r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0

Size: px
Start display at page:

Download "r r q Coulomb s law: F =. Electric field created by a charge q: E = = enclosed Gauss s law (electric flux through a closed surface): E ds σ ε0"

Transcription

1 Q E ds = enclosed ε S 0 08 Fomulae Sheet 1 q 1q q Coulomb s law: F =. Electic field ceated by a chage q: E = 4πε 4πε Pemittivity of fee space: 0 1 = πε 0 9 Newton mete / coulomb = N m Q ed Gauss s law (electic flux though a closed suface): E ds = enclos. ε Suface aea of a sphee of adius R is S = 4πR S 0 σ A jump of the electic field ove a chaged suface: δ E = σ ε0 Ehs Elhs = (when an axes is diected fom left to ight!) ε0 q Electic potential of a point chage q: V ( ) V ( ) =. Unit: 1volt=J/C 4πε 0 ε 0 = C/(Vm) Definition of the electic potential diffeence: Ed = [ V ( ) V ( )] Consevation of enegy fo a chage Q: K + QV ( ) = const. Enegy of an electon in electic potential=1volt (electon volt): 1eV= J (J=1Joule). Q A Capacitance: C=Q/V; Paallel-plate capacito: C = = ε ε =K ε 0 ΔV d RaRb Spheical capacito: = ; C = 4πε C 4πε Rinne Route Rb Ra Unit: 1F 1faad = 1 coulomb / volt 1pF 10 F 1 F = μ = F Capacitos in paallel: C tot Capacito as enegy stoage = C C 1 + C ε 0 = F/m Capacitos in seies: Q CV U = = u=enegy density C ΔQ dq Definition of cuent I( t) = lim =. Unit: 1A=1ampee= C/s. Δ t 0 Δt dt Cuent I= qnvs ( q=chage, n=density, v=velocity, S the coss-section aea) / C = + + C1 C C E () u () = ε C tot Ohm s law: V/I=R; V=RI; V/R=I Resisto with a constant coss section: Resistivity ρ is measued in [Ωm]. Unit: 1Ω=V/A=Vs/C Length L R = ρ = ρ. coss sec tion ' s aea S

2 Resistos in seies R tot = R1 + R + R3 + Resistos in paallel = R tot R1 R R3 Similaity between esistance and capacitance: R 1/ C ρ 1/ ε Powe output (enegy loss ate): P= IV = RI = V / R. Unit: [J/s] qt () Dischaging capacito: qt ( ) = Qinitial exp( t/ RC) I = dq/ dt = ; RC negative I implies that the chage flows out fom the plate, i.e., it is dischaging Q final Chaging capacito qt ( ) = Qfinal[1 exp( t/ RC)] I() t = exp( t/ RC ) RC Kichhoff s ules: sum of the diected cuents in each of the junctions is zeo; sum of the voltage dops and ises along each of the closed loops is zeo Foce acting on a chage q moving in the magnetic field F qv B = Foce acting on an element dl of a cuent-caying conducto: F = Idl B Cycloton fequency: ω qb f = = π π m Dipoles. Electic dipole moment of a pai chages sepaated by d u u u ±q : p = qd ; u u Magnetic dipole moment u u of a u small u aea suounded by a cuent I: μ = I( ds) Toque [Nm]: τ = p E ; τ = μ B. u u u u Enegy of a dipole in a field: U = p E ; U = μ B μ0 qv ( ) Magnetic field ceated by a moving chage q (Biot-Savat law): B = 3 4π μ0 I( dl ) Magnetic field ceated by an element dl caying cuent I: db = 3 4π Units fo magnetic field 1T ( tesla) = 1N / C m / s = 1N / A m Pemeability μ π π π = 4 10 T m/ A= 4 10 N s / C = 4 10 N / A μ Magnetic field ceated by a staight wie caying cuent I : 0 B = I π u Steady-state vesion of Ampee s law (cuent enclosed by a path): Bdl = μ I Magnetic field ceated by a solenoid: B = μ0ni, n=n/l is numbe of tuns pe unit length. Faaday s law (the EMF induced in a closed loop as esponse to a change of magnetic flux though the loop): dφ B E d = dt Ampee s law (including displacement cuent ceated by vaying in time electic fields): u dφ E Bd = μ0( Ic + ε0 ) dt contou 0 enclosed

3 Maxwell s equations: two Gauss s laws + Faaday s and Ampee s laws dφ B Mutual Inductance: Emf = N NΦ B = M I dt dφ B1 Emf1 = N1 N1Φ B1 = M1I dt Mutual Inductance: Mmutual = μ0nn 1 lovelapsovelap 1 1 M = M 1 1 flux [ Φ B] = 1T m = 1 N m s / C = 1 J s / C = 1V s Units fo flux (webe) and EMF: 1T m = 1Wb 1V = 1 Wb/ s Units of the mutual inductance (heny): 1heny = 1 H = 1 Wb /1A = 1 V s /1A = 1Ω s = 1 J / A Inductance (self-inductance): dφ = = dt B Emf N L 7 Anothe units fo pemeability: μ0 = 4π 10 H / m NΦ N Inductance of a tooidal solenoid: L π Emf Cuent gowth in an R-L cicuit: I = (1 exp( Rt / L)) R Decay of cuent in an R-L cicuit: I = It ( = 0)exp( Rt/ L) di dt = I B = μ 0 Aea () ( / ) Magnetic field enegy: Ut () = LI t = L dq dt B Density of magnetic field enegy ub = μ 1 q ( t) Q dq 1 () Oscillations in a L-C cicuit: + q = 0, ω = 1/ LC ; C C dt LC It () = Isin( ωt+ ϕ) 0 M Φ = I LI t + = = const Waves (fequency, wave vecto, speed): π π λ ω = k = v= =ω/k ω =vk T λ T Wave popagating along x: y( x; t) ight / left = Acos( kx m ωt + ϕ) ϕ = phase Wave equation: ytx (, ) ytx (, ) v = x t Set of wave equations in electomagnetism: E B (, ) E (, ) z t x y t x εμ y(, t x) Bz (, tx) = = 0 0 x t x t Speed of light in vacuum and medium; index of efaction n: 1 1 c = = (3 10 m/ s ) 1 7 εμ ( C / Nm ) (4π 10 N / A ) v = n = c/ v = KKmagn K v = c/ n εμ 1 E (, t x) E (, t x) y y = εμ 0 0 x t B

4 Relation between the amplitudes of the electic and magnetic fields in electomagnetic fields: E=cB. Radiation powe: P=IA Intensity of adiation fa away fom the souce: I = P π /(4 ) Density of enegy: u = ε0 E ( x, t) ; aveage u u density of enegy u = ε0 E ( x, t) = ε0e / Poynting vecto S, intensity I: u E B u u EB S = P = S A I = S = μ0 μ0 Radiation pessue: P = αi / c; fo totally eflecting mio α=; fo black body α=1. ad Angle of eflection: θ = θ Snell s law: n sinθ incident = n eflected sinθ incident incident efacted efacted n Angle of total intenal eflection: sinθ citical = n Polaizing by a linea filte along the diection Malus s law (consequence of the elation above): incident Huygens s and Femat s pinciples. efacted incident π π Polaizations: cicula E y = Ez ϕy = ϕz m ; elliptical E y Ez ϕy = ϕz m ; n linea : ϕy = ϕz. efacted Buste s angle: tg θ pola = n y ' s ' Images; lateal magnification: m = = y s Concave spheical mio ), focal length: + = f = R / s s' f Convex spheical mio ( : + = f = R / s s' f Spheical efactive image na nb nb na y' nas' + = m = = s s' R y n Thin lenses (conveging lens, f>0; diveging lens, f<0): 1 1 bs 1 s + = m = ' s s' f s Lens make s equation: = ( n 1) Double convex/concave lenses: f R1 R ( n 1) = + f R1 R u u filte n: Eincident n n E I = I cos φ max ( incident )

5 Integals: 1 N + 1 N x dx = x N + 1 R N 1 N + 1 x dx = R N dx N x N + 1 x = N 1 R 1 N x dx = 1 1 N 1 R N 1 1 dx = ln x x b 1 dx = ln( b / a) x a x 0 t d a dy ( ) 3/ x x + y x + a = τ exp( τ / τ ) = τ (1 exp( t / τ ) a Aveaging cos ( ωt kx) = sin ( ωt kx) = cos( ωt kx) sin( ωt kx) = 0 1 cos π /6= 3/ sin π /6= 1/ cos π / 3 = 1/ sin π / 3 = 3 /

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

F = net force on the system (newton) F,F and F. = different forces working. E = Electric field strength (volt / meter)

F = net force on the system (newton) F,F and F. = different forces working. E = Electric field strength (volt / meter) All the Impotant Fomulae that a student should know fom. XII Physics Unit : CHAPTER - ELECTRIC CHARGES AND FIELD CHAPTER ELECTROSTATIC POTENTIAL AND CAPACITANCE S. Fomula No.. Quantization of chage Q =

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Review for 2 nd Midterm

Review for 2 nd Midterm Review fo 2 nd Midtem Midtem-2! Wednesday Octobe 29 at 6pm Section 1 N100 BCC (Business College) Section 2 158 NR (Natual Resouces) Allowed one sheet of notes (both sides) and calculato Coves Chaptes 27-31

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet Advanced Subsidiay GCE (H57) Advanced GCE (H557) Physics B (Advancing Physics) Data, Fomulae and Relationships Booklet The infomation in this booklet is fo the use of candidates following the Advanced

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M.

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M. Magnetic Foces Biot-Savat Law Gauss s Law fo Magnetism Ampee s Law Magnetic Popeties of Mateials nductance F m qu d B d R 4 R B B µ 0 J Magnetostatics M. Magnetic Foces The electic field E at a point in

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday

Course Updates. Reminders: 1) Assignment #8 will be able to do after today. 2) Finish Chapter 28 today. 3) Quiz next Friday Couse Updates http://www.phys.hawaii.edu/~vane/phys272-sp10/physics272.html Remindes: 1) Assignment #8 will be able to do afte today 2) Finish Chapte 28 today 3) Quiz next Fiday 4) Review of 3 ight-hand

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Phys 1215, First Test. September 20, minutes Name:

Phys 1215, First Test. September 20, minutes Name: Phys 115, Fist Test. Septembe 0, 011 50 minutes Name: Show all wok fo maximum cedit. Each poblem is woth 10 points. k =.0 x 10 N m / C ε 0 = 8.85 x 10-1 C / N m e = 1.60 x 10-1 C ρ = 1.68 x 10-8 Ω m fo

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005 Fields and Waves I Sping 005 Homewok 8 Tansmission Lines Due: 3 May 005. Multiple Choice (6) a) The SWR (standing wave atio): a) is a measue of the match between the souce impedance and line impedance

More information

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70 SAMPL PAPR I Time Allowed : 3 hous Maximum Maks : 70 Note : Attempt All questions. Maks allotted to each question ae indicated against it. 1. The magnetic field lines fom closed cuves. Why? 1 2. What is

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

ELECTROMAGNETISM (CP2)

ELECTROMAGNETISM (CP2) Revision Lectue on ELECTROMAGNETISM (CP) Electostatics Magnetostatics Induction EM Waves based on pevious yeas Pelims questions State Coulomb s Law. Show how E field may be defined. What is meant by E

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Physics 313 Practice Test Page 1. University Physics III Practice Test II

Physics 313 Practice Test Page 1. University Physics III Practice Test II Physics 313 Pactice Test Page 1 Univesity Physics III Pactice Test II This pactice test should give you a ough idea of the fomat and oveall level of the Physics 313 exams. The actual exams will have diffeent

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Chapter 33 Alternating Current

Chapter 33 Alternating Current hapte 33 Altenating uent icuits Most of the electical enegy is poduced by electical geneatos in the fom of sinusoidal altenating cuent. Why do we use the sinusoidal electic potential but neithe the tiangula

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

3-Axis Vector Magnet: Construction and Characterisation of Split Coils at RT. Semester Project Petar Jurcevic

3-Axis Vector Magnet: Construction and Characterisation of Split Coils at RT. Semester Project Petar Jurcevic 3-Axis Vecto Magnet: Constuction and Chaacteisation of Split Coils at RT Semeste Poject Peta Jucevic Outline Field Calculation and Simulation Constuction Details Field Calculations Chaacteization at RT

More information

Static Electric Fields. Coulomb s Law Ε = 4πε. Gauss s Law. Electric Potential. Electrical Properties of Materials. Dielectrics. Capacitance E.

Static Electric Fields. Coulomb s Law Ε = 4πε. Gauss s Law. Electric Potential. Electrical Properties of Materials. Dielectrics. Capacitance E. Coulomb Law Ε Gau Law Electic Potential E Electical Popetie of Mateial Conducto J σe ielectic Capacitance Rˆ V q 4πε R ρ v 2 Static Electic Field εe E.1 Intoduction Example: Electic field due to a chage

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

18.1 Origin of Electricity 18.2 Charged Objects and Electric Force

18.1 Origin of Electricity 18.2 Charged Objects and Electric Force 1 18.1 Oigin of lecticity 18. Chaged Objects and lectic Foce Thee ae two kinds of electic chage: positive and negative. The SI unit of electic chage is the coulomb (C). The magnitude of the chage on an

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A Geneal Physics II 11 AM-1:15 PM TR Olin 11 Plan fo Lectue 1 Chaptes 3): Souces of Magnetic fields 1. Pemanent magnets.biot-savat Law; magnetic fields fom a cuent-caying wie 3.Ampee Law 4.Magnetic

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( ) EE-Conventional Pape-I IES-013 www.gatefoum.com Conventional Pape-I-013 1. (a) Eplain the concept of gadient. Detemine the gadient of the given field: V ρzsin φ+ z cos φ+ρ What is polaization? In a dielectic

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Sources of Magnetic Fields (chap 28)

Sources of Magnetic Fields (chap 28) Souces of Magnetic Fields (chap 8) In chapte 7, we consideed the magnetic field effects on a moving chage, a line cuent and a cuent loop. Now in Chap 8, we conside the magnetic fields that ae ceated by

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Chapter 26: Magnetism: Force and Field

Chapter 26: Magnetism: Force and Field Chapte 6: Magnetism: Foce and Field Magnets Magnetism Magnetic foces Magnetism Magnetic field of Eath Magnetism Magnetism Magnetic monopoles? Pehaps thee exist magnetic chages, just like electic chages.

More information

PHY2054 Exam 1 Formula Sheet

PHY2054 Exam 1 Formula Sheet Instucto: Field/Mitselmakhe PHYSICS DPATMNT PHY 54 Final am Apil 3, 6 Name (PINT, last, fist): Signatue: On my hono, I have neithe given no eceived unauthoized aid on this eamination. YOU TST NUMB IS TH

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 9 T K T o C 7.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC dt L pv nt Kt nt CV ideal monatomic gas 5 CV ideal diatomic gas w/o vibation V W pdv V U Q W W Q e Q Q e Canot H C T T S C

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 -

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 - Pepaed by: M. S. KumaSwamy, TGT(Maths) Page - - ELECTROSTATICS MARKS WEIGHTAGE 8 maks QUICK REVISION (Impotant Concepts & Fomulas) Chage Quantization: Chage is always in the fom of an integal multiple

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits Phys-7 ectue 8 Mutual nductance Self-nductance - Cicuits Mutual nductance f we have a constant cuent i in coil, a constant magnetic field is ceated and this poduces a constant magnetic flux in coil. Since

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

Phys 222 Sp 2009 Exam 1, Wed 18 Feb, 8-9:30pm Closed Book, Calculators allowed Each question is worth one point, answer all questions

Phys 222 Sp 2009 Exam 1, Wed 18 Feb, 8-9:30pm Closed Book, Calculators allowed Each question is worth one point, answer all questions Phys Sp 9 Exam, Wed 8 Feb, 8-9:3pm Closed Book, Calculatos allowed Each question is woth one point, answe all questions Fill in you Last Name, Middle initial, Fist Name You ID is the middle 9 digits on

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +)

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +) Conventional Cuent In some mateials cuent moving chages ae positive: Ionic solution Holes in some mateials (same chage as electon but +) Obseving magnetic field aound coppe wie: Can we tell whethe the

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

AP Physics C: Electricity and Magnetism 2003 Scoring Guidelines

AP Physics C: Electricity and Magnetism 2003 Scoring Guidelines AP Physics C: Electicity and Magnetism 3 Scoing Guidelines The mateials included in these files ae intended fo use by AP teaches fo couse and exam pepaation; pemission fo any othe use must be sought fom

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

Magnetic Field of a Wire

Magnetic Field of a Wire Magnetic Field of a Wie Fundamental Laws fo Calculating B-field Biot-Savat Law (long method, but woks always) Ampee s Law (high symmety) B-Field of a Staight Wie Fo a thin staight conducto caying cuent

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Exam 3, vers Physics Spring, 2003

Exam 3, vers Physics Spring, 2003 1 of 9 Exam 3, ves. 0001 - Physics 1120 - Sping, 2003 NAME Signatue Student ID # TA s Name(Cicle one): Michael Scheffestein, Chis Kelle, Paisa Seelungsawat Stating time of you Tues ecitation (wite time

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Final Exam answers relevant to Summer 2014 Exam 2 I. Relativity, Quantum, Atomic (choose 3 of 4)

Final Exam answers relevant to Summer 2014 Exam 2 I. Relativity, Quantum, Atomic (choose 3 of 4) PH 02 / LeClai Summe II 200 Final Exam answes elevant to Summe 204 Exam 2 I. Relativity, Quantum, Atomic (choose 3 of 4). In a scatteing expeiment to eveal the atomic-scale stuctue of a mateial, electons

More information

Capacitors and Capacitance

Capacitors and Capacitance Capacitos and Capacitance Capacitos ae devices that can stoe a chage Q at some voltage V. The geate the capacitance, the moe chage that can be stoed. The equation fo capacitance, C, is vey simple: C Q

More information

GM r. v = For Newton s third law, the forces in the action/reaction pair always act on different objects

GM r. v = For Newton s third law, the forces in the action/reaction pair always act on different objects SAT Physics Mechanics The dot poduct of two vectos: A B = AB cos θ The coss poduct of vectos: A B = AB sin θˆn. The magnitude of the coss poduct is equal to the aea of the paallelogam. We use the ight

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires) MTE Wed 6, at 5:30-7:00 pm Ch03 and SH 80 Contents of MTE Wok of the electic foce and potential enegy Electic Potential and ield Capacitos and capacitance Cuent and esistance, Ohm s la DC Cicuits and Kichoff

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

FARADAY'S LAW dt

FARADAY'S LAW dt FAADAY'S LAW 31.1 Faaday's Law of Induction In the peious chapte we leaned that electic cuent poduces agnetic field. Afte this ipotant discoey, scientists wondeed: if electic cuent poduces agnetic field,

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown [Giffiths Ch.-] 8//8, :am :am, Useful fomulas V ˆ ˆ V V V = + θ+ φ ˆ and v = ( v ) + (sin θvθ ) + v θ sinθ φ sinθ θ sinθ φ φ. (6%, 7%, 7%) Suppose the potential at the suface of a hollow hemisphee is specified,

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics ECE 3318 Applied Electicity and Magnetism Sping 218 Pof. David R. Jackson Dept. Of ECE Notes 2 Dielectics 1 Dielectics Single H 2 O molecule: H H Wate ε= εε O 2 Dielectics (cont.) H H Wate ε= εε O Vecto

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information