APPLIED ELECTROMAGNETICS AND ELECTROMAGNETIC COMPATIBILITY

Size: px
Start display at page:

Download "APPLIED ELECTROMAGNETICS AND ELECTROMAGNETIC COMPATIBILITY"

Transcription

1 APPLIED ELECTROMAGNETICS AND ELECTROMAGNETIC COMPATIBILITY

2

3 APPLIED ELECTROMAGNETICS AND ELECTROMAGNETIC C 0 M PATI B I L ITY Dipak L. Sengupta The University of Michigan and The University of Detroit Mercy Valdis V. Liepa The University of Michigan WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC:., PUBLICATION

4 Copyright by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or I08 ofthe 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) , fax (978) , or on the web at Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201) I, fax (201) , or online at Limit of LiabilitylDisclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) , outside the United States at (317) or fax (317) Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at Library of Congress Cataloging-in-Publication is available. ISBN-I ISBN-I Printed in the United States of America. I

5 This book is dedicated to Sujata Basu Sengupta and Austra Liepa

6

7 CONTENTS Preface Acknowledgments 1 General Considerations 1.1 Introduction 1.2 Definitions 1.3 Interference mechanisms 1.4 Examples 1.S Discussion xvii xxi The Electromagnetic Environment 2.1 Introduction 2.2 Natural Noise 2.3 Man-Made Noise vii

8 Viii CONTENTS 2.4 CW and Transient Sources Characteristic Parameters of Authorized Radiators Noise Emission Intensity 2.7 Home Environment 2.8 Discussion of Noise Sources 2.9 Subject Matter of the Book 3 Fundamentals of Fields and Waves 3.1 Introduction 3.2 Basic Parameters 3.3 Time Dependent Relations Continuity of Current and Conservation of Charge Faraday s Law Ampere s Circuital Law Lorentz Force Law Maxwell s Equations Historical Comments on Maxwell s Equations Media Considerations Boundary Conditions Energy Flow and Poynting s Theorem Uniqueness Theorem 3.4 Harmonically Oscillating Fields Introduction Phasors Time Harmonic Relations Complex Permittivity Boundary Conditions Again Notes on the Solution The Complex Poynting Theorem 3.5 The Wave Equation Time Dependent Case Time Harmonic Case 3.6 Uniform Plane Waves General Considerations Energy Considerations

9 CONTENTS ix Group Velocity Summary General Representation of TEM Waves Plane Waves in Lossy Media Skin Effect Polarization of Plane Waves Reflection and Refraction (Transmission) of Plane Waves Normal Incidence on a Plane Interface Oblique Incidence Problems Signal Waveform and Spectral Analysis Introduction Classification of Signals Energy Signals Definitions A Rectangular Pulse Power Signals Periodic Signals Trapezoidal Waveform Examples of Some Signals Problems 5 Transmission Lines 5.1 Introduction 5.2 Basic Discussion Transverse Electromagnetic (TEM) Transmission Lines Telegrapher s Equations: Quasi-Lumped Circuit Model Wave Equations 5.6 Frequency Domain Analysis General Solution Further Discussion of Propagation Constant and Characteristic Impedance Voltage, Current, and Impedance Relations I8 1 I

10 X CONTENTS 5.7 Line Parameters Coaxial Line Parallel Wire Line Parallel Plate Line Circular Wire above a Ground Plane Microstrip Line Stripline Comments 5.8 Transients on Transmission Lines Initial and Final (,Steady State) Values Transient Values 5.9 Measurements Slotted Line Measurements Network Analyzer Measurement Problems 6 Antennas and Radiation 6.1 Introduction 6.2 Potential Functions 6.3 Radiation from a Short Current Element Complete Fields Near Zone and Far Zone Considerations Near Zone and Far Zone Fields Radiated Power and Radiation Pattern Wave Impedance 6.4 Radiation from a Small Loop of Current Complete Fields Far Zone Fields Radiated Power Wave Impedance 6.5 Fundamental Antenna Parameters Radiation lntensity Directivity and Gain 6.6 Far Fields of Arbitrary Current Distributions The Radiation Vector and the Far Fields

11 CONTENTS xi Vector Effective Length of an Antenna Summary 6.7 Linear Antennas Center-Fed Linear Antenna Far Fields of a Dipole of Length f Radiated Power and Directivity Cosine, Sine, and Modified Cosine Integrals The Half-Wave Dipole 6.8 Near Field and Far Field Regions Basic Assumptions Point or Small Sources Extended Sources Definitions of Various Regions Specific Values of the Region Boundaries 6.9 Equivalent Circuits of Antennas Transmitting Antenna Receiving Antennas Equivalent Area 6.10 Antenna Arrays General Considerations A Two-Element Array Antennas Above Ground Ground and Ground Plane Image Theory Images of Electric Current Elements above Perfect Ground Dipoles above Ground Monopole Antennas 6.12 Biconical Antenna Biconical Transmission Line Finite Biconical Antenna Problems 7 Behavior of Circuit Components 7.1 Introduction 7.2 The Series RLC Circuit

12 Xii CONTENTS 7.3 Definitions of Lumped Circuit Parameters R, L, and c Circuit Theory Description Field Theory Description 7.4 Round Wires Resistance Internal Inductance 7.5 External Inductance of Round Wire Configurations General Relations Circular Loops 7.6 Inductance of Straight Wires Partial Inductance Inductance of a Closed Rectangular Loop 7.7 Other Configurations Printed Circuit Board (PCB) Lines Microstrip, Strip, and Coplanar Lines 7.8 Behavior of Circuit Elements Bode Plots Resistors Capacitors Inductors Problems 8 Radiated Emissions and Susceptibility 8.1 Introduction 8.2 Main Requirements 8.3 Emissions from Linear Elements 8.4 Two Parallel Currents Introduction Two Parallel Currents 8.5 Transmission Line Models for Susceptibility Introduction Voltage Induced on the Two-Wire Transmission Line I Electromagnetic Shielding 351

13 CONTENTS xiii Introduction Definitions Shielding Effectiveness 9.3. I Introduction SE Expressions for Computation Shielding Effectiveness: Near Field Illumination Electric and Magnetic Sources SE Expressions: Near Zone Considerations Discussion Far Zone Fields Near Zone Fields Coupling between Devices 10.1 Introduction 10.2 Capacitive (Electric) Coupling [I, Magnetic (Inductive) Coupling Some Basic Concepts Shielding of the Receptor Conductor 11 Electrostatic Discharge (ESD) Introduction Accumulation of Static Charge on Bodies Charging and Charge Separation Human Body as Source of ESD 11.5 ESD Waveforms Human Body Circuit Model 1 I.7 ESD Generator and ESD Test 12 EMC Standards 12.1 Introduction 12.2 Current US Standards Introduction FCC Radiated Emission Limits for Digital Devices

14 XiV CONTENTS FCC Conducted Emission Limits for Digital Devices 12.3 EMI/EMC Standards: Non-US Countries CISPR Standards European Norms 13 Measurements of Emission 13.1 Introduction 13.2 General 13.3 Radiated Emissions Introduction Receiver Antennas Some Results 13.4 Conducted Emissions Introduction Noise on Power Supply Lines Transients on Power Supply Lines Conducted Emissions from a DUT Some Results Appendix A: Vectors and Vector Analysis A. 1 Introduction A.2 Definitions of Scalar and Vector Fields A.2.1 Scalar Fields A.2.2 Vector Fields A.3 Vector Algebra A.3.1 Definitions A.3.2 A.3.3 A.3.4 Addition and Subtraction of Vectors Multiplication of a Vector by a Scalar Quantity Unit Vectors A.3.5 Vector Displacement and Components of a Vector A.4 Vector Surface Element AS Product of Vectors AS. 1 Dot Product of Two Vectors

15 CONTENTS XV A.5.2 The Cross Product of Two Vectors A.5.3 Product of Three Vectors A.6 Coordinate Systems A.6.1 Three Basic Coordinate Systems A.6.2 Space Variables and Base Vectors A.7 Elementary Differential Relations A.7.1 Rectangular System A.7.2 Cylindrical and Spherical Systems A.8 Transformation of Unit Vectors A.9 Vector Calculus A.9.1 A.9.2 A.9.3 Time Derivative of Vector A Space Derivatives of a Vector A Gradient of a Scalar Function A.9.4 Flux of a Vector A.9.5 A.9.6 Divergence of a Vector A Curl of a Vector Function A.10 The Laplacian V2 = V. V A. 1 1 Comments on Notation A. 12 Some Useful Relations A.12.1 Vector Algebra A Vector Identities A Integral Relations Problems Appendix B: Frequency Band Designations Appendix C: Constitutive Relations Index

16

17 PREFACE Over the past two decades the electromagnetic compatibility (EMC) considerations in the design of digital electronic devices or components have grown in importance throughout the world. This is because the United States and other industrial nations do not allow electronic devices to be marketed in their countries unless their electromagnetic noise emissions have been tested and certified to meet certain limits. As a result the electronic industries are showing increasing interest in electrical engineering (EE) graduates with an EMC background. Currently, except for a handful of schools, the undergraduate EE programs in the United States do not address the EMC issues directly, although most of them require at least one 3- or 4-credit course in electromagnetics. Students specializing in fields and waves are probably equipped to investigate certain fundamental problems of EMC. A few well-known schools with strong programs in electromagnetics often express the opinion that a good training in fields and waves prepares the students sufficiently to meet the challenges of EMC in their professional life. Nevertheless, to meet the growing demand from industries, the IEEE is actively encouraging schools to include EMC as a course topic in their curricula. xvii

18 xviii PREFACE During the summer of 1994 the first named author (DLS) introduced a seniodgraduate level course in EMC: at the Electrical Engineering and Physics Department of the University of Detroit Mercy. It was taken mostly by practicing engineers from the Detroit metropolitan area s Big Three automobile manufacturing and other related industries. Our own attending EE students had varied levels of background in electromagnetics but none had the expected familiarity with Maxwell s equations and plane electromagnetic waves. Because of this we faced difficulties in the planning of the course. In addition at that time we had a very limited selection of textbooks on EMC. We chose Introduction to Electromagnetic Compatibility by C. R. Paul supplemented by Noise Reduction Techniques ifil Electronic Systems by H. R. Ott, but found them not completely suitable for our students needs. It was therefore necessary to develop lecture notes specialized to the class. The initial lectures were devoted to bringing the students background level in electromagnetics up to a uniform level of familiarity with Maxwell s equations. After this, plane waves and related topics, transmission lines, antennas, and radiation were introduced. Overall, knowledge of these topics was deemed to be a necessary minimum background for an EMC course. The rest of the lectures were on selected topics in EMC. The course was so well received that it was repeated the next year (1995). Because of continued demand it is still being offered every alternate year. Our experience motivated us to write a textbook combining the fundamentals of fields and waves, a few selected topics of applied electromagnetics, and a variety of topics typical of EMC. The descriptions of electromagnetics are placed in the context of EMC, and those of EMC are presented where they help in the analysis of EMC phenomena as well as in planning the measurements needed for compliance with EMC specifications. The book is also an outgrowth of classroom lecture notes for a number of undergraduate/graduate level courses in electromagnetic theory and applied electromagnetics given by the first author over many years at the electrical engineering departments of the University of Michigan, Ann Arbor and the University of Detroit Mercy. A brief outline of the book follows. Chapter 1 introduces electromagnetic interference in general, and describes the evolution of EMC in the digital electronics era. It also defines various acronyms that are used alternatively, and often erroneously, to describe interference effects. The electromagnetic environment consists of a variety of natural and human-made noise sources in which electronic devices are expected to operate. These noise sources are described in Chapter 2. Chapter 3 is about the fundamental concepts and relations of electromagnetic fields and waves. Basic laws of electricity and magnetism, their generalizations, and their mathematical descriptions by Maxwell are described. Boundary conditions, the Poynting theorem, and energy transfer are then discussed. The time harmonic formulation of Maxwell s equations are introduced next and their applications to general problems are described. Fi-

19 PREFACE xix nally, uniform plane waves in lossless and lossy media, skin effect phenomena, and reflection and refraction of plane waves are discussed. Chapter 4 describes the frequency spectra of known electromagnetic sources to the extent necessary for the characterization of their electromagnetic emissions as functions of frequency from the viewpoint of EMC. Basic characteristics and applications of TEM transmission lines and, in particular, the two-wire, coaxial, microstrip, stripline, and parallel plate lines are briefly described in Chapter 5. The time dependent or the transient solutions for a two-wire line are also briefly mentioned here. Chapter 6 discusses the fundamentals of antennas and radiation, including the equivalent circuits for receiving and transmitting antennas. The radiation from basic antennas, such as the electric and magnetic dipoles, is described in detail; these descriptions are then utilized in the discussion of certain general characteristics of radiation. In addition the half-wave dipole and the biconical antenna are described. The behavior of the lumped circuit parameters R, L and C are described in Chapter 7. The field theory definitions of these parameters are introduced at first; they are then used to analyze performance as functions of frequency. Chapter 8 gives analytical descriptions of the radiated emissions from certain components of an electronic device and their susceptibility to outside noise. Simple wire and transmission-line models are used to estimate these emissions and susceptibility of the components when illuminated by incident plane waves from outside sources. Principles of electromagnetic shielding are briefly described in Chapter 9. The inductive and capacitive coupling effects in selected circuit configurations are outlined in Chapter 10. Chapter 11 deals with the electrostatic discharge (ESD) phenomenon and its impact on the design of electronic systems from the viewpoint of EMC. Chapter 12 gives the typical standards for EMC prescribed by the FCC for both Class A and Class B types of electronic devices. Some European standards are also mentioned. Chapter 13 describes briefly the measurement procedures that are followed to test the compliance of a device to the emission limits required by the enforcing agency. Appendix A gives a rather complete description of the vectors and vector calculus that are essential background knowledge for any course in electromagnetics. Problems, and answers to many of them, are provided at the end of some chapters. The book is intended to serve as a textbook for courses on applied electromagnetics and electromagnetic compatibility at the seniodgraduate level in EE. The prerequisites for such a course are completion of basic undergraduate EE and physics courses in electricity and magnetism, analog and digital electronic circuits, and advanced calculus. The description of fields and waves starts at the basic level and then proceeds to a fairly high level. Topics in EMC are described such that the electromagnetic interference effects associated with them can be better understood.

20 XX PREFACE Depending on the electromagnetic background of the class, the instructor may apply hidher discretion to adjust the emphasis on specific course materials. For a class with a sufficient background in electromagnetic fields, the book can be used by the instructor to delve into the discussed EMC topics in more detail and also to put forward additional EMC topics. For example, one could include designs for EMC that are not considered here and extend the discussion of EMC measurements. The appropriate materials for taking this direction are in Chapters 1,2, and 7 through 13. This book is also designed to serve as a textbook for coursework on applied electromagnetics. The appropriate chapters are 3 through 6 (and perhaps 7) and Appendix A. The instructor may choose to include more discussion of these topics as well as more materials on antennas, for example. Such a course might even be followed by the course on EMC described earlier. Finally, practicing engineers in industry interested in exploring EMC may find the book useful for self-study. The topics and descriptions are such that engineers involved in the design of electronic devices for EMC will find the book useful as a reference tool. Anii Arbor: Michigan D. L. SENGUPTA V. V. LIEPA

21 ACKNOWLEDGMENTS We gratefully acknowledge the support received from the Department of Electrical Engineering and Computer Science of the University of Michigan and the Department of Electrical Engineering and Physics of the University of Detroit Mercy, where virtually all the material presented in this book was taught over many years. The suggestions and comments received from our students helped us in the organization and presentation of the material. We thank our students for their critical comments. The final preparation of the manuscript was accomplished at the University of Michigan Radiation Laboratory. We thank the Director of the Radiation Laboratory for generously providing the Laboratory facilities for this purpose. The tedious task of transforming the handwritten manuscript to its final form was accomplished by a team of people. We are especially grateful to Joseph Brunett who supervised and actively carried out the electronic formatting and graphic design. He was assisted by Richard Cames, Bradley Koski, and Sanita Liopa. Our grateful thanks to all of them for performing an excellent job. We are grateful to the staff of John Wiley & Sons, Inc., especially to George Telecki, Associate Publisher, Wiley-Interscience, for his interest, support, cooperation, and production of the book; Danielle Lacourciere, Senior Production Editor, for the production xxi

22 xxii of the book; and Rachel Witmer, Editorial Program Coordinator, for managing the production schedule and the cover design. The writing of this book has been a long and arduous task. It would not have been completed without the pistience and continuous support of our wives and children.

Applied Regression Modeling

Applied Regression Modeling Applied Regression Modeling Applied Regression Modeling A Business Approach Iain Pardoe University of Oregon Charles H. Lundquist College of Business Eugene, Oregon WILEY- INTERSCIENCE A JOHN WILEY &

More information

BASIC STRUCTURAL DYNAMICS

BASIC STRUCTURAL DYNAMICS BASIC STRUCTURAL DYNAMICS BASIC STRUCTURAL DYNAMICS James C. Anderson Ph.D. Professor of Civil Engineering, University of Southern California Farzad Naeim Ph.D., S.E., Esq. Vice President and General

More information

ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS

ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board 2013 John Anderson, Editor in Chief Linda Shafer Saeid Nahavandi George Zobrist

More information

Arrow Pushing in Organic Chemistry

Arrow Pushing in Organic Chemistry Arrow Pushing in Organic Chemistry An Easy Approach to Understanding Reaction Mechanisms Daniel E. Levy Arrow Pushing in Organic Chemistry Arrow Pushing in Organic Chemistry An Easy Approach to Understanding

More information

FOURIER TRANSFORMS. Principles and Applications. ERIC W. HANSEN Thayer School of Engineering, Dartmouth College

FOURIER TRANSFORMS. Principles and Applications. ERIC W. HANSEN Thayer School of Engineering, Dartmouth College FOURIER TRANSFORMS FOURIER TRANSFORMS Principles and Applications ERIC W. HANSEN Thayer School of Engineering, Dartmouth College Cover Image: istockphoto/olgaaltunina Copyright 2014 by John Wiley & Sons,

More information

BASICS OF ANALYTICAL CHEMISTRY AND CHEMICAL EQUILIBRIA

BASICS OF ANALYTICAL CHEMISTRY AND CHEMICAL EQUILIBRIA BASICS OF ANALYTICAL CHEMISTRY AND CHEMICAL EQUILIBRIA BASICS OF ANALYTICAL CHEMISTRY AND CHEMICAL EQUILIBRIA BRIAN M. TISSUE Virginia Tech Department of Chemistry Blacksburg, VA Cover Design: Wiley Cover

More information

TEACH YOURSELF THE BASICS OF ASPEN PLUS

TEACH YOURSELF THE BASICS OF ASPEN PLUS TEACH YOURSELF THE BASICS OF ASPEN PLUS TEACH YOURSELF THE BASICS OF ASPEN PLUS RALPH SCHEFFLAN Chemical Engineering and Materials Science Department Stevens Institute of Technology A JOHN WILEY & SONS,

More information

AN INTRODUCTION TO PROBABILITY AND STATISTICS

AN INTRODUCTION TO PROBABILITY AND STATISTICS AN INTRODUCTION TO PROBABILITY AND STATISTICS WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: David J. Balding, Noel A. C. Cressie, Garrett M.

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Statistical Methods. for Forecasting

Statistical Methods. for Forecasting Statistical Methods for Forecasting Statistical Methods for Forecasting BOVAS ABRAHAM JOHANNES LEDOLTER WILEY- INTERSCI ENCE A JOHN WILEY & SONS, INC., PUBLICA'TION Copyright 0 1983.2005 by John Wiley

More information

STATISTICAL ANALYSIS WITH MISSING DATA

STATISTICAL ANALYSIS WITH MISSING DATA STATISTICAL ANALYSIS WITH MISSING DATA SECOND EDITION Roderick J.A. Little & Donald B. Rubin WILEY SERIES IN PROBABILITY AND STATISTICS Statistical Analysis with Missing Data Second Edition WILEY SERIES

More information

Discriminant Analysis and Statistical Pattern Recognition

Discriminant Analysis and Statistical Pattern Recognition Discriminant Analysis and Statistical Pattern Recognition GEOFFRY J. McLACHLAN The University of Queensland @EEC*ENCE A JOHN WILEY & SONS, INC., PUBLICATION This Page Intentionally Left Blank Discriminant

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Engineering Electromagnetic Fields and Waves

Engineering Electromagnetic Fields and Waves CARL T. A. JOHNK Professor of Electrical Engineering University of Colorado, Boulder Engineering Electromagnetic Fields and Waves JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CHAPTER

More information

TRANSPORT PHENOMENA AND UNIT OPERATIONS

TRANSPORT PHENOMENA AND UNIT OPERATIONS TRANSPORT PHENOMENA AND UNIT OPERATIONS TRANSPORT PHENOMENA AND UNIT OPERATIONS A COMBINED APPROACH Richard G. Griskey A JOHN WILEY & SONS, INC., PUBLICATION This book is printed on acid-free paper Copyright

More information

INTRODUCTION TO CHEMICAL ENGINEERING COMPUTING

INTRODUCTION TO CHEMICAL ENGINEERING COMPUTING INTRODUCTION TO CHEMICAL ENGINEERING COMPUTING BRUCE A. FINLÄYSON, PH.D. University of Washington Seattle, Washington iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Microsoft product screen

More information

EET 492: Electromagnetic Fields and Waves. Fall Syllabus

EET 492: Electromagnetic Fields and Waves. Fall Syllabus EET 492: Electromagnetic Fields and Waves Fall 2007 Syllabus Lecturer Information: Name: Dr. Zhaoxian Zhou Office: TEC 326 Phone: (601)266 4482 Email: Zhaoxian.Zhou@usm.edu Web Page: www.usm.edu/zxzhou

More information

TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN

TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN Laurence A. Belfiore Department of Chemical Engineering Colorado State University Fort Collins, CO A JOHN WILEY & SONS, INC., PUBLICATION TRANSPORT PHENOMENA

More information

REACTIVE INTERMEDIATE CHEMISTRY

REACTIVE INTERMEDIATE CHEMISTRY REACTIVE INTERMEDIATE CHEMISTRY REACTIVE INTERMEDIATE CHEMISTRY Edited by Robert A.Moss Department of Chemistry Rutgers University New Brunswick, NJ Matthew S. Platz Department of Chemistry Ohio State

More information

(Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE-641 032 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Semester III Academic Year: 2015-2016 Regulations 2014 COURSE PLAN Vision To

More information

Thermal Design. Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. HoSung Lee JOHN WILEY & SONS, INC.

Thermal Design. Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. HoSung Lee JOHN WILEY & SONS, INC. Thermal Design Thermal Design Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells HoSung Lee JOHN WILEY & SONS, INC. This book is printed on acid-free paper. Copyright c

More information

BASIC GAS CHROMATOGRAPHY Second Edition HAROLD M. MCNAIR JAMES M. MILLER A JOHN WILEY & SONS, INC., PUBLICATION BASIC GAS CHROMATOGRAPHY BASIC GAS CHROMATOGRAPHY Second Edition HAROLD M. MCNAIR JAMES

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

INTRODUCTION TO ELECTRODYNAMICS

INTRODUCTION TO ELECTRODYNAMICS INTRODUCTION TO ELECTRODYNAMICS Second Edition DAVID J. GRIFFITHS Department of Physics Reed College PRENTICE HALL, Englewood Cliffs, New Jersey 07632 CONTENTS Preface xi Advertisement 1 1 Vector Analysis

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva Part 1. Introduction Basic Physics and Mathematics for Electromagnetics. Lecture

More information

V/m, A/m. With flux density vectors D = ε E, B = μ H; current density J = σe, and the continuity equation

V/m, A/m. With flux density vectors D = ε E, B = μ H; current density J = σe, and the continuity equation ELECTROMAGNETICS: Theory & Practice S. Hossein Mousavinezhad Department of Electrical and Computer Engineering Western Michigan University h.mousavinezhad@wmich.edu Stuart M. Wentworth Department of Electrical

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

ECE 3110 Electromagnetic Fields I Spring 2016

ECE 3110 Electromagnetic Fields I Spring 2016 ECE 3110 Electromagnetic Fields I Spring 2016 Class Time: Mon/Wed 12:15 ~ 1:30 PM Classroom: Columbine Hall 216 Office Hours: Mon/Wed 11:00 ~ 12:00 PM & 1:30-2:00 PM near Col 216, Tues 2:00 ~ 2:45 PM Other

More information

Arrow Pushing in Organic Chemistry

Arrow Pushing in Organic Chemistry Arrow Pushing in Organic Chemistry Arrow Pushing in Organic Chemistry An Easy Approach to Understanding Reaction Mechanisms Daniel E. Levy Copyright # 2008 by John Wiley & Sons, Inc. All rights reserved

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

STRESS IN ASME PRESSURE VESSELS, BOILERS, AND NUCLEAR COMPONENTS

STRESS IN ASME PRESSURE VESSELS, BOILERS, AND NUCLEAR COMPONENTS STRESS IN ASME PRESSURE VESSELS, BOILERS, AND NUCLEAR COMPONENTS Wiley-ASME Press Series List Stress in ASME Pressure Vessels, Boilers, and Nuclear Jawad October 2017 Components Robust Adaptive Control

More information

ECE 4800 Fall 2011: Electromagnetic Fields and Waves. Credits: 4 Office Hours: M 6-7:30PM, Th 2-3:30, and by appointment

ECE 4800 Fall 2011: Electromagnetic Fields and Waves. Credits: 4 Office Hours: M 6-7:30PM, Th 2-3:30, and by appointment ECE 4800 Fall 2011: Electromagnetic Fields and Waves Instructor: Amar S. Basu Office: 3133 Engineering Email: abasu@eng.wayne.edu Phone: 313-577-3990 Lecture Times: M W 7:30PM - 9:20PM, Class Dates: 9/7/11

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS Practice: Modeling is utilized for the analysis of conducted and radiated electromagnetic interference (EMI) caused

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

Acropolis Technical Campus, Indore, , (M.P.) Electronics and Communications Course Plan UG Electromagnetic Field Theory

Acropolis Technical Campus, Indore, , (M.P.) Electronics and Communications Course Plan UG Electromagnetic Field Theory Acropolis Technical Campus, Indore, 452020, (M.P.) Electronics and Communications Course Plan UG Electromagnetic Field Theory Course Code EC5001 Session: July- Dec 17 Semester:V Tutor Nisha Kiran Revision

More information

AP Physics C Syllabus

AP Physics C Syllabus Course Overview AP Physics C Syllabus AP Physics C will meet for 90 minutes on block scheduling and for 45 minutes on regular scheduling. Class activities will include lecture, demonstration, problem solving

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

SYLLABUS. Course Applications Course Applications Indiv. study S L P S L P

SYLLABUS. Course Applications Course Applications Indiv. study S L P S L P 1. Data about the program of study SYLLABUS 1.1 Institution The Technical University of Cluj-Napoca 1.2 Faculty Electrical Engineering 1.3 Department Electrotechnics and Measurements 1.4 Field of study

More information

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

GREEN CHEMISTRY AND ENGINEERING

GREEN CHEMISTRY AND ENGINEERING GREEN CHEMISTRY AND ENGINEERING GREEN CHEMISTRY AND ENGINEERING A Practical Design Approach CONCEPCIÓN JIMÉNEZ-GONZÁLEZ DAVID J. C. CONSTABLE Copyright Ó 2011 by John Wiley & Sons, Inc. All rights reserved.

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

The Manchester Physics Series

The Manchester Physics Series Electromagnetism The Manchester Physics Series General Editors D. J. SANDIFORD: F. MANDL: A. C. PHILLIPS Department of Physics and Astronomy, Faculty of Science, University of Manchester Properties of

More information

Fundamentals of Electrical Circuit Analysis

Fundamentals of Electrical Circuit Analysis Fundamentals of Electrical Circuit Analysis Md. Abdus Salam Quazi Mehbubar Rahman Fundamentals of Electrical Circuit Analysis 123 Md. Abdus Salam Electrical and Electronic Engineering Programme Area, Faculty

More information

1000 Solved Problems in Classical Physics

1000 Solved Problems in Classical Physics 1000 Solved Problems in Classical Physics Ahmad A. Kamal 1000 Solved Problems in Classical Physics An Exercise Book 123 Dr. Ahmad A. Kamal Silversprings Lane 425 75094 Murphy Texas USA anwarakamal@yahoo.com

More information

B.Sc. in Electronics and Communication Engineering, Cairo University, Cairo, Egypt with Distinction (honors), 1992

B.Sc. in Electronics and Communication Engineering, Cairo University, Cairo, Egypt with Distinction (honors), 1992 EE3FK4 Electromagnetics II Dr. Mohamed Bakr, ITB A219, ext. 24079 mbakr@mail.ece.mcmaster.ca http://www.ece.mcmaster.ca/faculty/bakr/ ece3fk4/ece3fk4_main_2008.htm Lecture 0 0-1 Info About Myself B.Sc.

More information

WATER SOFTENING WITH POTASSIUM CHLORIDE

WATER SOFTENING WITH POTASSIUM CHLORIDE WATER SOFTENING WITH POTASSIUM CHLORIDE WATER SOFTENING WITH POTASSIUM CHLORIDE Process, Health, and Environmental Benefi ts William Wist Jay H. Lehr Rod McEachern A JOHN WILEY & SONS, INC., PUBLICATION

More information

Circuit Analysis for Power Engineering Handbook

Circuit Analysis for Power Engineering Handbook Circuit Analysis for Power Engineering Handbook Circuit Analysis for Power Engineering Handbook Arieh L. Shenkman SPRINGER SCIENCE+BUSINESS MEDIA, B.V A c.i.p. Catalogue record for this book is available

More information

ELECTROMAGNETISM. Volume 2. Applications Magnetic Diffusion and Electromagnetic Waves ASHUTOSH PRAMANIK

ELECTROMAGNETISM. Volume 2. Applications Magnetic Diffusion and Electromagnetic Waves ASHUTOSH PRAMANIK ELECTROMAGNETISM Volume 2 Applications Magnetic Diffusion and Electromagnetic Waves ASHUTOSH PRAMANIK Professor Emeritus, College of Engineering, Pune Formerly of Corporate Research and Development Division,

More information

Physics of Classical Electromagnetism

Physics of Classical Electromagnetism Physics of Classical Electromagnetism Minoru Fujimoto Physics of Classical Electromagnetism Minoru Fujimoto Department of Physics University of Guelph Guelph, Ontario Canada, N1G 2W1 Library of Congress

More information

Physics for Scientists and Engineers 4th Edition 2017

Physics for Scientists and Engineers 4th Edition 2017 A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned

More information

A Circuit Approach to Teaching Skin Effect

A Circuit Approach to Teaching Skin Effect 35 A Circuit Approach to Teaching Skin Effect James H. Spreen Indiana Institute of Technology Abstract: This paper presents a circuits-based approach to describing skin effect. A student project in library

More information

INDUCTANCE. Loop and Partial CLAYTON R. PAUL

INDUCTANCE. Loop and Partial CLAYTON R. PAUL INDUCTANCE Loop and Partial CLAYTON R. PAUL Professor of Electrical and Computer Engineering Mercer University Macon, Georgia and Emeritus Professor of Electrical Engineering University of Kentucky Lexington,

More information

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2 OAKTON COMMUNITY COLLEGE COURSE SYLLABUS I. Course Course Course Prefix Number Name Credit: Lecture Lab PHY 132 College Physics II 4 3 2 II. Prerequisites: PHY 131 III. Course (catalog) Description: Course

More information

Light and Vacuum Downloaded from by on 11/22/17. For personal use only.

Light and Vacuum Downloaded from  by on 11/22/17. For personal use only. This page intentionally left blank World Scientific Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ENGINEERING PHYSICS II PHS4561 5 Credit Hours Student Level: This course is open to students on the college level in the freshman

More information

Reading Assignments Please see the handouts for each lesson for the reading assignments.

Reading Assignments Please see the handouts for each lesson for the reading assignments. Preparation Assignments for Homework #5 Due at the start of class. These assignments will only be accepted from students attending class. Reading Assignments Please see the handouts for each lesson for

More information

JWUS_LC-Khoo_Prelims.qxd 1/19/ :32 PM Page i Liquid Crystals

JWUS_LC-Khoo_Prelims.qxd 1/19/ :32 PM Page i Liquid Crystals Liquid Crystals Liquid Crystals Second Edition IAM-CHOON KHOO WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Copyright 2007 by John Wiley & Sons, Inc. All rights reserved. Published by John

More information

ELECTRONIC MATERIALS SCIENCE

ELECTRONIC MATERIALS SCIENCE ELECTRONIC MATERIALS SCIENCE ELECTRONIC MATERIALS SCIENCE Eugene A. Irene University of North Carolina Chapel Hill, North Carolina A John Wiley & Sons, Inc., Publication Copyright 2005 by John Wiley &

More information

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017 10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017 CATALOG INFORMATION Dept and Nbr: PHYS 42 Title: ELECTRICITY & MAGNETISM Full Title: Electricity and Magnetism for Scientists

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

4 credits, 3-hrs. lecture/2-hrs. lab/2-hrs. recitation Lecture:

4 credits, 3-hrs. lecture/2-hrs. lab/2-hrs. recitation Lecture: PHY 220 HOSTOS COMMUNITY COLLEGE GENERAL PHYSICS II 4 credits, 3-hrs. lecture/2-hrs. lab/2-hrs. recitation Lecture: Schedule Laboratory: Recitation: Instructor: E-mail: Office: Phone: Office Hours: Required

More information

AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

More information

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations Atef Z. Elsherbeni and Veysel Demir SciTech Publishing, Inc Raleigh, NC scitechpublishing.com Contents Preface Author

More information

ECE 2112 ELECTROMAGNETIC THEORY C-term 2018

ECE 2112 ELECTROMAGNETIC THEORY C-term 2018 Worcester Polytechnic Institute Department of Electrical and Computer Engineering ECE 2112 ELECTROMAGNETIC THEORY C-term 2018 Professor: Dr. Reinhold Ludwig Office: AK 229, Tel.: 508-831-5315 Office hours:

More information

RESPONSE SURFACE METHODOLOGY

RESPONSE SURFACE METHODOLOGY RESPONSE SURFACE METHODOLOGY WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Iain

More information

UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013

UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013 UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013 Name Office Room Email Address Lecture Times Professor Mo Mojahedi SF2001D

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELECTRICITY & MAGNETISM W/LAB PHY 2310

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELECTRICITY & MAGNETISM W/LAB PHY 2310 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELECTRICITY & MAGNETISM W/LAB PHY 2310 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Spring 01 Catalog Course Description:

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Here are some internet links to instructional and necessary background materials:

Here are some internet links to instructional and necessary background materials: The general areas covered by the University Physics course are subdivided into major categories. For each category, answer the conceptual questions in the form of a short paragraph. Although fewer topics

More information

Introduction. EE 2FH3 Winter 2014 (Prof. Mohamed H. Bakr) ELECTROMAGNETICS I

Introduction. EE 2FH3 Winter 2014 (Prof. Mohamed H. Bakr) ELECTROMAGNETICS I Introduction EE 2FH3 Winter 2014 (Prof. Mohamed H. Bakr) ELECTROMAGNETICS I Room: ITB-A219 ext. 24079 E-mail: mbakr@mail.ece.mcmaster.ca Main Topics * Vector Calculus * Electrostatics * Magnetostatics

More information

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay Module - 4 Time Varying Field Lecture - 30 Maxwell s Equations In the last lecture we had introduced

More information

COURSE OUTLINE. Upon completion of this course the student will be able to:

COURSE OUTLINE. Upon completion of this course the student will be able to: 1 School of Arts & Science PHYSICS DEPARTMENT PHYS 210-01/02 2016Q1 COURSE OUTLINE Instructor Information (a) Instructor: Dr. Julie Alexander (b) Office Hours: M:9:30, T:10:30, Th:2:30, F:11:30 (c) Location:

More information

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler drb/teaching.

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler   drb/teaching. Electromagnetic Theory: PHA3201, Winter 2008 Preliminaries D. R. Bowler david.bowler@ucl.ac.uk http://www.cmmp.ucl.ac.uk/ drb/teaching.html 1 yllabus The course can be split into three main areas: electric

More information

THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS

THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS Volume 7 DANIEL LEDNICER North Bethesda, MD Copyright # 2008 by John Wiley & Sons, Inc. All rights reserved Published by

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2011 Catalog Course Description: For students

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline)

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline) University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline) Instructor: Dr. Michael A. Carchidi Textbooks: Sears & Zemansky s University Physics by Young and Freedman

More information

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 104 General Physics II Course Outline

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 104 General Physics II Course Outline ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 104 General Physics II Course Outline Course Number & Name: PHY 104 General Physics II Credit Hours: 4.0 Contact Hours: 6.0 Lecture/Lab: 6.0 Other:

More information

VIBRATIONS AND WAVES. George C. King. School of Physics & Astronomy, The University of Manchester, Manchester, UK

VIBRATIONS AND WAVES. George C. King. School of Physics & Astronomy, The University of Manchester, Manchester, UK VIBRATIONS AND WAVES George C. King School of Physics & Astronomy, The University of Manchester, Manchester, UK A John Wiley and Sons, Ltd., Publication Vibrations and Waves The Manchester Physics Series

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

A FIRST COURSE IN INTEGRAL EQUATIONS

A FIRST COURSE IN INTEGRAL EQUATIONS A FIRST COURSE IN INTEGRAL EQUATIONS This page is intentionally left blank A FIRST COURSE IN INTEGRAL EQUATIONS Abdul-M ajid Wazwaz Saint Xavier University, USA lib World Scientific 1M^ Singapore New Jersey

More information

Magnetostatic fields! steady magnetic fields produced by steady (DC) currents or stationary magnetic materials.

Magnetostatic fields! steady magnetic fields produced by steady (DC) currents or stationary magnetic materials. ECE 3313 Electromagnetics I! Static (time-invariant) fields Electrostatic or magnetostatic fields are not coupled together. (one can exist without the other.) Electrostatic fields! steady electric fields

More information

EE 230 -ELECTROMAGNETIC THEORY

EE 230 -ELECTROMAGNETIC THEORY Karabuk University Department of Electrical and Electronics Engineering Spring Semester 2014-2015 EE 230 -ELECTROMAGNETIC THEORY 2013/2014 Spring Instructor :Assoc. Prof. Dr. Habibe Uslu :Asst. Prof. Dr.

More information

Transmission-Line Essentials for Digital Electronics

Transmission-Line Essentials for Digital Electronics C H A P T E R 6 Transmission-Line Essentials for Digital Electronics In Chapter 3 we alluded to the fact that lumped circuit theory is based on lowfrequency approximations resulting from the neglect of

More information

Follow links Class Use and other Permissions. For more information, send to:

Follow links Class Use and other Permissions. For more information, send  to: COPYRIGHT NOTICE: Stephen L. Campbell & Richard Haberman: Introduction to Differential Equations with Dynamical Systems is published by Princeton University Press and copyrighted, 2008, by Princeton University

More information

Mineral Area College FALL credit hours

Mineral Area College FALL credit hours GENERAL PHYSICS II PHS2240 AA01 Mineral Area College FALL 2014 4 credit hours Instructor: Dr. George Saum Office Hours: 11:00-12:00 M W F 10:00 11:00 T R Office: TC223A or Physics Lab TC223 Phone: 573-518-2174

More information

Electromagnetic Fields in Electrical Engineering. understanding basic concepts

Electromagnetic Fields in Electrical Engineering. understanding basic concepts Electromagnetic Fields in Electrical Engineering understanding basic concepts Copyright Shaker Publishing 2005 Revised printing 2010 All rights reserved. No part of this publication may be reproduced,

More information

Quick Selection Guide to Chemical Protective Clothing Fourth Edition A JOHN WILEY & SONS PUBLICATION

Quick Selection Guide to Chemical Protective Clothing Fourth Edition A JOHN WILEY & SONS PUBLICATION Quick Selection Guide to Chemical Protective Clothing Fourth Edition Krister Forsberg Lidingo, Sweden S.Z. Mansdorf Paris, France A JOHN WILEY & SONS PUBLICATION Quick Selection Guide to Chemical Protective

More information

INDEX rev..qxd 7/22/04 3:42 PM Page 425

INDEX rev..qxd 7/22/04 3:42 PM Page 425 INDEX rev..qxd 7/22/04 3:42 PM Page 425 I N D E X Admittance, 75 Air line, 43, 46 Ampere s circuital law, 202, 225 Amperian contour, 203 Angle azimuth, 109, 344 Brewster, 315 critical, 305 incidence, 303

More information

Lecture 05 Power in AC circuit

Lecture 05 Power in AC circuit CA2627 Building Science Lecture 05 Power in AC circuit Instructor: Jiayu Chen Ph.D. Announcement 1. Makeup Midterm 2. Midterm grade Grade 25 20 15 10 5 0 10 15 20 25 30 35 40 Grade Jiayu Chen, Ph.D. 2

More information

INTRODUCTION TO LINEAR REGRESSION ANALYSIS

INTRODUCTION TO LINEAR REGRESSION ANALYSIS INTRODUCTION TO LINEAR REGRESSION ANALYSIS WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information