Introduction to Accelerators

Size: px
Start display at page:

Download "Introduction to Accelerators"

Transcription

1 Intoduction to Acceleatos F. Willeke, DESY MHE Basic Physics of Paticle Acceleation Powe Souces fo Acceleation and Acceleating Stuctues Linea Acceleatos Motion of Paticles in a Magnetic Field Cicula Acceleatos Supeconducting Magnets Acceleatos at DESY

2 Intoduction An enomous eolution led fom the fist table top acceleatos in the 19-ies to the lage spectum of instuments fo science and technology. This includes small industially poduced linea acceleatos, acceleatos fo cance teatment, and lage facilities of many kilometes in size used to delie beams fo fundamental physics Rolf Rolf Wideoe s fist fist acceleation tube tube Aial View of LEP/LHC

3 Basic Fomulae and Notation Basic Fomulae and Notation ( E) B e F F p dt d + Equation of motion Loentz Foce Relatiistic Fomulae 1 / γ β γ γ β β γ γ c m c m p m c c m c p E c m m

4 Maxwell s Equations Maxwell s Equations + B D B t E D t J H ρ + S S V s s B da x d D da B da t dse D t J da dsh ) ( 3 ρ

5 Acceleation Enegy Gain dp e ε( t) dt ε ( t) ε sin( ω t) d dt d γ ( t) ( t) c s( t) c γ γ γ 1 e ε ( t) 1 dt m c e m c e ε mcω t dτ e m c γ ( t) γ ( t) ε ( t) ε( t) ds ( 1 cos( ω t) ) + ( βγ ) 1 γ ( τ ) γ ( τ ) Enegy Gain/ Rest Enegy γ t j, γ i e-enegy Gain in an Accel. Stuctue ε(t) Input Momentum Electical Fie p i kevc ε 1MVm 1 Input Phase φ.48( π) Fequency ω π Length 5MHz s m.3m s j, i s m

6 Caity Resonatos 1 1 t B c B t E c E E E Solution in cylindical coodinates ) ( ) exp( ) ( ), ( R k J c k t k J E t E n n n n n n zn ω ω B Acceleation Mode: TM 1 R d

7 Powe Souces and Acceleating Stuctues Maste Oscillato Amplifie Tube Input Couple B Acceleating Stuctue (Caity) ε Suppesso Gid + Plate Anode P Sceen Acceleato Gid Powe Tube schematically Contol Gid Cathode Heate Filament

8 Powe Souces and Acceleating Stuctues Klyston, most common souce of RF powe fo paticle acceleation Boile The electon gun poduces a flow of electons. The bunching caities egulate the speed of the electons so that they aie in bunches at the output caity. The bunches of electons excite micowaes in the output caity of the klyston. The micowaes flow into the waeguide, which tanspots them to the acceleato. The electons ae absobed in the beam stop. Output Caity Input Caity Anode

9 Linea Acceleatos Low Enegy Hadon Acceleation: (β<1) Dift Tube Linac (Alaez LINAC) Dift tubes with quadupole magnets fo focusing E l b l b l b Resonato Tank 3-D sketch

10 epton High Enegy Linacs Focussing Quadupole magnets Acceleating Stuctue φ c PaticleBeam RF Powe Flow Input Couple RF Pulse Compesso Pulsed Klyston Dump Modulato HV Pulse Geneato Tigge HV Supply

11 Supe Conducting Multi-Cell Nb Caity Resonato fo the TESLA Linea Collide

12 Basics of Cicula Acceleatos Magnetic field B F Deflecting foce keeps paticles on a cicula tajectoy F e x B ε Electic field fo Acceleation and Focusing ( Ee dt ε)

13 Bending Radius Bending Radius 1) ( ) ( ) ( t i L t i L y x z y x L L e i e i dt d i m eb i i dt d ω ω ω ξ η η ξ ξ ξ ω ξ γ z x y eb dt dp z z L x y L L y L L x L L x L L y eb p eb m t t y y t t x x γ ω ρ ω ω ω ω ω ω ω ω ) sin( 1) ) (cos( ) sin( 1) ) (cos( y i x i y x + + η ξ γ ω m eb z L x y z B z z y x eb dt dp ) sin( ) cos( t y t x L L ω ρ ω ρ y x y x ρ ρ Lamo Fequency ρ p / eb z ρ p / eb z

14 Weak Focussing R R? fr /l R

15 ε(t) Cycloton fo a classical paticle, (g~1 )the Lamo fequency w L eb /(m γ)is independent of enegy Cycloton suited fo acceleation of heay paticles such as potons o ions B DEE Fo highest enegy need adial coection of magnetic field Isochonous Sepaated secto cycloton at PSI

16

17 Synchoton constant o slowly aying magnetic field + RF field cicula tajectoy with constant adius Rconst High fequency esonato E(t) B Focusing magnet Bending magnet

18 Inceasing Field Inceasing Beam Enegy Synchoton Phase stability Paticles with p > p aie late deceleation E*L Paticles with nominal momentum p see no acceleating field E*L t Paticles with p < p aie ealy, they pick up momentum, E*L t

19 Altenating Gadient Focusing -D-F-D... Combined Function Lattice ODO Lattice sepaated function F dipole D dipole F... Peiodically oscillating beam-enelopes hoizontal etical

20 Stoage Rings Synchoton with constant magnetic field Need good field quality (Homogeneity of magnetic fields)) Stoage Ring Regula acceleation unit can be inteupted by insetions

21 Low Beta Insetion Beam enelope hoizontal etical Low beta Quadupole Lens Doublet

22 Lepton Stoage Ring Maximum Enegy Limited by emission of Synchoton Radiation Need lage RF powe fo high enegy Oscillation of the lepton beams ae damped P ~ E 4 /? ph? γ eu hf sin(φ) p tans. Had limit fo maximum achieable enegy HERA 7.5GeV P5.16MW 35.GeV P13.4MW Powe Loss Used as e+e- Collides B-Factoies Synchoton Light Souces Stetche Rings

23 e + -e - - Collide The highest enegy e + -e - - cicula acceleato waslep (Lage Electon Positon Collide) at Cen with 1GeV beam enegy und 7km cicumfeence. LEP is the last of a seies of lepton collides and maks the end of a lage deelopement (VEPP1, ADDA, SPEAR, DORIS, PETRA, PEP, TRISTAN). The physics of e+-e - collisions can be continued with a Linea Collide, but meanwhile: ENERGY FRONTIER LUMINOSITY FRONTIER FACTORIES Double stoage ings with ey lage beam cuents PEPII & KEK-B (1.5GeV c.m.) DAΦNE (1GeV c.m.)

24 Hadon Acceleatos lage est mass: synchoton adiation negligible Maximum Enegy achieed by lage magnetic fields and lage cicumfeence Supeconducting magnets needed to achiee lagest enegy Fast cycling acceleatos usually nomal conducting Beschleunige nomalleitend Need elatiely low RF powe No adiation damoing: lage sensitiity against distotions and eos Lage demands on field quality, noise suppession, feedback systems

25 Supeconducting Magnets Supeconducting wie: Twisted NbTi 6µm? filaments in a coppe matix LHC Ruhefodtype cable Supeconducting Acceleato Magnets

26 Electon-Hadon Collide HERA Only facility of its kind Double Stoageing with 6.3km Cicumfeence 9GeV Potons - 7.5GeV Leptons

27 Synchoton Light Stoage ings as bight light souces fo eseach in physics, chemisty, biology, mateial science and medicin Use of synchoton adiation what is synchoton adiation? Coutesy M. Shinake KEK/Sping8 RadiationD.exe

28 Lepton Beam Emittance Stochastic emission of synchoton adiation photons (Quantum effect) Stochastisc Excitation of the beam oscillations amplitudes Dispesion tajectoy D p/p Tajectoy fo offenegy paticle D hω x Design Tajecto (Obit) Dipolmagnet γ Stoage ings with small Dispesion D in bends small emittance e ~ D /b

29 Synchoton Light Souces high billiance lepton stoage ings To obtain small beam size, the obit deiation fo off-momentun paticles must be small Achomate stuctue zb DOPPEL BEND ACHROMAT ESRF Footpint Dipole 18 o Betaton Phase adance

30 Acceleatos at DESY HERA PETRA TTF DORIS LINAC II/ III DESY II / III

31

32

33 DESY Tunnel with DESY II and III

34 DORIS nd Geneation Light Souce

35 PETRA II Acceleato fo Leptons and Potons

36 TTF a supeconducting Test linac diing a fee electon lase

37 Fine

38 BETATRON A A A A eb d eb d d da B d e dt ee dp da B dt d d E 4 4 π π π π φ φ φ A A H H B e d eb d e d p B p eb d ρ B A B H db/dt di φ /dt, E φ Azimuthal Acceleation d Guide Field coil

39 ideoe s Sketch of the Hambug Betaton

Introduction to Accelerator Physics

Introduction to Accelerator Physics Intoduction to Acceleato Physics Pat 3 Pedo Casto / Acceleato Physics Goup (MPY) Intoduction to Acceleato Physics DSY, 5th July 017 acceleating devices vacuum chambe injecto acceleating device staight

More information

Micro-bunching: Longitudinal Bunch Profile Measurements at TTF

Micro-bunching: Longitudinal Bunch Profile Measurements at TTF Shot Pulses in Rings Mico-bunching: Longitudinal Bunch Pofile Measuements at TTF ) The time vaying fields in a tansvese mode cavity kick the font of a bunch up, and the back of the bunch don. ) A betaton

More information

High Brightness Electron Beams Introduction to the physics of high-quality electron beams

High Brightness Electron Beams Introduction to the physics of high-quality electron beams High Bightness Electon Beams Intoduction to the physics of high-quality electon beams Mikhail Kasilnikov Photo Injecto Test facility, Zeuthen (PITZ) The plan fo this moning Mikhail Kasilnikov, PITZ physics

More information

The evolution of the phase space density of particle beams in external fields

The evolution of the phase space density of particle beams in external fields The evolution of the phase space density of paticle beams in extenal fields E.G.Bessonov Lebedev Phys. Inst. RAS, Moscow, Russia, COOL 09 Wokshop on Beam Cooling and Related Topics August 31 Septembe 4,

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

3. Particle accelerators

3. Particle accelerators 3. Particle accelerators 3.1 Relativistic particles 3.2 Electrostatic accelerators 3.3 Ring accelerators Betatron // Cyclotron // Synchrotron 3.4 Linear accelerators 3.5 Collider Van-de-Graaf accelerator

More information

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70 SAMPL PAPR I Time Allowed : 3 hous Maximum Maks : 70 Note : Attempt All questions. Maks allotted to each question ae indicated against it. 1. The magnetic field lines fom closed cuves. Why? 1 2. What is

More information

High precision computer simulation of cyclotrons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D.

High precision computer simulation of cyclotrons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D. High pecision compute simulation of cyclotons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D. Abstact Effective and accuate compute simulations ae highly impotant in acceleatos design and poduction.

More information

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields Magnets and Magnetic ields Magnetism Howee, if you cut a magnet in half, you don t get a noth pole and a south pole you get two smalle magnets. ectue otes Chapte 20 Topics Magnets and Magnetic ields Magnets

More information

Phys-272 Lecture 13. Magnetism Magnetic forces

Phys-272 Lecture 13. Magnetism Magnetic forces Phys-7 Lectue 13 Magnetism Magnetic foces Chaged paticle motion in a constant field - velocity in plane to. Suppose we have a magnetic field given by 0 and a paticle stats out at the oigin moving in the

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Longitudinal beam motion:

Longitudinal beam motion: Longitudinal motion & RF cavities Longitudinal beam motion: phase stability bunch & bucket adiabatic tapping dispesion & tansition enegy synchoton motion Radio equency cavities: electomagnetic waves &

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet Advanced Subsidiay GCE (H57) Advanced GCE (H557) Physics B (Advancing Physics) Data, Fomulae and Relationships Booklet The infomation in this booklet is fo the use of candidates following the Advanced

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

Observation of Coherent OTR at LCLS. Unexpected Physics in Standard Beam Diagnostics

Observation of Coherent OTR at LCLS. Unexpected Physics in Standard Beam Diagnostics Obsevation of Coheent OTR at LCLS Unexpected Physics in Standad Beam Diagnostics 16 Novembe 7 Theoy Goup Meeting Henik Loos loos@slac.stanfod.edu Outline Intoduction into LCLS Injecto Coheent OTR Obsevations

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Pedro Castro Introduction to Particle Accelerators DESY, July 2010 What you will see Pedro Castro

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I Module 9: Electomagnetic Waves-I Lectue 9: Electomagnetic Waves-I What is light, paticle o wave? Much of ou daily expeience with light, paticulaly the fact that light ays move in staight lines tells us

More information

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012 .... Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai Second

More information

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( ) EE-Conventional Pape-I IES-013 www.gatefoum.com Conventional Pape-I-013 1. (a) Eplain the concept of gadient. Detemine the gadient of the given field: V ρzsin φ+ z cos φ+ρ What is polaization? In a dielectic

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

General Relativistic Eects on Pulsar Radiation. Dong-Hoon Kim Ewha Womans University

General Relativistic Eects on Pulsar Radiation. Dong-Hoon Kim Ewha Womans University Geneal Relativistic Eects on Pulsa Radiation Dong-Hoon Kim Ewha Womans Univesity The 2nd LeCosPA Intenational Symposium NTU, Taiwan, Dec. 14, 2015 1 Outline 1. Electomagnetic adiation in cuved spacetime

More information

Topic 7: Electrodynamics of spinning particles Revised Draft

Topic 7: Electrodynamics of spinning particles Revised Draft Lectue Seies: The Spin of the Matte, Physics 4250, Fall 2010 1 Topic 7: Electodynamics of spinning paticles Revised Daft D. Bill Pezzaglia CSUEB Physics Updated Nov 28, 2010 Index: Rough Daft 2 A. Classical

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 9 Fall 2018 Semester Prof. Matthew Jones Particle Accelerators In general, we only need classical electrodynamics to discuss particle

More information

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Lecture 1: S. D. Holmes, An Introduction to Accelerators for High Energy Physics I. Introduction to the Course

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN NUFACT Note 117 June ISOCHRONOUS MACHINES WITH SECTOR MAGNET FIELDS AND CONDITIONS FOR SIMILARITY OF THE ORITS CERN-OPEN--4 /6/ J. A. Riche Cicula machines

More information

ELECTRON ENERGY DISTRIBUTIONS AND NON-COLLISIONAL HEATING IN MAGNETICALLY ENHANCED INDUCTIVELY COUPLED PLASMAS*

ELECTRON ENERGY DISTRIBUTIONS AND NON-COLLISIONAL HEATING IN MAGNETICALLY ENHANCED INDUCTIVELY COUPLED PLASMAS* ELECTRON ENERGY DISTRIUTIONS AND NON-COLLISIONAL HEATING IN MAGNETICALLY ENHANCED INDUCTIVELY COUPLED PLASMAS* Ronald L. Kinde and Mak J. Kushne Depatment of Electical and Compute Engineeing Ubana, IL

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0

r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0 Q E ds = enclosed ε S 0 08 Fomulae Sheet 1 q 1q q Coulomb s law: F =. Electic field ceated by a chage q: E = 4πε 4πε Pemittivity of fee space: 0 1 = 9 10 4πε 0 9 Newton mete / coulomb = 9 10 9 0 N m Q

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Adiabatic evolution of the constants of motion in resonance (I)

Adiabatic evolution of the constants of motion in resonance (I) Adiabatic evolution of the constants of motion in esonance (I) BH Gavitational 重 力力波 waves Takahio Tanaka (YITP, Kyoto univesity) R. Fujita, S. Isoyama, H. Nakano, N. Sago PTEP 013 (013) 6, 063E01 e-pint:

More information

II. MRI Technology. B. Localized Information. Lorenz Mitschang Physikalisch-Technische Bundesanstalt, 29 th June 2009

II. MRI Technology. B. Localized Information. Lorenz Mitschang Physikalisch-Technische Bundesanstalt,   29 th June 2009 Magnetic Resonance Imaging II. MRI Technology A. Limitations to patial Infomation B. Localized Infomation Loenz Mitschang Physikalisch-Technische Bundesanstalt, www.ptb.de 9 th June 009 A. Limitations

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

Chapter 33 Alternating Current

Chapter 33 Alternating Current hapte 33 Altenating uent icuits Most of the electical enegy is poduced by electical geneatos in the fom of sinusoidal altenating cuent. Why do we use the sinusoidal electic potential but neithe the tiangula

More information

Ivan Bazarov. Electron Sources: Single Particle Dynamics, Space Charge Limited Emission

Ivan Bazarov. Electron Sources: Single Particle Dynamics, Space Charge Limited Emission Ivan Baaov Electon Souces: Single Paticle Dynamics, Space Chage Limited Emission Contents Child-Langmui limit Space chage limit with shot pulses Busch s theoem Paaial ay equation Electostatic and magnetostatic

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST Magnetic Fluctuation-Induced Paticle Tanspot and Zonal Flow Geneation in MST D.L. Bowe Weixing Ding, B.H. Deng Univesity of Califonia, Los Angeles, USA D. Caig, G. Fiksel, V. Minov, S.C. Page, J. Saff

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Phys 1215, First Test. September 20, minutes Name:

Phys 1215, First Test. September 20, minutes Name: Phys 115, Fist Test. Septembe 0, 011 50 minutes Name: Show all wok fo maximum cedit. Each poblem is woth 10 points. k =.0 x 10 N m / C ε 0 = 8.85 x 10-1 C / N m e = 1.60 x 10-1 C ρ = 1.68 x 10-8 Ω m fo

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

Simulation of the Trickle Heating Effect

Simulation of the Trickle Heating Effect Simulation of the Tickle Heating Effect LCLS Tickle Heating, Measuement and Theoy (SLAC PUB 3854 Z. Huang et. al.) Poisson Solve fo Peiodic Mico Stuctues LCLS Tickle Heating, Simulation EuXFEL Tickle Heating,

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o Last Time Exam 3 esults Quantum tunneling 3-dimensional wave functions Deceasing paticle size Quantum dots paticle in box) This week s honos lectue: Pof. ad histian, Positon Emission Tomogaphy Tue. Dec.

More information

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires) MTE Wed 6, at 5:30-7:00 pm Ch03 and SH 80 Contents of MTE Wok of the electic foce and potential enegy Electic Potential and ield Capacitos and capacitance Cuent and esistance, Ohm s la DC Cicuits and Kichoff

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Electrodynamics Subject Exam Prep Quiz, Tuesday, May 2, 2017

Electrodynamics Subject Exam Prep Quiz, Tuesday, May 2, 2017 Electodynamics ubject Exam Pep Quiz, Tuesday, May, 017 a ( b c ) b( a c ) c ( a b), a ( b c ) b ( c a ) c ( a b), ( a b) ( c d) ( a c )( b d) ( a d)( b c ), ( ψ) 0, ( a ) 0, ( a ) ( a ) a, (ψ a) a ψ +

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stella Stuctue and Evolution Theoetical Stella odels Conside each spheically symmetic shell of adius and thickness d. Basic equations of stella stuctue ae: 1 Hydostatic equilibium π dp dp d G π = G =.

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

e + e - Linear Collider

e + e - Linear Collider e + e - Linear Collider Disclaimer This talk was lifted from an earlier version of a lecture by N.Walker Eckhard Elsen DESY DESY Summer Student Lecture 3 rd August 2006 1 Disclaimer II Talk is largely

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet.

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet. Today A new foce Magnetic foce Announcements HW#6 and HW#7 ae both due Wednesday Mach 18th. Thanks to my being WAY behind schedule, you 2nd exam will be a take-home exam! Stay tuned fo details Even if

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV $)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV R. Brinkmann, Ya. Derbenev and K. Flöttmann, DESY April 1999 $EVWUDFW We discuss the possibility of generating a low-emittance flat (ε y

More information

LECTURE 15. Phase-amplitude variables. Non-linear transverse motion

LECTURE 15. Phase-amplitude variables. Non-linear transverse motion LETURE 5 Non-linea tansvese otion Phase-aplitude vaiables Second ode (quadupole-diven) linea esonances Thid-ode (sextupole-diven) non-linea esonances // USPAS Lectue 5 Phase-aplitude vaiables Although

More information

Physics: Dr. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9

Physics: Dr. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9 Physics: D. F. Wilhelm E:\Excel files\130\m3a Sp06 130a solved.doc page 1 of 9 NAME:... POINTS:... D. Fitz Wilhelm, Diablo Valley College, Physics Depatment Phone: (95) 671-7309 Extension: 403 Midtem 3a,

More information

QUASI-STATIONARY ELECTRON STATES IN SPHERICAL ANTI-DOT WITH DONOR IMPURITY * 1. INTRODUCTION

QUASI-STATIONARY ELECTRON STATES IN SPHERICAL ANTI-DOT WITH DONOR IMPURITY * 1. INTRODUCTION ATOMIC PHYSICS QUASI-STATIONARY ELECTRON STATES IN SPHERICAL ANTI-DOT ITH DONOR IMPURITY * V. HOLOVATSKY, O. MAKHANETS, I. FRANKIV Chenivtsi National Univesity, Chenivtsi, 581, Ukaine, E-mail: ktf@chnu.edu.ua

More information

Charged particle motion in magnetic field

Charged particle motion in magnetic field Chaged paticle otion in agnetic field Paticle otion in cued agnetic fieldlines We diide the equation of otion into a elocity coponent along the agnetic field and pependicula to the agnetic field. Suppose

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

A MICRODISCHARGE BASED PRESURE SENSOR*

A MICRODISCHARGE BASED PRESURE SENSOR* A MICRODISCHARGE BASED PRESURE SENSOR* Jun-Chieh Wang a), Zhongmin Xiong a), Chistine Eun a), Xin Luo a), Yogesh Gianchandani a) and Mak J. Kushne a) a), Ann Abo, MI 48109 USA unchwan@umich.edu, zxiong@umich.edu,

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

Chapter 29 Magnetic Fields

Chapter 29 Magnetic Fields Chapte 9 Magnetic Fiels electic ipole +e agnetic ipole -e can t fin onopole --> cuent oel Magnetic poles always occu in pais. Thus fa, thee is no conclusie eience that an isolate agnetic onopole eists.

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

The physics of induction stoves

The physics of induction stoves The physics of uction stoves This is an aticle fom my home page: www.olewitthansen.dk Contents 1. What is an uction stove...1. Including self-uctance...4 3. The contibution fom the magnetic moments...6

More information

1) Consider an object of a parabolic shape with rotational symmetry z

1) Consider an object of a parabolic shape with rotational symmetry z Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Mechanics (Stömningsläa), 01-06-01, kl 9.00-15.00 jälpmedel: Students may use any book including the tetbook Lectues on Fluid Dynamics.

More information

General Railgun Function

General Railgun Function Geneal ailgun Function An electomagnetic ail gun uses a lage Loentz foce to fie a pojectile. The classic configuation uses two conducting ails with amatue that fits between and closes the cicuit between

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

RAO IIT ACADEMY / NSEP Physics / Code : P 152 / Solutions NATIONAL STANDARD EXAMINATION IN PHYSICS SOLUTIONS

RAO IIT ACADEMY / NSEP Physics / Code : P 152 / Solutions NATIONAL STANDARD EXAMINATION IN PHYSICS SOLUTIONS RAO ACADEMY / NSEP Physics / Code : P 5 / Solutions NAONAL SANDARD EXAMNAON N PHYSCS - 5 SOLUONS RAO ACADEMY / NSEP Physics / Code : P 5 / Solutions NSEP SOLUONS (PHYSCS) CODE - P 5 ANSWER KEY & SOLUONS.

More information