be dead and the other fraction alive.

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 33 Modern Physics Atomic Physics Atomic spectra Bohr s theory of hydrogen http://www.physics.wayne.edu/~apetrov/phy140/ Chapter 8 1 Lightning Review Last lecture: 1. Atomic

More information

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY Warning: The mercury spectral lamps emit UV radiation. Do not stare into the lamp. Avoid exposure where possible. Introduction

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

PHY293 Lecture #15. November 27, Quantum Mechanics and the Atom

PHY293 Lecture #15. November 27, Quantum Mechanics and the Atom PHY293 Lecture #15 November 27, 2017 1. Quantum Mechanics and the Atom The Thompson/Plum Pudding Model Thompson discovered the electron in 1894 (Nobel Prize in 1906) Heating materials (metals) causes corpuscles

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Lecture 4. The Bohr model of the atom. De Broglie theory. The Davisson-Germer experiment

Lecture 4. The Bohr model of the atom. De Broglie theory. The Davisson-Germer experiment Lecture 4 The Bohr model of the atom De Broglie theory The Davisson-Germer experiment Objectives Learn about electron energy levels in atoms and how Bohr's model can be used to determine the energy levels

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum CONCEPT MAP ATOMS Atoms 1.Thomson model 2.Rutherford model 3.Bohr model 4.Emission line spectra 2a. Alpha scattering experiment 3a. Bohr s postulates 6. Hydrogen spectrum 8. De Broglie s explanation 5.Absorption

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 QC-2 QUANTUM CHEMISTRY (Classical Concept) Dr. A. DAYALAN,Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai

More information

MODULE 213 BASIC INORGANIC CHEMISTRY UNIT 1 ATOMIC STRUCTURE AND BONDING II

MODULE 213 BASIC INORGANIC CHEMISTRY UNIT 1 ATOMIC STRUCTURE AND BONDING II Course Title: Basic Inorganic Chemistry 1 Course Code: CHEM213 Credit Hours: 2.0 Requires: 122 Required for: 221 Course Outline: Wave-particle duality: what are the typical properties of particles? What

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths.

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths. In contract, light emitted in low=pressure gas discharge contains only discrete individual wavelengths,

More information

20th Century Atomic Theory- Hydrogen Atom

20th Century Atomic Theory- Hydrogen Atom Background for (mostly) Chapter 12 of EDR 20th Century Atomic Theory- Hydrogen Atom EDR Section 12.7 Rutherford's scattering experiments (Raff 11.2.3) in 1910 lead to a "planetary" model of the atom where

More information

UNIT VIII ATOMS AND NUCLEI

UNIT VIII ATOMS AND NUCLEI UNIT VIII ATOMS AND NUCLEI Weightage Marks : 06 Alpha-particles scattering experiment, Rutherford s model of atom, Bohr Model, energy levels, Hydrogen spectrum. Composition and size of Nucleus, atomic

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

XI STD-CHEMISTRY LESSON: ATOMIC STRUCTURE-I

XI STD-CHEMISTRY LESSON: ATOMIC STRUCTURE-I XI STD-CHEMISTRY LESSON: ATOMIC STRUCTURE-I 1.Define Atom All matter is composed of very small particles called atoms 2.Define Orbital The nucleus is surrounded by electrons that move around the nucleus

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

An electron can be liberated from a surface due to particle collisions an electron and a photon.

An electron can be liberated from a surface due to particle collisions an electron and a photon. Quantum Theory and the Atom the Bohr Atom The story so far... 1. Einstein argued that light is a photon (particle) and each photon has a discrete amount of energy associated with it governed by Planck's

More information

CHAPTER 5 ATOMIC STRUCTURE SHORT QUESTIONS AND ANSWERS Q.1 Why it is necessary to decrease the pressure in the discharge tube to get the cathode rays? The current does not flow through the gas at ordinary

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

The Hydrogen Atom According to Bohr

The Hydrogen Atom According to Bohr The Hydrogen Atom According to Bohr The atom We ve already talked about how tiny systems behave in strange ways. Now let s s talk about how a more complicated system behaves. The atom! Physics 9 4 Early

More information

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018 XII PHYSICS TEST MODERN PHYSICS NAME-... DATE-.. MM- 25 TIME-1 HR 1) Write one equation representing nuclear fusion reaction. (1) 2) Arrange radioactive radiations

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Modern Physics Part 3: Bohr Model & Matter Waves

Modern Physics Part 3: Bohr Model & Matter Waves Modern Physics Part 3: Bohr Model & Matter Waves Last modified: 28/08/2018 Links Atomic Spectra Introduction Atomic Emission Spectra Atomic Absorption Spectra Bohr Model of the Hydrogen Atom Emission Spectrum

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Downloaded from

Downloaded from constant UNIT VIII- ATOMS & NUCLEI FORMULAE ANDSHORTCUT FORMULAE. Rutherford s -Particle scattering experiment (Geiger Marsden experiment) IMPOTANT OBSERVATION Scattering of -particles by heavy nuclei

More information

Class XII - Physics Atoms Chapter-wise Problems

Class XII - Physics Atoms Chapter-wise Problems Class XII - Physics Atoms Chapter-wise Problems Multiple Choice Question :- 1.1 Taking the Bohr radius as a = 53pm, the radius of Li ++ ion in its ground state, on the basis of Bohr s model, will be about

More information

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

298 Chapter 6 Electronic Structure and Periodic Properties of Elements 98 Chapter 6 Electronic Structure and Periodic Properties of Elements 6. The Bohr Model By the end of this section, you will be able to: Describe the Bohr model of the hydrogen atom Use the Rydberg equation

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

Lecture 11. > Uncertainty Principle. > Atomic Structure, Spectra

Lecture 11. > Uncertainty Principle. > Atomic Structure, Spectra Lecture 11 > Uncertainty Principle > Atomic Structure, Spectra *Beiser, Mahajan & Choudhury, Concepts of Modern Physics 7/e French, Special Relativity *Nolan, Fundamentals of Modern Physics 1/e Serway,

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral.

ATOMIC MODELS. Models are formulated to fit the available data. Atom was known to have certain size. Atom was known to be neutral. ATOMIC MODELS Models are formulated to fit the available data. 1900 Atom was known to have certain size. Atom was known to be neutral. Atom was known to give off electrons. THOMPSON MODEL To satisfy the

More information

Physics 280 Quantum Mechanics Lecture

Physics 280 Quantum Mechanics Lecture Spring 2015 1 1 Department of Physics Drexel University August 3, 2016 Objectives Review Early Quantum Mechanics Objectives Review Early Quantum Mechanics Schrödinger s Wave Equation Objectives Review

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

3. Particle nature of matter

3. Particle nature of matter 3. Particle nature of matter 3.1 atomic nature of matter Democrit(us) 470-380 B.C.: there is only atoms and empty space, everything else is mere opinion (atoms are indivisible) Dalton (chemist) 180: chemical

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Lecture 1 : p q dq = n q h (1)

Lecture 1 : p q dq = n q h (1) Lecture 1 : The Wilson-Sommerfeld Quantization Rule The success of the Bohr model, as measured by its agreement with experiment, was certainly very striking, but it only accentuated the mysterious nature

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Physics 116. Nov 22, Session 32 Models of atoms. R. J. Wilkes

Physics 116. Nov 22, Session 32 Models of atoms. R. J. Wilkes Physics 116 Session 32 Models of atoms Nov 22, 2011 Thomson Rutherford R. J. Wilkes Email: ph116@u.washington.edu Announcements Exam 3 next week (Tuesday, 11/29) Usual format and procedures I ll post example

More information

Atoms, nuclei, particles

Atoms, nuclei, particles Atoms, nuclei, particles Nikolaos Kidonakis Physics for Georgia Academic Decathlon September 2016 Age-old questions What are the fundamental particles of matter? What are the fundamental forces of nature?

More information

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m Chapter 30 Atom Physics DR JJ UiTM-Cutnell & Johnson 7th ed. 1 30.1 Rutherford Scattering and the Nuclear Atom Model of an atom-the recent model Nuclear radius r 10-15 m Electron s position radius r 10-10

More information

where n = (an integer) =

where n = (an integer) = 5.111 Lecture Summary #5 Readings for today: Section 1.3 (1.6 in 3 rd ed) Atomic Spectra, Section 1.7 up to equation 9b (1.5 up to eq. 8b in 3 rd ed) Wavefunctions and Energy Levels, Section 1.8 (1.7 in

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

Bohr s Correspondence Principle

Bohr s Correspondence Principle Bohr s Correspondence Principle In limit that n, quantum mechanics must agree with classical physics E photon = 13.6 ev 1 n f n 1 i = hf photon In this limit, n i n f, and then f photon electron s frequency

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Covers all readings, lectures, homework from Chapters 17 through 30 Be sure to bring your student ID card, calculator, pencil, and up to three onepage

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract OpenStax-CNX module: m51039 1 The Bohr Model OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics.

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics. Chapter 7 In chapter 6 we learned about a set of rules for quantum mechanics. Now we want to apply them to various cases and see what they predict for the behavior of quanta under different conditions.

More information

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan Sharif University of Technology Physics Department Modern Physics Spring 2016 Prof. Akhavan Problems Set #5. Due on: 03 th of April / 15 th of Farvardin. 1 Blackbody Radiation. (Required text book is Modern

More information

Question 12.1: Choose the correct alternative from the clues given at the end of the each statement: (a) The size of the atom in Thomson s model is... the atomic size in Rutherford s model. (much greater

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

Particle Nature of Matter. Chapter 4

Particle Nature of Matter. Chapter 4 Particle Nature of Matter Chapter 4 Modern physics When my grandfather was born, atoms were just an idea. That year, 1897, was marked by the discovery of the electron by J.J. Thomson. The nuclear model

More information

UNIT : QUANTUM THEORY AND THE ATOM

UNIT : QUANTUM THEORY AND THE ATOM Name St.No. Date(YY/MM/DD) / / Section UNIT 102-10: QUANTUM THEORY AND THE ATOM OBJECTIVES Atomic Spectra for Hydrogen, Mercury and Neon. 1. To observe various atomic spectra with a diffraction grating

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure PHYS 0219 Optical Spectroscopy and Atomic Structure 1 Optical Spectroscopy and Atomic Structure This experiment has four parts: 1. Spectroscope Setup - Your lab

More information

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons. CHAPTER SEVEN: QUANTUM THEORY AND THE ATOM Part One: Light Waves, Photons, and Bohr Theory A. The Wave Nature of Light (Section 7.1) 1. Structure of atom had been established as cloud of electrons around

More information

1. Historical perspective

1. Historical perspective Atomic and Molecular Physics/Lecture notes presented by Dr. Fouad Attia Majeed/Third year students/college of Education (Ibn Hayyan)/Department of Physics/University of Babylon. 1. Historical perspective

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements:

Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements: Franck-Hertz experiment, Bohr atom, de Broglie waves Announcements: Problem solving sessions Tues. 1-3. Reading for Wednesday TZD 6.1-.4 2013 Nobel Prize Announcement Tomorrow Few slides on the Higgs Field

More information

Atomic Models the Nucleus

Atomic Models the Nucleus Atomic Models the Nucleus Rutherford (read his bio on pp 134-5), who had already won a Nobel for his work on radioactivity had also named alpha, beta, gamma radiation, developed a scattering technique

More information

The Bohr Model of Hydrogen, a Summary, Review

The Bohr Model of Hydrogen, a Summary, Review The Bohr Model of Hydrogen, a Summary, Review Allowed electron orbital radii and speeds: Allowed electron energy levels: Problems with the Bohr Model Bohr s model for the atom was a huge success in that

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

Physics: Quanta to Quarks Option (99.95 ATAR)

Physics: Quanta to Quarks Option (99.95 ATAR) HSC Physics Year 2016 Mark 95.00 Pages 22 Published Jan 15, 2017 Physics: Quanta to Quarks Option (99.95 ATAR) By Edward (99.95 ATAR) Powered by TCPDF (www.tcpdf.org) Your notes author, Edward. Edward

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Wave Properties of Particles Louis debroglie:

Wave Properties of Particles Louis debroglie: Wave Properties of Particles Louis debroglie: If light is both a wave and a particle, why not electrons? In 194 Louis de Broglie suggested in his doctoral dissertation that there is a wave connected with

More information

Structure of the atom

Structure of the atom Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus Conceptual Physics 11 th Edition Chapter 32: THE ATOM AND THE QUANTUM Discovery of the Atomic Nucleus These alpha particles must have hit something relatively massive but what? Rutherford reasoned that

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Surprise, surprise, surprise

Surprise, surprise, surprise Experiment Rutherford had two grad students, Marsden and Geiger. It was decided that Geiger would gain some practice by conducting a series of experiments with gold and alpha particles. The positively

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

Physics 2D Lecture Slides Feb. 2, Sunil Sinha UCSD Physics

Physics 2D Lecture Slides Feb. 2, Sunil Sinha UCSD Physics Physics D Lecture Slides Feb., 010 Sunil Sinha UCSD Physics Thomson s Determination of e/m of the Electron In E Field alone, electron lands at D In B field alone, electron lands at E When E and B field

More information

The following experimental observations (between 1895 and 1911) needed new quantum ideas:

The following experimental observations (between 1895 and 1911) needed new quantum ideas: The following experimental observations (between 1895 and 1911) needed new quantum ideas: 1. Spectrum of Black Body Radiation: Thermal Radiation 2. The photo electric effect: Emission of electrons from

More information

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown.

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown. 1. This question is about quantum aspects of the electron. The wavefunction ψ for an electron confined to move within a box of linear size L = 1.0 10 10 m, is a standing wave as shown. State what is meant

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information