Today s s Agenda. Lunch Sam Hund s Computational Presentation The Web Site Subversion Repository. Sangria Project

Size: px
Start display at page:

Download "Today s s Agenda. Lunch Sam Hund s Computational Presentation The Web Site Subversion Repository. Sangria Project"

Transcription

1 Today s s Agenda Lunch Sam Hund s Computational Presentation The Web Site Subversion Repository

2 A Multi-Physics Approach for Predicting Platelet-Mediated Thrombosis for the Evaluation and Design of Medical Devices Samuel J. Hund James F. Antaki, PhD, CMU Biomedical Engineering June 4 th, 2010

3 Motivation

4 THROMBOSIS

5 Intricacies of Thrombosis Injured Vessel Intrinsic Activation Foreign Surface Hemolysis HMWK FV, FXI Activation vwf binding Thrombin Extrinsic Activation (TF) Coagulation Cascade fg Repair Fibrinolysis PDGF Thrombus Fluid Shear Stress ADP vwf TxA2 PAF

6 Brief Review of My Work Computational Modeling of Blood Rheological Modeling Modeling of Hemolysis Modeling of Thrombosis Computational Optimization

7 Modified Krieger Model of Blood Viscosity Modified Krieger Model η wb = η pl φ 1 φ * N ( & γ, φ ) Quemada s Model 14 Parameters 1 or 3 discontinuities 10 Parameters No discontinuities

8 1000 Viscosity (cp) * * * Aggregation * * * Viscosity Function N = N agg +N def +N N=N def +N N=N * * * * * * * Experimental Data Whole Blood Blood w/o Fg Hardened Blood w/o Fg Deformation * * * * ,000 Shear Rate (s -1 )

9 Fahraeus-Lindqvist Effect Apparent viscosity (cp) * * * o o * o * * o o o * Data from Haynes, 1960 o Model Prediction * 1.4 o Tube Radius (mm)

10 RBC Transport

11 Platelet Concentration (x 1000/μl) 1500 Hematocrit (V/V) How do we predict the RBC concentration profile? Radial Position (cm) Goldsmith and Spain, 1984 Aarts et al, 1988

12 Part 1: Transport Down a Collision Gradient Directional Transport Velocity Small Velocity Difference Large Velocity Difference Net Transport

13 Part 2: Transport Down a Resistance Gradient Directional Transport Velocity High Resistance Low Resistance Viscosity Net Transport

14 Fluid Model Du ρ Dt = p + ) [ η(γ &, Hct ( u + u T )] BLOOD

15 Steady State Prediction of RBC Concentration Hematocrit

16 Temporal Profile Development Height (microns) Time Normalized Hematocrit

17 Plasma Skimming Uniform Inlet 0.5 Profile Develops Flow Division Hematocrit Palmer

18 Platelet Transport

19 Platelet Concentration (x 1000/μl) 1500 Hematocrit (V/V) Transport of RBCs and Plts in Microchannels Radial Position (cm) Goldsmith and Spain, 1984 Aarts et al, 1988

20 Theory of RBC-enhanced Platelet Exclusion Isotropic Diffusion Directional Transport

21 Extended Convection-Diffusion iffusion Model High-Concentration Solution C1s C1m Membrane Low-Concentration Solution C2s C2m C C 1s 2s = = ψ ψ C C 1m 2m

22 Empirical Results Sorensen Enhanced Diffusivity Model Enhanced Convection- Diffusion Model

23 Height (μm) 0 sec 50 sec 100 sec 150 sec 200 sec 250 sec 300 sec [Plt]/[Plt] ave

24 Prediction of Margination in Tube Flow Platelet Concentration (1000 plt/μl) [Plt] 50,000 plt/μl 120,000 plt/μl 250,000 plt/μl 500,000 plt/μl Aarts et al ECD Radial Distance (mm)

25 Hemolysis (Cell Trauma)

26 [ [ pfhb Hb pfhb Hb ] ] = = Hemolysis Modeling Richardson s Model (from Theory) Parameter A A α β Aηγ& A' α τ 2 t t 1 β + 1 = Power-Law Model A τ η Value +/- 95%CI (6.9+/-1.2)e 1.2)e-8 (4.07+/-1.39)e 1.39)e / t Is β+1 significantly different from 1? No p-value p = 0.42 Is α significantly different from 2? No p-value p = The over-all power-law model is actually significantly better than the Richardson model (p value ), but there is no confidence in the parameter β RMS Values: Richardson Model: Power-Law Model:

27 Prediction of Hemolysis in a Blood Shearing Device Exposure Time: Index of Hemolysis (%) Shear Stress (dyn/cm 2 )

28 ADP Release from RBCs ADP (μm) Data from Alkhamis et al Best Fit Proportional Line PROPORTIONAL MODEL Slope: / μm/mg% R2: pfhb (mg%) d [ ADP] d[ pfhb] = α dt dt Hemolysis can directly lead to platelet activation through the release of ADP ADP is an often neglected factor in shear induce platelet activation.

29 Hemolysis in a Nozzle

30 Early Predictions

31 New Predictors

32

33 Device Design

34 Cannula Simulation Asysimmetric, Laminar Flow Newtonian Flow Flow Rate: Q = 6 lpm

35 Platelet Activation in Various 375% increase Cannula Tips 40% increase 215% increase Blunt Tip QVC Blunt Tip

36 Flow Deviation Angle φ Comparative Index 14,

37 Stagnation Area skip

38

39

40 HemoGlide Bearing Strut Optimization Degrees of Freedom Moving Bezier Point Fixed Bezier Point Maximum Thickness Distance to Max Thickness Chord Length 40

41 Preliminary Results 41

42 Mathematical Model of (Platelet-Mediated) Thrombosis

43 The Role of Platelets TXB2 RP PPACK k pa Thrombin (Thr) Thombin- Antithrombin (TAT) Flow and Passive Transport TXA2 ADP AP + Heparin (Hep) Archodonic Acid Prothrombin (PT) Anitthrombin III (ATIII) Plt Deposition 43

44 Platelets Active: [AP] Resting: [RP] Agonists ADP [ADP] TxA2: [TxA2] Thrombin: [Thr] Coagulation Cascade Prothrombin: [PT] Antithrombin III [AT3] Sorensen Model of Platelet Deposition C t i u t v + u u S = F v + u C i ( k ) i Ci = Si 44

45 Reaction Rate Models PLATELET ACTIVATION GRANULE RELEASE Archodonic Acid SURFACE MEDIATED REACTION k pa S k [RP] ap = ADP Sadp = λ adp k pa[rp] TxA2 TxB2 S tx pa = λ [ AP] k [ TxA2] tx tx PT Thr TAT 45 ATIII S thr = ( k [ AP] + k [ RP] )[ PT ] Γ[ AT3][ Thr] at rt

46 Binary Activation Model TxA2 Ω = k pa w ADP ADP Thr [ ADP] [ ADP]* k pa + w TxA2 0 = Ω S Internal Signaling [ TxA2] [ TxA2]* Ω < 1 Ω 1 ap = + w Thr k pa Activation Rate [ Thr] [ Thr]* [RP]

47 Deposition Kinetics Κ r-as Transport Κ rs Κ aa k pa Κ aa 47 Platelet Deposition to Surface Platelet Deposition onto Active platelets

48 Weakness of Existing Model 1. Activation Kinetics 2. No Shear Dependent Activation 3. Active Cellular Transport 4. Valid for Collagen Only 5. Lacks Coagulation Cascade 6. Lacks Protein Deposition 7. Limited Anticoagulation/Plt 8. Effect of Growing Thrombus on Flow 48

49 Advanced Activation Kinetics

50 Internal Signaling Moer et al., New Perspectives on Drugs, 2004

51 Synergistic Activation of Platelets Platelets are activated by lower levels of agonist when in combination Example: Take: [Thr] and Current Model: Ω =.75, hence k pa = 0 Experimental Data Shows Activation (Ware( et al.)

52 Initial Model of Plt Activation 1 A 1 * A1 A 2 1 A * 2 TxA2 ADP Thr Internal Signaling Internal Signaling + Activation Activation Rate A 3 1 A * 3

53 Expanded Model of Plt Activation A 1 A 2 A 3 P1(s) P2(s) P3(s) 1 A * 1 1 A * 2 1 A * 3 + Activation Signal

54 Synergy Model of Plt Activation S 31 A 1 A 2 A 3 P1(s) P2(s) P3(s) S 1 S 21 S 2 S 3 W 1 W 2 W 3 1 S * 1 1 S * 2 1 S * 3 + Activation Signal

55 Synergy Model of Plt Activation A 1 A 2 A 3 * ~ 1 A 1 ~ 1 * A 2 * ~ 1 A 3 + A * i = A *0 exp i j= 1, i Activation Signal N β j j A j

56 Synergistic Activation Aggregation Rate Experiment Model Results Ω d[ AP] = k pa[ RP] dt 0 Ω < 1 k pa = Ω Ω 1 Ω = α * j j= 1.. N = o α j ω j exp i j i= 1.. N ciα i Model was fit to data for ADP, Thrombin, and Epinephrine. Data from Ware et al., J. Clin. Invest, 1987

57 Aggregometry Experiments Gives ATP release and % aggregation as a function of time Optical Morphological changes versus time???

58 Shear Induced Blood Trauma

59 Classic Shear Activation Model Shear Serotonin Released (Dense Granules) PSF Platelets Activated = τ t = 1000 Safe Zone Exposure Data: Hellums et al PSF: Boreda et al Jesty et al. 2003

60 D( PAF) S k = pa Dt τ = Damage Function = 0 PAF PAF * N T + PAF PAF * PAF PAF S * ( ) τ, t, x, PAF,[ RP] < 1 1 v

61 Validation Case Experiments The FDA/Marina s s Nozzles Coupling of Stress and Agonists Linkam Cell Stress alone (must define activation) Stress + Agonist Contracting Micro-channels channels

62 Surface Reactivity

63 Deposition Kinetics

64 Unknowns: Experiments Maximum surface coverage Rate of Resting and Active Platelet Deposition onto the Surface Rate of Active Platelets onto Other Platelets θ,, the instantaneous effect or rate at which a material by itself activates platelets Mass transfer rate

65 Deposition Kinetics

66 Experiments Flow Between Parallel Plates (k aa, k as, k rs ) (required) Direct measurement of platelets/area Possibly platelet morphology Maximum surface coverage Rocking or submersion testing Rate of platelet activation due to the surface

67 Example Fit to Experimental Data of Wagner and Hubbell

68 Cellular Transport Models

69 Transport Models Challenge: Large Number of Parameters Cannot be determined from Fully- Developed, Steady-State State flows

70 Channel Flow Experiments Vary flow rate to help isolate lift forces Vary plasma viscosity to isolate drag forces Get RBC concentration in a 3-Dimensional 3 field Get RBC velocity and plasma velocity

71 Experiments Complex Channel Flow Plasma with additives Track the concentration of RBC, while varying the plasma density Concentrated RBC suspension

72 Cell Scale Models

73 Experiments Still taking suggestions Cell settling and wall interactions Cell-Cell interactions (dilute interactions) Cell-Cell interactions (dense suspensions) Effect of changing internal pressure

74 HemoGlide Bearing Test 75mm FLOW CHAMBER ROTOMETER DIRECTION OF FLOW 30 o Pressure Taps PRESSURE TAPS CENTRIFUGAL PUMP Test Section LC SENSOR TEST SECTION ROI Y (a) X FLOW STRAIGHTENER 100mm (b) Z X 74

75 Web Site

76 SVN with TortoisSVN

[TITLE OF THE THESIS/DISSERTATION] [Author s full name] [undergraduate degree, institution, year] [Master degree, if applicable, institution, year]

[TITLE OF THE THESIS/DISSERTATION] [Author s full name] [undergraduate degree, institution, year] [Master degree, if applicable, institution, year] [TITLE OF THE THESIS/DISSERTATION] by [Author s full name] [undergraduate degree, institution, year] [Master degree, if applicable, institution, year] Submitted to the Graduate Faculty of [name of school]

More information

좋은아침입니다 (Cho Eun Achim Yip Ni Da) (Jeo Reul Cho Dae Hae Joo

좋은아침입니다 (Cho Eun Achim Yip Ni Da) (Jeo Reul Cho Dae Hae Joo 좋은아침입니다 (Cho Eun Achim Yip Ni Da) 저를초대해주셔서감사합니다 (Jeo Reul Cho Dae Hae Joo Seuh Seo, Kam Sa Hap Ni Da) PLEASE JOIN US 13 TH INTERNATIONAL CONGRESS OF BIORHEOLOGY and 6 TH INTERNATIONAL CONFERENCE ON CLINICAL

More information

Investigating platelet motion towards vessel walls in the presence of red blood cells

Investigating platelet motion towards vessel walls in the presence of red blood cells Investigating platelet motion towards vessel walls in the presence of red blood cells (Complex Fluids in Biological Systems) Lindsay Crowl and Aaron Fogelson Department of Mathematics University of Utah

More information

A Computational Model of Platelet Mediated Thrombosis for the Evaluation and Design of Medical Devices. Samuel Joseph Hund.

A Computational Model of Platelet Mediated Thrombosis for the Evaluation and Design of Medical Devices. Samuel Joseph Hund. A Computational Model of Platelet Mediated Thrombosis for the Evaluation and Design of Medical Devices by Samuel Joseph Hund B.S. in Aerospace Engineering, University of Colorado, 1999 M.S. in Aerospace

More information

Margination of a leukocyte in a model microvessel

Margination of a leukocyte in a model microvessel Margination of a leukocyte in a model microvessel Jonathan B. Freund Mechanical Science & Engineering University of Illinois at Urbana-Champaign J. B. Freund p.1/40 Inflammation Response Leukocyte (white

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics Exam Cardiovascular Fluid Mechanics (8W9) page 1/4 Monday March 1, 8, 14-17 hour Maximum score

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Blood damage measures for ventricular assist device modeling

Blood damage measures for ventricular assist device modeling Blood damage measures for ventricular assist device modeling Dhruv Arora 1, Marek Behr 1 and Matteo Pasquali 2 1 Department of Mechanical Engineering and Materials Science, MS321, 2 Department of Chemical

More information

Fluid dynamics - viscosity and. turbulent flow

Fluid dynamics - viscosity and. turbulent flow Fluid dynamics - viscosity and Fluid statics turbulent flow What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle Fluid dynamics Reynolds number Equation

More information

Application of CFX to Implantable Rotary Blood Pumps Suspended by Magnetic Bearings

Application of CFX to Implantable Rotary Blood Pumps Suspended by Magnetic Bearings Application of CFX to Implantable Rotary Blood Pumps Suspended by Magnetic Bearings Xinwei Song University of Virginia Houston G. Wood University of Virginia Abstract The University of Virginia has been

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

Transport by convection. Coupling convection-diffusion

Transport by convection. Coupling convection-diffusion Transport by convection. Coupling convection-diffusion 24 mars 2017 1 When can we neglect diffusion? When the Peclet number is not very small we cannot ignore the convection term in the transport equation.

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

Progress towards the design and numerical analysis of a 3D microchannel biochip separator

Progress towards the design and numerical analysis of a 3D microchannel biochip separator Loughborough University Institutional Repository Progress towards the design and numerical analysis of a 3D microchannel biochip separator This item was submitted to Loughborough University's Institutional

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

6. Expressions for Describing Steady Shear Non-Newtonian Flow

6. Expressions for Describing Steady Shear Non-Newtonian Flow Non-Newtonian Flows Modified from the Comsol ChE Library module. Rev 10/15/08 2:30PM Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 http://ciks.cbt.nist.gov/~garbocz/sp946/node8.htm

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Chapter 4 The physical and flow properties of blood and other fluids

Chapter 4 The physical and flow properties of blood and other fluids Chapter 4 The physical and flow properties of blood and other fluids 4. Physical properties of blood Blood is a viscous fluid mixture consisting of plasma and cells. Table 4. summarizes the most important

More information

Microfluidic Devices. Microfluidic Device Market. Microfluidic Principles Part 1. Introduction to BioMEMS & Medical Microdevices.

Microfluidic Devices. Microfluidic Device Market. Microfluidic Principles Part 1. Introduction to BioMEMS & Medical Microdevices. Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/,

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Lab 7: Low Reynolds numbers and Tube Flows

Lab 7: Low Reynolds numbers and Tube Flows Lab 7: Low Reynolds numbers and Tube Flows Bio427 Biomechanics In this lab, we explore two issues related to biological fluid dynamics: flows at low Reynolds numbers and flows within tubes. The former

More information

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Structure-Function of Interstitial Spaces: New Clues to Fluid-Balance Mechanisms

Structure-Function of Interstitial Spaces: New Clues to Fluid-Balance Mechanisms Structure-Function of Interstitial Spaces: New Clues to Fluid-Balance Mechanisms Department of Reconstructive and Plastic Surgery Research Medical School of Wake-Forest University The energy for fluid

More information

31545 Medical Imaging systems

31545 Medical Imaging systems 31545 Medical Imaging systems Lecture 5: Blood flow in the human body Jørgen Arendt Jensen Department of Electrical Engineering (DTU Elektro) Biomedical Engineering Group Technical University of Denmark

More information

Fig. 6.1: Force at hip joint

Fig. 6.1: Force at hip joint Fig. 6.1: Force at hip joint [Acetabulum] Bearing force Muscle force Gravity [Femoral head] Line of force action Brittle fracture Fig. 6.2: Principle of leverage F 0 F 2 Pivot Pivot F 2 F 1 F 1 F 0 Moment

More information

Concentrated suspensions under flow in microfluidic channel and migration effect

Concentrated suspensions under flow in microfluidic channel and migration effect Mid-Term Review June 16-17 2011 Concentrated suspensions under flow in microfluidic channel and migration effect Florinda SCHEMBRI*, Hugues BODIGUEL, Annie COLIN LOF Laboratory of the Future University

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

A STUDY ON RHEOLOGICAL BEHAVIOR OF BLOOD: AN ALTERNATIVE APPROACH. Dr. Naresh Kaul MD Aspirant & Physician Mangaluru, INDIA.

A STUDY ON RHEOLOGICAL BEHAVIOR OF BLOOD: AN ALTERNATIVE APPROACH. Dr. Naresh Kaul MD Aspirant & Physician Mangaluru, INDIA. SCHOLEDGE INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY & ALLIED STUDIES VOL. 2, ISSUE 6 (JUNE2015) ISSN-2394-336X www.thescholedge.org ---------------------------------------------------------------------------------------------------

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

Velocity Measurement of Blood Flow in a Microtube Using Micro PIV System

Velocity Measurement of Blood Flow in a Microtube Using Micro PIV System June 3-5, 23, Chamonix, France. F484 Velocity Measurement of Blood Flow in a Microtube Using Micro PIV System R. Okuda 1*, Y. Sugii 1 and K. Okamoto 1 1 Nuclear Engineering Resarch Laboratory, University

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

[Supplementary Figures]

[Supplementary Figures] [Supplementary Figures] Supplementary Figure 1 Fabrication of epoxy microchannels. (a) PDMS replica is generated from SU-8 master via soft lithography. (b) PDMS master is peeled away from PDMS replica

More information

Biotransport: Principles

Biotransport: Principles Robert J. Roselli Kenneth R. Diller Biotransport: Principles and Applications 4 i Springer Contents Part I Fundamentals of How People Learn (HPL) 1 Introduction to HPL Methodology 3 1.1 Introduction 3

More information

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless )

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless ) III. Gas flow. The nature of the gas : Knudsen s number K n λ d 2. Relative flow : U ρ d η U : stream velocity ρ : mass density Reynold s number R ( dimensionless ) 3. Flow regions - turbulent : R > 2200

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

Today s menu. Last lecture. A/D conversion. A/D conversion (cont d...) Sampling

Today s menu. Last lecture. A/D conversion. A/D conversion (cont d...) Sampling Last lecture Capacitive sensing elements. Inductive sensing elements. Reactive Deflection bridges. Electromagnetic sensing elements. Thermoelectric sensing elements. Elastic sensing elements. Piezoelectric

More information

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3.

CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART. briefly introduces conventional rheometers. In sections 3.2 and 3. 30 CHAPTER 3. CONVENTIONAL RHEOMETRY: STATE-OF-THE-ART This chapter reviews literature on conventional rheometries. Section 3.1 briefly introduces conventional rheometers. In sections 3.2 and 3.3, viscometers

More information

Chapter 6 Pneumatic Transport

Chapter 6 Pneumatic Transport Chapter 6 Pneumatic Transport 6.1 Pneumatic Transport Use of a gas to transport a particulate solid through pipeline Powder Rotary valve Blower Three major variables for pneumatic conveying - solid mass

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

SC/BIOL Current Topics in Biophysics TERM TEST ONE

SC/BIOL Current Topics in Biophysics TERM TEST ONE Page 1 of 1 SC/BIOL 2090.02 Current Topics in Biophysics TERM TEST ONE Name: KEY Student ID: There are three questions. You must complete all three. Ensure that you show your work (that is, equations,

More information

Review of Fluid Mechanics

Review of Fluid Mechanics Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may

More information

Flux - definition: (same format for all types of transport, momentum, energy, mass)

Flux - definition: (same format for all types of transport, momentum, energy, mass) Fundamentals of Transport Flu - definition: (same format for all types of transport, momentum, energy, mass) flu in a given direction Quantity of property being transferred ( time)( area) More can be transported

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

Effects of Magnetic Field and Slip on a Two-Fluid Model for Couple Stress Fluid Flow through a Porous Medium

Effects of Magnetic Field and Slip on a Two-Fluid Model for Couple Stress Fluid Flow through a Porous Medium Inter national Journal of Pure and Applied Mathematics Volume 113 No. 11 2017, 65 74 ISSN: 1311-8080 printed version; ISSN: 1314-3395 on-line version url: http://www.ijpam.eu ijpam.eu Effects of Magnetic

More information

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity.

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity. 9.7 CENTRIFUGATION The centrifuge is a widely used instrument in clinical laboratories for the separation of components. Various quantities are used for the description and the calculation of the separation

More information

Nanoparticle Synthesis and Assembly from Atomistic Simulation Studies

Nanoparticle Synthesis and Assembly from Atomistic Simulation Studies Nanoparticle Synthesis and Assembly from Atomistic Simulation Studies By Takumi Hawa School of Aerospace & Mechanical Engineering Oklahoma Supercomputing Symposium 2008 October 7 Supported by NSF, ARL,

More information

Introduction to Heat and Mass Transfer. Week 10

Introduction to Heat and Mass Transfer. Week 10 Introduction to Heat and Mass Transfer Week 10 Concentration Boundary Layer No concentration jump condition requires species adjacent to surface to have same concentration as at the surface Owing to concentration

More information

Application of V&V 20 Standard to the Benchmark FDA Nozzle Model

Application of V&V 20 Standard to the Benchmark FDA Nozzle Model Application of V&V 20 Standard to the Benchmark FDA Nozzle Model Gavin A. D Souza 1, Prasanna Hariharan 2, Marc Horner 3, Dawn Bardot 4, Richard A. Malinauskas 2, Ph.D. 1 University of Cincinnati, Cincinnati,

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

Subduction II Fundamentals of Mantle Dynamics

Subduction II Fundamentals of Mantle Dynamics Subduction II Fundamentals of Mantle Dynamics Thorsten W Becker University of Southern California Short course at Universita di Roma TRE April 18 20, 2011 Rheology Elasticity vs. viscous deformation η

More information

Planet Formation. XIII Ciclo de Cursos Especiais

Planet Formation. XIII Ciclo de Cursos Especiais Planet Formation Outline 1. Observations of planetary systems 2. Protoplanetary disks 3. Formation of planetesimals (km-scale bodies) 4. Formation of terrestrial and giant planets 5. Evolution and stability

More information

Numerical study of blood fluid rheology in the abdominal aorta

Numerical study of blood fluid rheology in the abdominal aorta Design and Nature IV 169 Numerical study of blood fluid rheology in the abdominal aorta F. Carneiro 1, V. Gama Ribeiro 2, J. C. F. Teixeira 1 & S. F. C. F. Teixeira 3 1 Universidade do Minho, Departamento

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Turbulent drag reduction by streamwise traveling waves

Turbulent drag reduction by streamwise traveling waves 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Turbulent drag reduction by streamwise traveling waves Armin Zare, Binh K. Lieu, and Mihailo R. Jovanović Abstract For

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures 1-7) Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

More information

Particle Dynamics: Brownian Diffusion

Particle Dynamics: Brownian Diffusion Particle Dynamics: Brownian Diffusion Prof. Sotiris E. Pratsinis Particle Technology Laboratory Department of Mechanical and Process Engineering, ETH Zürich, Switzerland www.ptl.ethz.ch 1 or or or or nucleation

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1 Viscosity and Polymer Melt Flow Rheology-Processing / Chapter 2 1 Viscosity: a fluid property resistance to flow (a more technical definition resistance to shearing) Remember that: τ μ du dy shear stress

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Micro Cooling of SQUID Sensor

Micro Cooling of SQUID Sensor Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Micro Cooling of SQUID Sensor B.Ottosson *,1, Y. Jouahri 2, C. Rusu 1 and P. Enoksson 3 1 Imego AB, SE-400 14 Gothenburg, Sweden, 2 Mechanical

More information

1 One-dimensional analysis

1 One-dimensional analysis One-dimensional analysis. Introduction The simplest models for gas liquid flow systems are ones for which the velocity is uniform over a cross-section and unidirectional. This includes flows in a long

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model Supplementary Information SI Text 1: Derivation and assumptions of the effective temperature model We assume that the displacements of intracellular particles are due to passive thermal activity and active

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

Micro-Flow in a bundle of micro-pillars. A. Keißner, Ch. Brücker

Micro-Flow in a bundle of micro-pillars. A. Keißner, Ch. Brücker Micro-Flow in a bundle of micro-pillars A. Keißner, Ch. Brücker Institute of Mechanics and Fluid Dynamics, University of Freiberg, TU Freiberg, Germany, Email: armin.keissner@imfd.tu-freiberg.de Abstract

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

Maximum Adsorption in Microchannels

Maximum Adsorption in Microchannels Maximum Adsorption in Microchannels Francis Ninh ChemE 499 May 7, 009 Abstract The purpose of the following project was to characterize the adsorption of the enzyme ADAMTS-13 and its antibody, anti-adamts-13,

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

Calculate the total volumes of the following typical microfluidic channel dimensions.

Calculate the total volumes of the following typical microfluidic channel dimensions. Microfluidics and BioMEMS, 2018, Exercise 1. Unit conversions and laminar flow. (Note: this version, both the assignment and the model solutions, is now fixed (18.1.2018) so that the flow rate is 0.25µl/min

More information

Theoretical and Computational Studies on Thrombus Formation and Multiphase Characteristics of Blood Flow

Theoretical and Computational Studies on Thrombus Formation and Multiphase Characteristics of Blood Flow Theoretical and Computational Studies on Thrombus Formation and Multiphase Characteristics of Blood Flow Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Mechanical

More information

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe T S L Radhika**, M B Srinivas, T Raja Rani*, A. Karthik BITS Pilani- Hyderabad campus, Hyderabad, Telangana, India. *MTC, Muscat,

More information

HEAT EXCHANGER. Objectives

HEAT EXCHANGER. Objectives HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1)

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Globex Julmester 2017 Lecture #3 05 July 2017 Agenda Lecture #3 Section

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information