Inertial Navigation and Various Applications of Inertial Data. Yongcai Wang. 9 November 2016

Size: px
Start display at page:

Download "Inertial Navigation and Various Applications of Inertial Data. Yongcai Wang. 9 November 2016"

Transcription

1 Inertial Navigation and Various Applications of Inertial Data Yongcai Wang 9 November 2016

2 Types of Gyroscope Mechanical Gyroscope Laser Gyroscope Sagnac Effect

3 Stable Platform IMU and Strapdown IMU In Stable platform, the inertial sensors are mounted on a platform which is isolated from any external rotational motion, returning readings in global frame. In strapdown systems the inertial sensors are mounted rigidly onto the device, returning readings in body frame.

4 Types of Gyroscopes: MEMS Coriolis force F=2mv*w

5 Accuracy Comparison GG1320AN (Laser) MPU6050 (MEMS) Size 88*88*45 5*5*5 Power 1.6Watt 5V, 3.6mA Angular random walk o / h <0.2 Bias stability o / h <70 o / Price > o / h h

6 Inertial Navigation System

7 Inertial Navigation Systems Gyroscope provides angle velocity in body frame Accelerometer provides acceleration in body frame 1. Pose Update 2. Calculate linear ACC 3. Update velocity Gravity g 4. Update position

8 Outline Pose update method Velocity and position update Error correction Step segmentation Pedestrian dead reckoning

9 Coordinate Frame Rotating Skew Symmetric matrix ω= x y z Angular velocity: ( ω, ω, ω ) The derivative of a time-varying rotation matrix: 0 wz wy S( ω) = wz 0 w wy wx 0 x

10 Coordinate Frame Rotating By first order Taylor explanation T δts( ω) = Rt ( + δ t) Rt () I 33 How the rotation matrix change according to the angular rate Derivate the angular change from the rotation matrix How to derive the angular change from the rotation matrix

11 Continuous Rotation Infinitesimal Rotating is Commutive R xyz =rotx(0.001)*roty(0.002)*rotz(0.003) R yxz =roty(0.002)*rotx(0.002)*rotz(0.003) R xyz =R yxz Recovery of the infinitesimal rotation angle vex(r xyz )=vex(r yxz ) =(0.001, 0.002, 0.003) Difference between two infinitesimally poses Incremental displacement Incremental rotation

12 1. Pose update (1) 1. Pose update by first order Taylor approximation: 2. Pose update by higher order approximation: Let When is small:

13 1. Pose update (2) Let, it is easy to verify that

14 Orthogonarize and Normalization R(t) may becomes not orthonormal If the added term is small, the result will be close to orthonormal and we can straighten it up Normalization should be carried out after each step of integration

15 2. Pose Update by Quaternions It become easier when using unit-quaternions. The derivative of q: Integration of quaternion rate: Normalization

16 3. Velocity and Location Update Convert the acceleration to global frame Exclude the gravity Double integral to calculate velocity and position

17 MEMS gyroscope error sources bias Random noise calibration Temperature effects

18 INS Example

19 INS Error Correction Using external measurements to correct the states of IMU. Zero Velocity Update (ZUPT) GPS, Other locating system Using a Kalman Filter to correct an INS based on external measurements. Tracking full state of INS (openshoe) Tracking state error of INS

20 INS Error Correction The true state of an IMU at time t The solution calculated by INS The error state = ( Φ,, ) T T T T gx gy gz xt t vt p t in which δφ t = ( δφt, δφt, δφt ) δ δ δ δ Relation of Error state and IMU State: R = Φ Rˆ t t t v = vˆ + δ v t t t p = pˆ + δ p t t t 1 δφ δφ gz gy t t gz gx t δφt 1 δφt gy gx δφt δφt 1 Φ =

21 INS Error Correction by KF External measurement Estimated State Prediction Error State Correction ( T T T) δx = δφ, δv, δp t t t t T R = Φ Rˆ t t t v = vˆ + δ v t t t p = pˆ + δ p t t t INS System Reset δ x t to zero Working in parallel, without much changing to the INS system

22 Error State Prediction State transition matrix I 0 0 g Ft = δtsa ( t ) I 0 0 δti I where gz 0 at at Sa ( t ) = at 0 at gy gx at at 0 Error State Prediction gz g gz gx δxˆ ˆ t = Ftδxt δ t T P = FP F + Q t t t δ t t t Eric Foxlin Founder of intersense Oliver Woodman In Google Android group [1] Pedestrian tracking with shoe-mounted inertial sensors, E. Foxlin 2005, IEEE computer graphics and applications. [2] Pedestrian localisation for indoor environments, Oliver Woodman, 2010, PhD thesis, Cambridge university

23 Error State Prediction Q t Tt 0 0 = 0 Ut The noise item in state prediction ( ) T ( ) 2 T = δt Rˆ W Rˆ W t t t t t bx 2 ( σ ) 0 0 w by 2 = 0 ( σ w ) 0 bz ( σ w ) Representing noises of gyroscope ( ) T ( ) 2 U = δt Rˆ A Rˆ t t t t A t bx 2 ( σ ) 0 0 a by 2 = 0 ( σ a ) 0 bz ( σ a ) Representing noises of accelerometer

24 Error State Correction External measurement In a simple test by keeping the IMU on table ZUPT Ultrasound z = h( x ) + v t t t t h( x ) = v t t t Error State Correction H t ht( xt) = x xˆ K= PH ( HPH + R) t T T 1 t t t t t t t δ xˆ = K ( z h( xˆ )) t t t t t P= ( I KH) P t t t t Ht = ( 0, I,0) R t 2 σ σ 2 = 2 σ

25 KF-based correction vs. naïve correction

26 Pedestrian Dead Reckoning Zero Velocity detection: ZUPT ZUPT Estimated State Prediction Error State Correction T T T ( ) δx = δφ, δv, δp t t t t T R = Φ Rˆ t t t v = vˆ + δ v t t t p = pˆ + δ p t t t Reset δ x t to zero INS System

27 Step Segmentation In practice few systems or applications require updates at such a high frequency. Step events need to be detected for collaborating with other filtering algorithms. Parameterize a step event by: e = ( l, δ z, δθ, ξ ) Step length t t t t t Height change Heading change Offset between heading and step direction

28 Step Segmentation: PDR filter Step events are generated at the end of each stance phase.

29 INS vs. PDR Filter

30 Some Evaluation Results in [2]

31 2.5D view

32 Other Related works Using particle filters to correct PDR using map constraints [woodman 2010]. Using magnetometers to correct PDR [zhou 2014, mobicom] Using WiFi radiomap to correct PDR [Miyazaki 2014, Ubicomp]

33 Other cognitive problems using IMU State recognition

34 Activities

35 Process of Activity Recogonition

36 Data collection

37 Preprocessing

38 Time domain Feature Extraction

39 Frequency domain features

40 Classification Base-level Classification Meta-level Classification

41 Base level classifier Decision Tree Decision Table K-Nearest Neighbor(KNN) Hidden Markov Model(HMM) Support Vector Machine(SVM) Naïve Bayes, Artificial Neural Networks, Gaussian Mixture Model, etc

42 Voting Meta-level classifier Each base level classifier gives a vote, the class label receiving the most votes is the final decision. Stacking Learning algorithm to learn how to combine the predictions of the base-level classifiers. Cascading Iterative process to combine base-level classifiers. Sub-optimal compare to others

43 Applications Calorie consumption estimation Fall detection Daily life logging Sport training Gait analysis for healthcare

44 Cognitive problems using IMU Arm tracking by smart watch 5DOF model of Arm [3] I am a Smartwatch and I can Track my User s S. Shen, Mobicom 2016

45 Arm tracking by smart watch Point cloud model of elbow and whist

46 Home Work 1. Develop an PDR filter (Step Segmentation) based on the openshoe project. Compare the tracking accuracy of Step-based and INS-based Test the algorithms using self-collected IMU data traces.

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors GRASP Laboratory University of Pennsylvania June 6, 06 Outline Motivation Motivation 3 Problem

More information

Inertial Odometry on Handheld Smartphones

Inertial Odometry on Handheld Smartphones Inertial Odometry on Handheld Smartphones Arno Solin 1 Santiago Cortés 1 Esa Rahtu 2 Juho Kannala 1 1 Aalto University 2 Tampere University of Technology 21st International Conference on Information Fusion

More information

Locating and supervising relief forces in buildings without the use of infrastructure

Locating and supervising relief forces in buildings without the use of infrastructure Locating and supervising relief forces in buildings without the use of infrastructure Tracking of position with low-cost inertial sensors Martin Trächtler 17.10.2014 18th Leibniz Conference of advanced

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Calibration of a magnetometer in combination with inertial sensors

Calibration of a magnetometer in combination with inertial sensors Calibration of a magnetometer in combination with inertial sensors Manon Kok, Linköping University, Sweden Joint work with: Thomas Schön, Uppsala University, Sweden Jeroen Hol, Xsens Technologies, the

More information

Unscented Kalman filter and Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning

Unscented Kalman filter and Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning Unscented Kalman filter and Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning Francisco Zampella, Mohammed Khider, Patrick Robertson and Antonio Jiménez Centre for Automation

More information

Sensors for mobile robots

Sensors for mobile robots ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 2 Sensors for mobile robots Sensors are used to perceive, analyze and understand the environment

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Outline Introduction IMU model and Camera-IMU system Different paradigms Filtering Maximum a posteriori estimation Fix-lag smoothing 2 What is an IMU?

More information

Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation

Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation Andrew R. Spielvogel and Louis L. Whitcomb Abstract Six-degree

More information

Unscented Kalman filter and Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning

Unscented Kalman filter and Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning Submitted to the 212 IEEE/ION Position, Location and Navigation Symposium Unscented Kalman filter and Magnetic Angular Rate Update (MARU) for an improved Pedestrian Dead-Reckoning Francisco Zampella, Mohammed

More information

Application of state observers in attitude estimation using low-cost sensors

Application of state observers in attitude estimation using low-cost sensors Application of state observers in attitude estimation using low-cost sensors Martin Řezáč Czech Technical University in Prague, Czech Republic March 26, 212 Introduction motivation for inertial estimation

More information

A Novel Kalman Filter with State Constraint Approach for the Integration of Multiple Pedestrian Navigation Systems

A Novel Kalman Filter with State Constraint Approach for the Integration of Multiple Pedestrian Navigation Systems Micromachines 21, 6, 926-92; doi:1.339/mi67926 Article OPEN ACCESS micromachines ISSN 272-666X www.mdpi.com/journal/micromachines A Novel Kalman Filter with State Constraint Approach for the Integration

More information

Attitude Estimation Version 1.0

Attitude Estimation Version 1.0 Attitude Estimation Version 1. Francesco Farina May 23, 216 Contents 1 Introduction 2 2 Mathematical background 2 2.1 Reference frames and coordinate systems............. 2 2.2 Euler angles..............................

More information

Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents

Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents Navtech Part #2440 Preface Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents Chapter 1. Introduction...... 1 I. Forces Producing Motion.... 1 A. Gravitation......

More information

Attitude Estimation for Augmented Reality with Smartphones

Attitude Estimation for Augmented Reality with Smartphones Attitude Estimation for Augmented Reality with Smartphones Thibaud Michel Pierre Genevès Hassen Fourati Nabil Layaïda Université Grenoble Alpes, INRIA LIG, GIPSA-Lab, CNRS June 13 th, 2017 http://tyrex.inria.fr/mobile/benchmarks-attitude

More information

EE 565: Position, Navigation, and Timing

EE 565: Position, Navigation, and Timing EE 565: Position, Navigation, and Timing Kalman Filtering Example Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder

More information

Tracking for VR and AR

Tracking for VR and AR Tracking for VR and AR Hakan Bilen November 17, 2017 Computer Graphics University of Edinburgh Slide credits: Gordon Wetzstein and Steven M. La Valle 1 Overview VR and AR Inertial Sensors Gyroscopes Accelerometers

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Aided INS Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical and Computer

More information

Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System Abstract and Applied Analysis Volume 213, Article ID 359675, 7 pages http://dx.doi.org/1.1155/213/359675 Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of

More information

System identification and sensor fusion in dynamical systems. Thomas Schön Division of Systems and Control, Uppsala University, Sweden.

System identification and sensor fusion in dynamical systems. Thomas Schön Division of Systems and Control, Uppsala University, Sweden. System identification and sensor fusion in dynamical systems Thomas Schön Division of Systems and Control, Uppsala University, Sweden. The system identification and sensor fusion problem Inertial sensors

More information

Mobile Robots Localization

Mobile Robots Localization Mobile Robots Localization Institute for Software Technology 1 Today s Agenda Motivation for Localization Odometry Odometry Calibration Error Model 2 Robotics is Easy control behavior perception modelling

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Inertial Measurement Unit Dr. Kostas Alexis (CSE) Where am I? What is my environment? Robots use multiple sensors to understand where they are and how their environment

More information

Terrain Navigation Using the Ambient Magnetic Field as a Map

Terrain Navigation Using the Ambient Magnetic Field as a Map Terrain Navigation Using the Ambient Magnetic Field as a Map Aalto University IndoorAtlas Ltd. August 30, 017 In collaboration with M. Kok, N. Wahlström, T. B. Schön, J. Kannala, E. Rahtu, and S. Särkkä

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: Midterm Preparation Dr. Kostas Alexis (CSE) Areas of Focus Coordinate system transformations (CST) MAV Dynamics (MAVD) Navigation Sensors (NS) State Estimation

More information

Smartphone sensor based orientation determination for indoor navigation

Smartphone sensor based orientation determination for indoor navigation Smartphone sensor based orientation determination for indoor naviation LBS Conference 15.11.2016 Andreas Ettliner Research Group Enineerin Geodesy Contact: andreas.ettliner@tuwien.ac.at Outline Motivation

More information

Sensor Aided Inertial Navigation Systems

Sensor Aided Inertial Navigation Systems Arvind Ramanandan Department of Electrical Engineering University of California, Riverside Riverside, CA 92507 April, 28th 2011 Acknowledgements: 1 Prof. Jay A. Farrell 2 Anning Chen 3 Anh Vu 4 Prof. Matthew

More information

Motion Locus Analysis to Detect Rotation

Motion Locus Analysis to Detect Rotation International Journal of Information and Electronics Engineering, Vol. 7, No. 6, November 07 Motion Locus Analysis to Detect Rotation Toshiki Iso Abstract For mobile applications such as command interfaces

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Sensor Technology Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical

More information

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Oscar De Silva, George K.I. Mann and Raymond G. Gosine Faculty of Engineering and Applied Sciences, Memorial

More information

Accuracy Evaluation Method of Stable Platform Inertial Navigation System Based on Quantum Neural Network

Accuracy Evaluation Method of Stable Platform Inertial Navigation System Based on Quantum Neural Network Accuracy Evaluation Method of Stable Platform Inertial Navigation System Based on Quantum Neural Network Chao Huang*, Guoxing Yi, Qingshuang Zen ABSTRACT This paper aims to reduce the structural complexity

More information

A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications

A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications ISAAC SKOG Master of Science Thesis Stockholm, Sweden 2005-03-09 IR-SB-EX-0506 1 Abstract In this report an approach for integration

More information

Fundamentals of attitude Estimation

Fundamentals of attitude Estimation Fundamentals of attitude Estimation Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Basically an IMU can used for two

More information

IMU and Magnetometer Modeling for Smartphone-based PDR

IMU and Magnetometer Modeling for Smartphone-based PDR IMU and Magnetometer Modeling for Smartphone-based PDR Roland Hostettler and Simo Särkkä This is a post-print of a paper published in 16 7th International Conference on Indoor Positioning and Indoor Navigation.

More information

VN-100 Velocity Compensation

VN-100 Velocity Compensation VN-100 Velocity Compensation Velocity / Airspeed Aiding for AHRS Applications Application Note Abstract This application note describes how the VN-100 can be used in non-stationary applications which require

More information

On the Observability and Self-Calibration of Visual-Inertial Navigation Systems

On the Observability and Self-Calibration of Visual-Inertial Navigation Systems Center for Robotics and Embedded Systems University of Southern California Technical Report CRES-08-005 R B TIC EMBEDDED SYSTEMS LABORATORY On the Observability and Self-Calibration of Visual-Inertial

More information

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle Clément ROUSSEL PhD - Student (L2G - Le Mans - FRANCE) April 17, 2015 Clément ROUSSEL ISPRS / CIPA Workshop April 17, 2015

More information

Arrow Brasil. Rodrigo Rodrigues Field Application Engineer F: Date: 30/01/2014 TM 2

Arrow Brasil. Rodrigo Rodrigues Field Application Engineer F: Date: 30/01/2014 TM 2 TM Arrow Brasil Rodrigo Rodrigues Field Application Engineer Rodrigo.rodrigues@arrowbrasil.com.br F:+55 11 3613-9331 Date: 30/01/2014 TM 2 State-of-the-art review Introduction How a Gyro Works Performance

More information

Discussions on multi-sensor Hidden Markov Model for human motion identification

Discussions on multi-sensor Hidden Markov Model for human motion identification Acta Technica 62 No. 3A/2017, 163 172 c 2017 Institute of Thermomechanics CAS, v.v.i. Discussions on multi-sensor Hidden Markov Model for human motion identification Nan Yu 1 Abstract. Based on acceleration

More information

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation Kevin Ecenhoff - ec@udel.edu Patric Geneva - pgeneva@udel.edu Guoquan Huang - ghuang@udel.edu Department of Mechanical Engineering

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Sensor Technology Stephen Bruder 1 Aly El-Osery 2 1 Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA 2 Electrical

More information

Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes

Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes Author manuscript, published in "European Control Conference ECC (214" Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes Aida

More information

Presenter: Siu Ho (4 th year, Doctor of Engineering) Other authors: Dr Andy Kerr, Dr Avril Thomson

Presenter: Siu Ho (4 th year, Doctor of Engineering) Other authors: Dr Andy Kerr, Dr Avril Thomson The development and evaluation of a sensor-fusion and adaptive algorithm for detecting real-time upper-trunk kinematics, phases and timing of the sit-to-stand movements in stroke survivors Presenter: Siu

More information

Inertial navigation for divers

Inertial navigation for divers Inertial navigation for divers Problem presented by Nick Bushell VR Technology Executive Summary A SCUBA diver would like to know his/her position underwater, relative to the dive start position. GPS is

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Learning Methods for Linear Detectors

Learning Methods for Linear Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2011/2012 Lesson 20 27 April 2012 Contents Learning Methods for Linear Detectors Learning Linear Detectors...2

More information

Context-based Reasoning in Ambient Intelligence - CoReAmI -

Context-based Reasoning in Ambient Intelligence - CoReAmI - Context-based in Ambient Intelligence - CoReAmI - Hristijan Gjoreski Department of Intelligent Systems, Jožef Stefan Institute Supervisor: Prof. Dr. Matjaž Gams Co-supervisor: Dr. Mitja Luštrek Background

More information

Movement Classification based on inertial sensor data

Movement Classification based on inertial sensor data Movement Classification based on inertial sensor data Bewegungsklassifikation auf Basis von Inertialsensoren Marcus Bocksch / Jasper Jahn / Jochen Seitz Fraunhofer IIS Motivation What is happening? 18.09.2013

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Dead Reckoning navigation (DR navigation)

Dead Reckoning navigation (DR navigation) Dead Reckoning navigation (DR navigation) Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai A Navigation which uses a Inertial

More information

EE565:Mobile Robotics Lecture 6

EE565:Mobile Robotics Lecture 6 EE565:Mobile Robotics Lecture 6 Welcome Dr. Ahmad Kamal Nasir Announcement Mid-Term Examination # 1 (25%) Understand basic wheel robot kinematics, common mobile robot sensors and actuators knowledge. Understand

More information

Using the Kalman Filter for SLAM AIMS 2015

Using the Kalman Filter for SLAM AIMS 2015 Using the Kalman Filter for SLAM AIMS 2015 Contents Trivial Kinematics Rapid sweep over localisation and mapping (components of SLAM) Basic EKF Feature Based SLAM Feature types and representations Implementation

More information

In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-static States

In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-static States In Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-static States Ashutosh Saxena 1, Gaurav Gupta 2, Vadim Gerasimov 3,andSébastien Ourselin 2 1 Department of Electrical Engineering,

More information

ONR Mine Warfare Autonomy Virtual Program Review September 7, 2017

ONR Mine Warfare Autonomy Virtual Program Review September 7, 2017 ONR Mine Warfare Autonomy Virtual Program Review September 7, 2017 Information-driven Guidance and Control for Adaptive Target Detection and Classification Silvia Ferrari Pingping Zhu and Bo Fu Mechanical

More information

Baro-INS Integration with Kalman Filter

Baro-INS Integration with Kalman Filter Baro-INS Integration with Kalman Filter Vivek Dadu c,b.venugopal Reddy a, Brajnish Sitara a, R.S.Chandrasekhar a & G.Satheesh Reddy a c Hindustan Aeronautics Ltd, Korwa, India. a Research Centre Imarat,

More information

Quaternion based Extended Kalman Filter

Quaternion based Extended Kalman Filter Quaternion based Extended Kalman Filter, Sergio Montenegro About this lecture General introduction to rotations and quaternions. Introduction to Kalman Filter for Attitude Estimation How to implement and

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Switch Mechanism Diagnosis using a Pattern Recognition Approach

Switch Mechanism Diagnosis using a Pattern Recognition Approach The 4th IET International Conference on Railway Condition Monitoring RCM 2008 Switch Mechanism Diagnosis using a Pattern Recognition Approach F. Chamroukhi, A. Samé, P. Aknin The French National Institute

More information

Linear Classifiers as Pattern Detectors

Linear Classifiers as Pattern Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2013/2014 Lesson 18 23 April 2014 Contents Linear Classifiers as Pattern Detectors Notation...2 Linear

More information

NAWCWPNS TM 8128 CONTENTS. Introduction Two-Dimensinal Motion Three-Dimensional Motion Nonrotating Spherical Earth...

NAWCWPNS TM 8128 CONTENTS. Introduction Two-Dimensinal Motion Three-Dimensional Motion Nonrotating Spherical Earth... CONTENTS Introduction... 3 Two-Dimensinal Motion... 3 Three-Dimensional Motion... 5 Nonrotating Spherical Earth...10 Rotating Spherical Earth...12 WGS84...14 Conclusion...14 Appendixes: A. Kalman Filter...15

More information

Attitude Estimation for Indoor Navigation and Augmented Reality with Smartphones

Attitude Estimation for Indoor Navigation and Augmented Reality with Smartphones Attitude Estimation for Indoor Navigation and Augmented Reality with Smartphones Thibaud Michel, Pierre Genevès, Hassen Fourati, Nabil Layaïda To cite this version: Thibaud Michel, Pierre Genevès, Hassen

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Lecture. Aided INS EE 570: Location and Navigation. 1 Overview. 1.1 ECEF as and Example. 1.2 Inertial Measurements

Lecture. Aided INS EE 570: Location and Navigation. 1 Overview. 1.1 ECEF as and Example. 1.2 Inertial Measurements Lecture Aided EE 570: Location and Navigation Lecture Notes Update on April 13, 2016 Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech In collaoration with Stephen Bruder,

More information

Research Article Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas

Research Article Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas Journal of Sensors Volume 213, Article ID 1979, 1 pages http://dx.doi.org/1.1155/213/1979 Research Article Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas Abdelrahman Ali and Naser

More information

DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE ICT International Doctoral School

DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE ICT International Doctoral School DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE ICT International Doctoral School Indoor Localization of Wheeled Robots using Multi-sensor Data Fusion with Event-based Measurements Payam Nazemzadeh

More information

Biometrics: Introduction and Examples. Raymond Veldhuis

Biometrics: Introduction and Examples. Raymond Veldhuis Biometrics: Introduction and Examples Raymond Veldhuis 1 Overview Biometric recognition Face recognition Challenges Transparent face recognition Large-scale identification Watch list Anonymous biometrics

More information

A Novel Activity Detection Method

A Novel Activity Detection Method A Novel Activity Detection Method Gismy George P.G. Student, Department of ECE, Ilahia College of,muvattupuzha, Kerala, India ABSTRACT: This paper presents an approach for activity state recognition of

More information

IMU Filter. Michael Asher Emmanuel Malikides November 5, 2011

IMU Filter. Michael Asher Emmanuel Malikides November 5, 2011 IMU Filter Michael Asher Emmanuel Malikides November 5, 2011 Abstract Despite the ubiquitousness of GPS devices, on board inertial navigation remains important. An IMU like the Sparkfun Ultimate IMU used,

More information

The Research of Tight MINS/GPS Integrated navigation System Based Upon Date Fusion

The Research of Tight MINS/GPS Integrated navigation System Based Upon Date Fusion International Conference on Computer and Information echnology Application (ICCIA 016) he Research of ight MINS/GPS Integrated navigation System Based Upon Date Fusion ao YAN1,a, Kai LIU1,b and ua CE1,c

More information

Characterization of low-cost Accelerometers for Use in a Local Positioning System

Characterization of low-cost Accelerometers for Use in a Local Positioning System Characterization of low-cost Accelerometers for Use in a Local Positioning System Morten Stakkeland Master Thesis Department of Physics University of Oslo 31. July 2003 Acknowledgements... i Mathematical

More information

Using a Kinetic Model of Human Gait in Personal Navigation Systems

Using a Kinetic Model of Human Gait in Personal Navigation Systems Using a Kinetic Model of Human Gait in Personal Navigation ystems Demoz Gebre-Egziabher Department of Aerospace Engineering and Mechanics University of Minnesota, win Cities file:///c:/users/demoz/documents/projects/border/personal_navigation/presentations/ufts_march_2010/quad-firefighter-positioning-ystem.jpg

More information

An Adaptive Filter for a Small Attitude and Heading Reference System Using Low Cost Sensors

An Adaptive Filter for a Small Attitude and Heading Reference System Using Low Cost Sensors An Adaptive Filter for a Small Attitude and eading Reference System Using Low Cost Sensors Tongyue Gao *, Chuntao Shen, Zhenbang Gong, Jinjun Rao, and Jun Luo Department of Precision Mechanical Engineering

More information

Linear Classifiers as Pattern Detectors

Linear Classifiers as Pattern Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2014/2015 Lesson 16 8 April 2015 Contents Linear Classifiers as Pattern Detectors Notation...2 Linear

More information

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data 0. Notations Myungjun Choi, Yonghyun Ro, Han Lee N = number of states in the model T = length of observation sequence

More information

Attitude Determination System of Small Satellite

Attitude Determination System of Small Satellite Attitude Determination System of Small Satellite Satellite Research Centre Jiun Wei Chia, M. Sheral Crescent Tissera and Kay-Soon Low School of EEE, Nanyang Technological University, Singapore 24 th October

More information

Calibration of a magnetometer in combination with inertial sensors

Calibration of a magnetometer in combination with inertial sensors Calibration of a magnetometer in combination with inertial sensors Manon Kok, Jeroen D. Hol, Thomas B. Schön, Fredrik Gustafsson and Henk Luinge Division of Automatic Control Linköping University, Sweden

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Uncertainty representation Localization Chapter 5 (textbook) What is the course about?

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Application of Data Fusion to Aerial Robotics. Paul Riseborough March 24, 2015

Application of Data Fusion to Aerial Robotics. Paul Riseborough March 24, 2015 Application of Data Fusion to Aerial Robotics Paul Riseborough March 24, 2015 Outline Introduction to APM project What is data fusion and why do we use it? Where is data fusion used in APM? Development

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

Stochastic Cloning: A generalized framework for processing relative state measurements

Stochastic Cloning: A generalized framework for processing relative state measurements Stochastic Cloning: A generalized framework for processing relative state measurements Stergios I. Roumeliotis and Joel W. Burdick Division of Engineering and Applied Science California Institute of Technology,

More information

Greg Welch and Gary Bishop. University of North Carolina at Chapel Hill Department of Computer Science.

Greg Welch and Gary Bishop. University of North Carolina at Chapel Hill Department of Computer Science. STC Lecture Series An Introduction to the Kalman Filter Greg Welch and Gary Bishop University of North Carolina at Chapel Hill Department of Computer Science http://www.cs.unc.edu/~welch/kalmanlinks.html

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Lecture 9: Modeling and motion models

Lecture 9: Modeling and motion models Sensor Fusion, 2014 Lecture 9: 1 Lecture 9: Modeling and motion models Whiteboard: Principles and some examples. Slides: Sampling formulas. Noise models. Standard motion models. Position as integrated

More information

Hong Yu An algorithm to detect zero-velocity in automobiles using accelerometer signals Master of Science Thesis

Hong Yu An algorithm to detect zero-velocity in automobiles using accelerometer signals Master of Science Thesis TAMPERE UNIVERSITY OF TECHNOLOGY International Master s Degree Programme in Science and Bioengineering Hong Yu An algorithm to detect zero-velocity in automobiles using accelerometer signals Master of

More information

A Study of the Effects of Stochastic Inertial Sensor Errors. in Dead-Reckoning Navigation

A Study of the Effects of Stochastic Inertial Sensor Errors. in Dead-Reckoning Navigation A Study of the Effects of Stochastic Inertial Sensor Errors in Dead-Reckoning Navigation Except where reference is made to the work of others, the work described in this thesis is my own or was done in

More information

Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes

Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes Aida Mani, Hassen Fourati, Alain Kibangou To cite this version: Aida Mani, Hassen

More information

Adaptive Kalman Filter for Orientation Estimation in Micro-sensor Motion Capture

Adaptive Kalman Filter for Orientation Estimation in Micro-sensor Motion Capture 14th International Conference on Information Fusion Chicago, Illinois, USA, July 5-8, 211 Adaptive Kalman Filter for Orientation Estimation in Micro-sensor Motion Capture Shuyan Sun 1,2, Xiaoli Meng 1,2,

More information

A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors Sensors 25, 5, 778-7727; doi:.339/s54778 Article OPEN ACCESS sensors ISSN 424-822 www.mdpi.com/journal/sensors A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial

More information

Czech Technical University in Prague. Faculty of Electrical Engineering Department of control Engineering. Diploma Thesis

Czech Technical University in Prague. Faculty of Electrical Engineering Department of control Engineering. Diploma Thesis Czech Technical University in Prague Faculty of Electrical Engineering Department of control Engineering Diploma Thesis Performance comparison of Extended and Unscented Kalman Filter implementation in

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Design of Adaptive Filtering Algorithm for Relative Navigation

Design of Adaptive Filtering Algorithm for Relative Navigation Design of Adaptive Filtering Algorithm for Relative Navigation Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sung Jin Kang, Sebum Chun, and Hyung Keun Lee Abstract Recently, relative navigation

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

Gradient Sampling for Improved Action Selection and Path Synthesis

Gradient Sampling for Improved Action Selection and Path Synthesis Gradient Sampling for Improved Action Selection and Path Synthesis Ian M. Mitchell Department of Computer Science The University of British Columbia November 2016 mitchell@cs.ubc.ca http://www.cs.ubc.ca/~mitchell

More information

Adaptive Two-Stage EKF for INS-GPS Loosely Coupled System with Unknown Fault Bias

Adaptive Two-Stage EKF for INS-GPS Loosely Coupled System with Unknown Fault Bias Journal of Gloal Positioning Systems (26 Vol. 5 No. -2:62-69 Adaptive wo-stage EKF for INS-GPS Loosely Coupled System with Unnown Fault Bias Kwang Hoon Kim Jang Gyu Lee School of Electrical Engineering

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Pose tracking of magnetic objects

Pose tracking of magnetic objects Pose tracking of magnetic objects Niklas Wahlström Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 niklas.wahlstrom@it.uu.se Seminar Vi2 Short about me 2005-2010: Applied

More information

Static temperature analysis and compensation of MEMS gyroscopes

Static temperature analysis and compensation of MEMS gyroscopes Int. J. Metrol. Qual. Eng. 4, 209 214 (2013) c EDP Sciences 2014 DOI: 10.1051/ijmqe/2013059 Static temperature analysis and compensation of MEMS gyroscopes Q.J. Tang 1,2,X.J.Wang 1,Q.P.Yang 2,andC.Z.Liu

More information

HUMAN ACTIVITY RECOGNITION FROM ACCELEROMETER AND GYROSCOPE DATA

HUMAN ACTIVITY RECOGNITION FROM ACCELEROMETER AND GYROSCOPE DATA HUMAN ACTIVITY RECOGNITION FROM ACCELEROMETER AND GYROSCOPE DATA Jafet Morales University of Texas at San Antonio 8/8/2013 HUMAN ACTIVITY RECOGNITION (HAR) My goal is to recognize low level activities,

More information