Technical Appendix to Modeling Movie Lifecycles and Market Share. All our models were estimated using Markov Chain Monte Carlo simulation (MCMC).

Size: px
Start display at page:

Download "Technical Appendix to Modeling Movie Lifecycles and Market Share. All our models were estimated using Markov Chain Monte Carlo simulation (MCMC)."

Transcription

1 Technical Appenix o Moeling Movie Lifecycles an Marke Share Deman Moel All our moels were esimae using Markov Chain Mone Carlo simulaion (MCMC). This meho is wiely use in he markeing leraure an is escribe in eail in Gelman Carlin Sern an Rubin (995). Given he vas leraure on he subjec we lim our iscussion o he specificaion of he various isribuions use. In paragraph. we escribe he conional isribuions of ηi γi β i. These isribuions are non-conjugae an hus are hanle hrough a Meropolis sep. In paragraphs.2 o.7 we escribe he isribuions use for he error erms ( an V Suio Genre σ ) an he parameers of he hierarchical regression ( θ an θ ). As hese isribuions are conjugae we hanle hem wh a Gibbs sep. For noaional convenience we efine m as he number of movies in he aase (m = 404) we use i o inex movies o inex ime (62 weeks) an o refer o he eman moel.. Conional isribuion of ηi γi β i (Meropolis Sep) In secion 3 of he paper we efine he eman moel (equaion 7) as: γi / βi ( w)/ βi ηi ε S = w e +. Given his specificaion he likelihoo funcion for movie i is given by: η ˆ ˆ i η i η i η i I 2 2 ( )~ ( exp ( ( ˆ Lη ) /2 )) exp ˆ ˆ i γi βi S S σ γi γi V γi γ i 2 β ˆ ˆ i β β i i β i

2 where: ˆ γ i / β i ( w )/ β i ηi S = w e η = ln( η ) i i γ = γ i i β = ln( β ) i i ε σ an 2 ~ N(0 ) ˆ η i Suio Genre ˆ γi = zi + θi + θ i. ˆ βi.2 Conional isribuion of σ (Gibbs Sep) σ is he sanar eviaion of he error erm in he eman moel. I is isribue Inverse Gamma as follows: where: ( + ( + ) ( )) 2 + σ ~ IG ν n νv ns / ν n ν =3; v = (Priors chosen o be reasonable uninformaive) n is he oal number of movie/week observaion s S. = ( S ˆ ) 2 2 i 2

3 .3 Conional isribuion of (Gibbs Sep) V V is he variance of he vecor of error erms (imension 3) in he hierarchical regression of he parameers of he eman moel. The prior on V is isribue Inverse Wishar ( ν 0 V0). Consequenly he poserior conional on V is isribue Inverse Wishar: ˆ η ˆ i η i V ~ ˆ ˆ IW ν0 + m V0 + γi zi γi zi. i ˆ ˆ β i β i Where m represens he oal number of movies (i.e. 404). We chose ν 0 = 7 V0 = I(3) 7 as a locally iffuse prior (I(3) is a 3x3 ieny marix)..4 Conional isribuion of (Gibbs Sep) Le η β = γ θ θ i β i Genre Suio i i i i be ha componen no aribuable o suio or genre. An le β be a sacke marix of β across all movies. i where: ( ( )) ( ) ( ) Then δ = vec ~ N V ZZ + A ( ) = vec D ( ) ( ˆ β ) D = ZZ + A ZZD+ A D ( ) ˆD = ZZ Z β D= sack( ) is he prior on 3

4 Z is a sacke marix of he iniviual movies z i s. The prior on is iffuse given by: = D N A A vec( ) ~ (0 ) = I() 0.0 Suio.5 Conional isribuion of θ (Gibbs Sep) We use a muli-imensional version of he massively caegorical approach suggese in Seenburgh e al (2003) o allow for an inercep shif ( level. Suio θ ) on each parameer a he suio Le η i Suio Genre β = i γi θi zi β i be ha componen of he coefficiens no aribuable o Suio Suio he coninuous variables or genre. An le be a sacke marix of β across all β i movies. Furher le N Suio Suio s = i ISuio i s i= β β = be he sum of he vecors of hese parial coefficiens over all movies prouce by a paricular suio inexe here by s. Finally le he number of movies represene by suio s be θ m s. Then ~ N(( I(3) m + V ) β ( I(3) m + V ) ) Suio Suio s s Suio s s Suio.6 Conional isribuion of V Suio (Gibbs Sep) The prior on Wishar: is IW ( ν V ). Thus he poserior conional on is Inverse V Suio Suio0 Suio0 V IW m V Suio Suio Suio Suio ( )( θ ) Suio ~ νsuio0 + Suio0 + βi θs i βi si i 4 V Suio

5 Where Suio θ s i is he vecor of coefficiens for he suio ha represens movie i an m once more represens he oal number of movies. We chose ν = 7 V = I(3) 7 as a locally iffuse prior. Suio0 Suio0 Genre.7 Conional isribuion of an (Gibbs Sep) θ V Genre This procees exacly as for he suio coefficiens in.5 an.6 excep ha he inexing is performe across movies ha belong o each genre insea of movies represene by each suio. 2 Esimaion for he Marke Share Moel The esimaion of he marke share moel is similar in naure o he esimaion of he eman moel. The hierarchical srucure on he parameers ηims γims β ims is ienical o he srucure pu on ηi γi β i excep ha we resric η ims o be beween 0 an by using a Log ransform raher han log since can be inerpree in erms of expece marke share. Thus he seps escribe in secions.3 o.7 are ienical an will no be repeae here. Wha is ifferen here is ha we moel marke share raher han eman; we inrouce an ousie goo; an we use a Poisson approximaion for he log specificaion. These hree changes are escribe in he nex hree secions. 2. Conional isribuion of ηims γims β ims (Meropolis Sep) Our choice moel is efine by equaion as: V M e I = e V V O j + e I j j. Given his specificaion he likelihoo funcion for movie i is given by: 5

6 I S V η ˆ ˆ ims η ims η ims η ( e ) L( η ˆ ims γims βims )~ exp γ S ims γims Vc γims 2 ˆ γ V V O j e e I β ˆ + j ims β β ims ims ˆ β j where: ims ims ims (C-) γ β β ims / ims ( w)/ ims = ηi ms ; V w e S S S = O + j j= J (we iscuss his erm in more eails in 2.3) ( ) η = log η /( η ) ; ims ims ims γ ims = γims ; β = ln( β ); an ims ims ˆ η ims Suio Genre ˆ γi ms = X i ms + θi ms + θ i ms. ˆ βims As in any log specificaion η ims is ienifiable only o an arbrary consan. We show in he nex secion how we se his consan such ha η ims can be inerpree as he expece marke share for movie i in s opening week. 2.2 Poisson Transform The likelihoo (C-) above can be messy o evaluae irecly an inee one encouners machine precision problems as S is frequenly in he millions. A common ransform use o make esimaion more efficien is o use a Poisson approximaion (Baker (995); see also BUGS Manual p. 5; BUGS Examples Vol. 2 p. 5 which we follow closely in our iscussion). 6

7 To illusrae how his approximaion works le us look a a simplifie likelihoo formulaion where we ignore he prior an he ousie goo (we will re-inrouce he ousie goo in he nex secion). The likelihoo for his simple case is given by: LDaa ( η γ β )~ I V ( e ) ms ms ms S i= = J V T j= IS j ( e I j ) Suppose we assume ha he aa is acually generae by S ~ Poisson( ω ) ω = ωe V Then he likelihoo is given by: LDaa ( η γ β )~ ω e I T I S ω ms ms ms = i= T I I S V = ω exp S V Iexp ω e I = i= i= Le he ω ' s have inepenen gamma (ab) priors; inegraing hem ou gives a marginal likelihoo of V s: T I I S V a bω LDaa ( ηims γims βims ) exp S V I ω exp ω e I ω e ω = i= i= I exp S V I T i= ims ims ims S + a = LDaa ( η γ β ) I V ( e + b) i= We noe ha as ab 0 he likelihoos become he same. The inclusion of an ousie goo an he assumpion ha he oal eman ( S ) is consan allows us o make ω invarian o ime (i.e. ω = ω ). Since his consan is unienifie 7

8 S for our log moel we arbrarily se o ω = e. As an imporan sie effec by aing his furher consrain η i can now be irecly inerpree as he expece of movie i marke share in s opening week. 2.3 The Ousie Goo (Meropolis Sep) Deman for movies is highly seasonal. A useful way o irecly accoun for seasonaly is o imagine non-eman for movies. Tha is in every perio here is a percenage of he oal poenial marke ha chooses no o aen movies in ha perio. Those who chose no o go o he movies are sai o consume he ousie goo. This is analogous o he no-purchase opion in he choice leraure. We efine his eman for he ousie goo as S O. If we assume ha oal eman is consan over ime ( S = S ) an is allocae every week beween he movies in heaer an he ousie goo as a funcion of he qualy of he movies an he qualy of he oher opions available o consumers we can compue S O as: S S S I O i= I = The oal eman can be arbrarily se o a large number. We se such ha oal sales in each perio is.2 oal ickes sol in he highes eman week whin he aase o ensure ha here is posive eman for he ousie goo in each perio. We ese values of. an.4; here were no effecs oher han an inercep shif. Nex o accoun for seasonal change in he eman for movies we moel he eman for he ousie goo as a funcion of he eman for he ousie goo in pas years. Using a simple auo-regressive moel he marke share of he ousie goo is given as: V O S (C-2) K O ( k52) = α + φk ln k = S 8

9 SO 52 k where is ( S -oal eman for movies in week k years previously. In (C-2) we ivie he lagge eman by S so ha his can be hough of as marke share for he ousie goo in week k years previously. Wh his ousie goo specificaion he conional likelihoo for he parameers for each movie becomes: η ˆ η η ˆ η T ims ims ims ims V S / V / S S e ˆ ˆ ims ims ims ims ims c ims ims = 2 β ˆ ˆ ims β β ims ims βims L( η γ β )~ I e e exp γ γ V γ γ an for he ousie goo is: α α φ φ L( αφ.. φ)~ e e exp V k T V S / V / S S O O e O = 2 φ k φ k 6 where he prior on hese parameers is chosen o be iffuse N(0 ) where V = I0. In pracice we foun k=3 o work bes (i.e. we use lagge eman for he ousie goo in he previous 3 years o preic curren year sales). V O O Reference Baker S. G. (995) The mulinomial-poisson ransformaion The Saisician Vol BUGS Manual hp:// version BUGS Examples hp:// Vol. 2 Version

10 Gelman A. J. Carlin H. Sern an D. Rubin (995) Bayesian Daa Analysis Chapman an Hall Lonon. 0

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

D.I. Survival models and copulas

D.I. Survival models and copulas D- D. SURVIVAL COPULA D.I. Survival moels an copulas Definiions, relaionships wih mulivariae survival isribuion funcions an relaionships beween copulas an survival copulas. D.II. Fraily moels Use of a

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

4.1 Other Interpretations of Ridge Regression

4.1 Other Interpretations of Ridge Regression CHAPTER 4 FURTHER RIDGE THEORY 4. Oher Inerpreaions of Ridge Regression In his secion we will presen hree inerpreaions for he use of ridge regression. The firs one is analogous o Hoerl and Kennard reasoning

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

COMPETITIVE GROWTH MODEL

COMPETITIVE GROWTH MODEL COMPETITIVE GROWTH MODEL I Assumpions We are going o now solve he compeiive version of he opimal growh moel. Alhough he allocaions are he same as in he social planning problem, i will be useful o compare

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Inernaional Journal of Social Science and Economic Research Volume:02 Issue:0 ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Chung-ki Min Professor

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Seminar 5 Sustainability

Seminar 5 Sustainability Seminar 5 Susainabiliy Soluions Quesion : Hyperbolic Discouning -. Suppose a faher inheris a family forune of 0 million NOK an he wans o use some of i for himself (o be precise, he share ) bu also o beques

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Social groups and social network formation [Online Appendix]

Social groups and social network formation [Online Appendix] Social groups an social nework formaion [Online Appenix] Bassel Tarbush Alexaner Teyelboym Sepember 2, 25 This appenix provies supplemenary maerial for he paper Social groups an social nework formaion

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NCLIMATE893 Temporal resoluion and DICE * Supplemenal Informaion Alex L. Maren and Sephen C. Newbold Naional Cener for Environmenal Economics, US Environmenal Proecion

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

The General Linear Test in the Ridge Regression

The General Linear Test in the Ridge Regression ommunicaions for Saisical Applicaions Mehods 2014, Vol. 21, No. 4, 297 307 DOI: hp://dx.doi.org/10.5351/sam.2014.21.4.297 Prin ISSN 2287-7843 / Online ISSN 2383-4757 The General Linear Tes in he Ridge

More information

Two-stage Benchmarking of Time-Series Models for. Small Area Estimation. Danny Pfeffermann, Richard Tiller

Two-stage Benchmarking of Time-Series Models for. Small Area Estimation. Danny Pfeffermann, Richard Tiller Two-sage Benchmarking of Time-Series Moels for Small Area Esimaion anny Pfeffermann, Souhampon Universiy, UK & Hebrew universiy, Israel Richar Tiller Bureau of Labor Saisics, U.S.A. Small Area Conference,

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Impact of International Information Technology Transfer on National Productivity. Online Supplement

Impact of International Information Technology Transfer on National Productivity. Online Supplement Impac of Inernaional Informaion Technology Transfer on Naional Prouciviy Online Supplemen Jungsoo Park Deparmen of Economics Sogang Universiy Seoul, Korea Email: jspark@sogang.ac.kr, Tel: 82-2-705-8697,

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Figure 1. Jaw RMS target-tracker difference for a.9hz sinusoidal target.

Figure 1. Jaw RMS target-tracker difference for a.9hz sinusoidal target. Approaches o Bayesian Smooh Unimodal Regression George Woodworh Dec 3, 999 (Draf - please send commens o george-woodworh@uiowa.edu). Background Speech Ariculaion Daa The daa in Figure were obained by asking

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013 Mahemaical Theory and Modeling ISSN -580 (Paper) ISSN 5-05 (Online) Vol, No., 0 www.iise.org The ffec of Inverse Transformaion on he Uni Mean and Consan Variance Assumpions of a Muliplicaive rror Model

More information

1. (16 points) Answer the following derivative-related questions. dx tan sec x. dx tan u = du d. dx du tan u. du tan u d v.

1. (16 points) Answer the following derivative-related questions. dx tan sec x. dx tan u = du d. dx du tan u. du tan u d v. Exam #2 Soluions. (6 poins) Answer he following eriaie-relae quesions. (a) (8 poins) If y an sec x, fin. This is an applicaion of he chain rule in wo sages, in which we shall le u sec x, an sec x: an sec

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation Mahcad Lecure #8 In-class Workshee Curve Fiing and Inerpolaion A he end of his lecure, you will be able o: explain he difference beween curve fiing and inerpolaion decide wheher curve fiing or inerpolaion

More information

Module II, Part C. More Insight into Fiber Dispersion

Module II, Part C. More Insight into Fiber Dispersion Moule II Par C More Insigh ino Fiber Dispersion . Polariaion Moe Dispersion Fiber Birefringence: Imperfec cylinrical symmery leas o wha is known as birefringence. Recall he HE moe an is E x componen which

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Settling Time Design and Parameter Tuning Methods for Finite-Time P-PI Control

Settling Time Design and Parameter Tuning Methods for Finite-Time P-PI Control Journal of Conrol Science an Engineering (6) - oi:.765/8-/6.. D DAVID PUBLISHING Seling ime Design an Parameer uning Mehos for Finie-ime P-PI Conrol Keigo Hiruma, Hisaazu Naamura an Yasuyui Saoh. Deparmen

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t.

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t. Insrucions: The goal of he problem se is o undersand wha you are doing raher han jus geing he correc resul. Please show your work clearly and nealy. No credi will be given o lae homework, regardless of

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

DEPARTMENT OF ECONOMICS WORKING PAPERS

DEPARTMENT OF ECONOMICS WORKING PAPERS DEPARTMENT OF ECONOMICS WORKING PAPERS economics.ceu.hu The Esimaion of Muli-dimensional Fixed Effecs Panel Daa Models by Laszlo Mayas and Laszlo Balazsi 0/ Deparmen of Economics, Cenral European Universiy,

More information

Chapter 14 Wiener Processes and Itô s Lemma. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull

Chapter 14 Wiener Processes and Itô s Lemma. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull Chaper 14 Wiener Processes and Iô s Lemma Copyrigh John C. Hull 014 1 Sochasic Processes! Describes he way in which a variable such as a sock price, exchange rae or ineres rae changes hrough ime! Incorporaes

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Has the Business Cycle Changed? Evidence and Explanations. Appendix

Has the Business Cycle Changed? Evidence and Explanations. Appendix Has he Business Ccle Changed? Evidence and Explanaions Appendix Augus 2003 James H. Sock Deparmen of Economics, Harvard Universi and he Naional Bureau of Economic Research and Mark W. Wason* Woodrow Wilson

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Robert Kollmann. 6 September 2017

Robert Kollmann. 6 September 2017 Appendix: Supplemenary maerial for Tracable Likelihood-Based Esimaion of Non- Linear DSGE Models Economics Leers (available online 6 Sepember 207) hp://dx.doi.org/0.06/j.econle.207.08.027 Rober Kollmann

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

Fuzzy Logic Genetic Algorithm Method to Evaluate the Magnetic Vector Potential

Fuzzy Logic Genetic Algorithm Method to Evaluate the Magnetic Vector Potential Fuy Logic Geneic Algorihm Meho o Evaluae he Magneic Vecor Poenial L. CZUMBIL, D.D. MICU, A. CECLAN, D. STEł, D.O. MICU Deparmen of Elecrical Engineering Technical Universiy of Clu-Napoca 6 G. BariŃiu Sree,

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

DEPARTMENT OF ECONOMICS

DEPARTMENT OF ECONOMICS ISSN 0819-6 ISBN 0 730 609 9 THE UNIVERSITY OF MELBOURNE DEPARTMENT OF ECONOMICS RESEARCH PAPER NUMBER 95 NOVEMBER 005 INTERACTIONS IN REGRESSIONS by Joe Hirschberg & Jenny Lye Deparmen of Economics The

More information

Computer Simulates the Effect of Internal Restriction on Residuals in Linear Regression Model with First-order Autoregressive Procedures

Computer Simulates the Effect of Internal Restriction on Residuals in Linear Regression Model with First-order Autoregressive Procedures MPRA Munich Personal RePEc Archive Compuer Simulaes he Effec of Inernal Resricion on Residuals in Linear Regression Model wih Firs-order Auoregressive Procedures Mei-Yu Lee Deparmen of Applied Finance,

More information

y = β 1 + β 2 x (11.1.1)

y = β 1 + β 2 x (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β 1 + β x (11.1.1) o explain household expendiure on food (y) as a funcion of household income (x).

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out.

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out. Chaper The Derivaive Applie Calculus 107 Secion 4: Prouc an Quoien Rules The basic rules will le us ackle simple funcions. Bu wha happens if we nee he erivaive of a combinaion of hese funcions? Eample

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis Inernaional Economeric Review (IER) Choice of Specral Densiy Esimaor in Ng-Perron Tes: A Comparaive Analysis Muhammad Irfan Malik and Aiq-ur-Rehman Inernaional Islamic Universiy Islamabad and Inernaional

More information

Lecture 6 - Testing Restrictions on the Disturbance Process (References Sections 2.7 and 2.10, Hayashi)

Lecture 6 - Testing Restrictions on the Disturbance Process (References Sections 2.7 and 2.10, Hayashi) Lecure 6 - esing Resricions on he Disurbance Process (References Secions 2.7 an 2.0, Hayashi) We have eveloe sufficien coniions for he consisency an asymoic normaliy of he OLS esimaor ha allow for coniionally

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business THE UNIVERITY OF TEXA AT AUTIN McCombs chool of Business TA 7.5 Tom hively CLAICAL EAONAL DECOMPOITION - MULTIPLICATIVE MODEL Examples of easonaliy 8000 Quarerly sales for Wal-Mar for quarers a l e s 6000

More information