Pseudospectral Methods For Op2mal Control. Jus2n Ruths March 27, 2009

Size: px
Start display at page:

Download "Pseudospectral Methods For Op2mal Control. Jus2n Ruths March 27, 2009"

Transcription

1 Pseudospectral Methods For Op2mal Control Jus2n Ruths March 27, 2009

2 Introduc2on Pseudospectral methods arose to find solu2ons to Par2al Differen2al Equa2ons Recently adapted for Op2mal Control Key Ideas (N ~ # of discre2za2ons) Orthogonal basis func2ons leads to spectral accuracy Coefficients decrease faster than 1/N k, for any k Special recursive defini2ons for deriva2ves of orthogonal polynomials lead to wri2ng dynamics as algebraic rela2ons Non uniform node spacing allows for op2mal numerical integra2on through Gauss quadrature

3 Op2mal Control Controls: State: Endpoint Constraints: Cost Func2on: Dynamics: Path Constraints: Op2mal control addresses deriving control laws for minimiza2on problems Applica2ons wide spread disciplines Indirect methods Calculus of Varia2ons Maximum Principle Difficult to scale up to larger, more complex problems Direct methods Reduce to nonlinear programming problem

4 Challenges of Op2mal Control Controls: State: unknown func2ons We would like to transform op2mal control problems into constrained op2miza2on problems Endpoint Constraints: Cost Func2on: Dynamics: Path Constraints: Integrate a nonlinear func2on of unknown variables. Only in rare cases is an analy2c expression for this integral possible. Analy2c expressions for evolved dynamics are, in general, not available.

5 Pseudospectral Conversion Op#mal Control Controls: Interpola2on Pseudospectral Methods Controls: State: Interpola2on State: Endpoint Constraints: Endpoint Constraints: Cost Func2on: Quadrature Cost Func2on: Dynamics: Spectral Deriva2ves Dynamics: Path Constraints: Path Constraints:

6 Discre2za2on

7 Discre2za2on

8 Polynomial Approxima2on Weierstrass (1889) Set of polynomials is a dense subspace in the space of con2nuous func2ons on [ 1,1] with uniform norm Equioscilla2on Theorem & Corollary For posi2ve N, the best approxima2ng polynomial to a con2nuous func2on on [ 1,1] exists, is unique, and interpolates the func2on at N+1 points

9 Polynomial Approxima2on Given N+1 nodes and con2nuous func2on the N order interpola2ng polynomial is unique, Any interpola2ng polynomial can be represented by the basis of Lagrange polynomials

10 Lagrange Polynomials Since at the discre2za2on nodes, Now this interpola2on approxima2on is totally specified by the func2on values at the N+1 discre2za2on nodes.

11 Lagrange Polynomials, N=7

12 Node Selec2on Polynomial interpola2on is sensi2ve to node selec2on Gauss Lobogo (GL) nodes are close to op2mal Uniform Spaced Nodes GL Spaced Nodes

13 Op2mal Nodes

14 Op2mal Nodes Uniform GL N=10 N=16

15 Orthogonal Polynomials Weight func2on: Inner product: Given a weight func2on, can create orthogonal basis Orthogonalizing non nega2ve powers of t w.r.t. a weight func2on results in a set of orthogonal polynomials

16 Spectral Approxima2on Given a family of orthogonal polynomials, Use of these orthogonal polynomials leads to spectral accuracy k th coefficient decays faster than k 1/q, for any q Analogous to Fourier series for periodic func2on

17 Spectral Approxima2on Recursive defini2on of deriva2ve Using orthogonal polynomials, can express deriva2ves as algebraic rela2ons Lagrange basis s2ll benefits from algebraic rela2ons for deriva2ves

18 Legendre Polynomials, N=7

19 Gauss Lobago Quadrature Includes endpoints useful for imposing boundary condi2ons Given: Family of orthogonal polynomials: Corresponding weight func2on: N > 0 Nodes are N+1 zeros of: Is exact for (2N 1) order polynomials GL nodes facilitate discre#za#on & numerical integra#on

20 Spectral Colloca2on Conversion Discrete inner product preserves orthogonality

21 Spectral vs. Pseudospectral N+1 condi2ons, requiring Spectral approxima2ons Galerkin & Tau: Colloca2on (interpola2on):

22 Elements of Pseudospectral Methods GL Nodes are op2mal for interpola2on & quadrature Interpola2on GL Nodes Quadraure p N Spectral Nodes are extrema of orthogonal polynomials

23 Approxima2on, N = 3

24 Approxima2on, N = 7

25 Approxima2on, N = 14

26 Approxima2on, N = 21

27 Pseudospectral Conversion Op#mal Control Controls: Pseudospectral Methods Controls: State: State: Endpoint Constraints: Endpoint Constraints: Cost Func2on: Cost Func2on: Dynamics: Dynamics: Path Constraints: Path Constraints:

28 Pseudospectral Preliminaries Physical 2me domain: [0, T] Computa2onal 2me domain: [ 1,1] Pseudospectral Methods Controls: State: Legendre vs. Chebyshev Polynomials Both are Jacobi type polynomials Endpoint Constraints: Cost Func2on: Dynamics: Path Constraints:

29 Pseudospectral Discre2za2on Pseudospectral Methods Controls: State: Endpoint Constraints: Cost Func2on: Dynamics: Path Constraints: Decision Variables: n x (N+1) m x (N+1)

30 Pseudospectral Quadrature Note: For Legendre polynomials Pseudospectral Methods Controls: State: Endpoint Constraints: Cost Func2on: Dynamics: Path Constraints: Note: Interpola2on polynomial uses Lagrange polynomials, deriva2ve rule is less obvious

31 Ex: Single Spin Op2miza2on

32 Ex: Single Spin Op2miza2on

33 Ex: Single Spin Opt

34 Ex: Spin Transfer

35 Ex: Spin Transfer

36 Ex: Ensemble Spin Op2miza2on

37 Discre2za2on & Sampling

38 Discre2za2on & Sampling

39 Op2mal Sampling n samples N discre2za2ons

40 Future Work Bilinear system dynamics Convergence Adapta2ons Op2mal sampling Two dimensional pseudospectral method Selec2ve excita2on pulses

41 Challenges Difficulty dealing with discon2nui2es Knonng methods Succumbs to locally op2mal solu2ons Computa2onal load Costate discrepancy in Legendre PS at endpts Gauss pseudospectral method

42 QUESTIONS & COMMENTS

Bellman s Curse of Dimensionality

Bellman s Curse of Dimensionality Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen

More information

Reduced Models for Process Simula2on and Op2miza2on

Reduced Models for Process Simula2on and Op2miza2on Reduced Models for Process Simulaon and Opmizaon Yidong Lang, Lorenz T. Biegler and David Miller ESI annual meeng March, 0 Models are mapping Equaon set or Module simulators Input space Reduced model Surrogate

More information

3.3 Increasing & Decreasing Functions and The First Derivative Test

3.3 Increasing & Decreasing Functions and The First Derivative Test 3.3 Increasing & Decreasing Functions and The First Derivative Test Definitions of Increasing and Decreasing Functions: A funcon f is increasing on an interval if for any two numbers x 1 and x 2 in the

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

Some thoughts on linearity, nonlinearity, and partial separability

Some thoughts on linearity, nonlinearity, and partial separability Some thoughts on linearity, nonlinearity, and partial separability Paul Hovland Argonne Na0onal Laboratory Joint work with Boyana Norris, Sri Hari Krishna Narayanan, Jean Utke, Drew Wicke Argonne Na0onal

More information

A Time Marching Scheme for Solving Volume Integral Equa9ons on Nonlinear Sca<erers

A Time Marching Scheme for Solving Volume Integral Equa9ons on Nonlinear Sca<erers A Time Marching Scheme for Solving Volume Integral qua9ons on Nonlinear Sca

More information

From average to instantaneous rates of change. (and a diversion on con4nuity and limits)

From average to instantaneous rates of change. (and a diversion on con4nuity and limits) From average to instantaneous rates of change (and a diversion on con4nuity and limits) Extra prac4ce problems? Problems in the Book Problems at the end of my slides Math Exam Resource (MER): hcp://wiki.ubc.ca/science:math_exam_resources

More information

Numerical Integra/on

Numerical Integra/on Numerical Integra/on Applica/ons The Trapezoidal Rule is a technique to approximate the definite integral where For 1 st order: f(a) f(b) a b Error Es/mate of Trapezoidal Rule Truncation error: From Newton-Gregory

More information

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 6: Linear Regression Model with Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 6: Linear Regression Model with Regulariza@ons Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sec@ons of this course

More information

Gradient Descent for High Dimensional Systems

Gradient Descent for High Dimensional Systems Gradient Descent for High Dimensional Systems Lab versus Lab 2 D Geometry Op>miza>on Poten>al Energy Methods: Implemented Equa3ons for op3mizer 3 2 4 Bond length High Dimensional Op>miza>on Applica3ons:

More information

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization Methodological Foundations of Biomedical Informatics (BMSCGA 4449) Optimization Op#miza#on A set of techniques for finding the values of variables at which the objec#ve func#on amains its cri#cal (minimal

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

Bias/variance tradeoff, Model assessment and selec+on

Bias/variance tradeoff, Model assessment and selec+on Applied induc+ve learning Bias/variance tradeoff, Model assessment and selec+on Pierre Geurts Department of Electrical Engineering and Computer Science University of Liège October 29, 2012 1 Supervised

More information

Stochas(c Dual Ascent Linear Systems, Quasi-Newton Updates and Matrix Inversion

Stochas(c Dual Ascent Linear Systems, Quasi-Newton Updates and Matrix Inversion Stochas(c Dual Ascent Linear Systems, Quasi-Newton Updates and Matrix Inversion Peter Richtárik (joint work with Robert M. Gower) University of Edinburgh Oberwolfach, March 8, 2016 Part I Stochas(c Dual

More information

Numerical Methods in Physics

Numerical Methods in Physics Numerical Methods in Physics Numerische Methoden in der Physik, 515.421. Instructor: Ass. Prof. Dr. Lilia Boeri Room: PH 03 090 Tel: +43-316- 873 8191 Email Address: l.boeri@tugraz.at Room: TDK Seminarraum

More information

Sec$on The Use of Exponen$al Weigh$ng Exponen$al weigh$ng of a sequence x(n) is defined by. (equa$on 13.70)

Sec$on The Use of Exponen$al Weigh$ng Exponen$al weigh$ng of a sequence x(n) is defined by. (equa$on 13.70) ECE 8440 UNIT 23 Sec$on 13.6.5 The Use of Exponen$al Weigh$ng Exponen$al weigh$ng of a sequence x(n) is defined by w(n) = α n x(n). (equa$on 13.69) Exponen$al weigh$ng can be used to avoid or lessen some

More information

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS 31 October, 2007 1 INTRODUCTION 2 ORTHOGONAL POLYNOMIALS Properties of Orthogonal Polynomials 3 GAUSS INTEGRATION Gauss- Radau Integration Gauss -Lobatto Integration

More information

Par$al Fac$on Decomposi$on. Academic Resource Center

Par$al Fac$on Decomposi$on. Academic Resource Center Par$al Fac$on Decomposi$on Academic Resource Center Table of Contents. What is Par$al Frac$on Decomposi$on 2. Finding the Par$al Fac$on Decomposi$on 3. Examples 4. Exercises 5. Integra$on with Par$al Fac$ons

More information

A Gauss Lobatto quadrature method for solving optimal control problems

A Gauss Lobatto quadrature method for solving optimal control problems ANZIAM J. 47 (EMAC2005) pp.c101 C115, 2006 C101 A Gauss Lobatto quadrature method for solving optimal control problems P. Williams (Received 29 August 2005; revised 13 July 2006) Abstract This paper proposes

More information

Modeling radiocarbon in the Earth System. Radiocarbon summer school 2012

Modeling radiocarbon in the Earth System. Radiocarbon summer school 2012 Modeling radiocarbon in the Earth System Radiocarbon summer school 2012 Outline Brief introduc9on to mathema9cal modeling Single pool models Mul9ple pool models Model implementa9on Parameter es9ma9on What

More information

Exponen'al func'ons and exponen'al growth. UBC Math 102

Exponen'al func'ons and exponen'al growth. UBC Math 102 Exponen'al func'ons and exponen'al growth Course Calendar: OSH 4 due by 12:30pm in MX 1111 You are here Coming up (next week) Group version of Quiz 3 distributed by email Group version of Quiz 3 due in

More information

Chapter 4. Fourier Analysis for Con5nuous-Time Signals and Systems Chapter Objec5ves

Chapter 4. Fourier Analysis for Con5nuous-Time Signals and Systems Chapter Objec5ves Chapter 4. Fourier Analysis for Con5nuous-Time Signals and Systems Chapter Objec5ves 1. Learn techniques for represen3ng con$nuous-$me periodic signals using orthogonal sets of periodic basis func3ons.

More information

Quantum Energy Inequali1es

Quantum Energy Inequali1es Quantum Energy Inequali1es Elisa Ferreira PHYS 731 Ian Morrison Ref: Lectures on Quantum Energy Inequali1es, C. Fewster 1208.5399 Introduc1on and Mo1va1on Classical energy condi1ons (CEC) of GR- WEC, NEC,

More information

ECE 8440 Unit 17. Parks- McClellan Algorithm

ECE 8440 Unit 17. Parks- McClellan Algorithm Parks- McClellan Algorithm ECE 8440 Unit 17 The Parks- McClellan Algorithm is a computer method to find the unit sample response h(n for an op=mum FIR filter that sa=sfies the condi=ons of the Alterna=on

More information

Some Advances on Isogeometric Analysis at KAUST

Some Advances on Isogeometric Analysis at KAUST Some Advances on Isogeometric Analysis at KAUST Victor M. Calo Applied Mathema=cs & Computa=onal Science Earth Science & Engineering King Abdullah University of Science and Technology Joint work with:

More information

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem.

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem. The BCS Model Sara Changizi This presenta5on closely follows parts of chapter 6 in Ring & Schuc The nuclear many body problem. Outline Introduc5on to pairing Essen5al experimental facts The BCS model Pure

More information

Modelling of Equipment, Processes, and Systems

Modelling of Equipment, Processes, and Systems 1 Modelling of Equipment, Processes, and Systems 2 Modelling Tools Simple Programs Spreadsheet tools like Excel Mathema7cal Tools MatLab, Mathcad, Maple, and Mathema7ca Special Purpose Codes Macroflow,

More information

Varia%onal principles. Op%mality in nature. and. Andrej Cherkaev Department of Mathema%cs University of Utah USAG November 2013.

Varia%onal principles. Op%mality in nature. and. Andrej Cherkaev Department of Mathema%cs University of Utah USAG November 2013. Varia%onal principles and Op%mality in nature Andrej Cherkaev Department of Mathema%cs University of Utah cherk@math.utah.edu USAG November 2013. Components of applied math Math Modeling Differen%al equa%ons

More information

The DFT. Star+ng from Chapter 3, DFT of atoms and molecules, Parr & Lee 1989

The DFT. Star+ng from Chapter 3, DFT of atoms and molecules, Parr & Lee 1989 The DFT Star+ng from Chapter 3, DFT of atoms and molecules, Parr & Lee 1989 DFT- Thomas- Fermi model for atoms The theory showing how the N- electron wave func+on depending on 3N coordinates can be replaced

More information

(5.5) Multistep Methods

(5.5) Multistep Methods (5.5) Mulstep Metods Consider te inial-value problem for te ordinary differenal equaon: y t f t, y, a t b, y a. Let y t be te unique soluon. In Secons 5., 5. and 5.4, one-step numerical metods: Euler Metod,

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

Con$nuous Op$miza$on: The "Right" Language for Fast Graph Algorithms? Aleksander Mądry

Con$nuous Op$miza$on: The Right Language for Fast Graph Algorithms? Aleksander Mądry Con$nuous Op$miza$on: The "Right" Language for Fast Graph Algorithms? Aleksander Mądry We have been studying graph algorithms for a while now Tradi$onal view: Graphs are combinatorial objects graph algorithms

More information

A Legendre Computational Matrix Method for Solving High-Order Fractional Differential Equations

A Legendre Computational Matrix Method for Solving High-Order Fractional Differential Equations Mathematics A Legendre Computational Matrix Method for Solving High-Order Fractional Differential Equations Mohamed Meabed KHADER * and Ahmed Saied HENDY Department of Mathematics, Faculty of Science,

More information

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons Daniel A. Spielman Yale University Rutgers, Dec 6, 2011 Outline Linear Systems in Laplacian Matrices What? Why? Classic ways to solve

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Rational Chebyshev pseudospectral method for long-short wave equations

Rational Chebyshev pseudospectral method for long-short wave equations Journal of Physics: Conference Series PAPER OPE ACCESS Rational Chebyshev pseudospectral method for long-short wave equations To cite this article: Zeting Liu and Shujuan Lv 07 J. Phys.: Conf. Ser. 84

More information

1462. Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel

1462. Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel 1462. Jacobi pseudo-spectral Galerkin method for second kind Volterra integro-differential equations with a weakly singular kernel Xiaoyong Zhang 1, Junlin Li 2 1 Shanghai Maritime University, Shanghai,

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

COMP 562: Introduction to Machine Learning

COMP 562: Introduction to Machine Learning COMP 562: Introduction to Machine Learning Lecture 20 : Support Vector Machines, Kernels Mahmoud Mostapha 1 Department of Computer Science University of North Carolina at Chapel Hill mahmoudm@cs.unc.edu

More information

Least Mean Squares Regression. Machine Learning Fall 2017

Least Mean Squares Regression. Machine Learning Fall 2017 Least Mean Squares Regression Machine Learning Fall 2017 1 Lecture Overview Linear classifiers What func?ons do linear classifiers express? Least Squares Method for Regression 2 Where are we? Linear classifiers

More information

7. Quantum Monte Carlo (QMC)

7. Quantum Monte Carlo (QMC) Molecular Simulations with Chemical and Biological Applications (Part I) 7. Quantum Monte Carlo (QMC) Dr. Mar(n Steinhauser 1 HS 2014 Molecular Simula(ons with Chemical and Biological Applica(ons 1 Introduc5on

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Regression.

Regression. Regression www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts linear regression RMSE, MAE, and R-square logistic regression convex functions and sets

More information

Numerical Integration (Quadrature) Another application for our interpolation tools!

Numerical Integration (Quadrature) Another application for our interpolation tools! Numerical Integration (Quadrature) Another application for our interpolation tools! Integration: Area under a curve Curve = data or function Integrating data Finite number of data points spacing specified

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS Image Processing 1 (IP1 Bildverarbeitung 1 Lecture 5 Perspec

More information

Instructions for Matlab Routines

Instructions for Matlab Routines Instructions for Matlab Routines August, 2011 2 A. Introduction This note is devoted to some instructions to the Matlab routines for the fundamental spectral algorithms presented in the book: Jie Shen,

More information

1. Introduc9on 2. Bivariate Data 3. Linear Analysis of Data

1. Introduc9on 2. Bivariate Data 3. Linear Analysis of Data Lecture 3: Bivariate Data & Linear Regression 1. Introduc9on 2. Bivariate Data 3. Linear Analysis of Data a) Freehand Linear Fit b) Least Squares Fit c) Interpola9on/Extrapola9on 4. Correla9on 1. Introduc9on

More information

The deriva*ve. Analy*c, geometric, computa*onal. UBC Math 102

The deriva*ve. Analy*c, geometric, computa*onal. UBC Math 102 The deriva*ve Analy*c, geometric, computa*onal UBC Math 102 Deriva*ve: Analy*c Use the defini*on of the deriva*ve to compute the deriva*ve of the func*on y = x 3 MT testtype ques*on Done fast? Try to extend

More information

Computer Graphics Keyframing and Interpola8on

Computer Graphics Keyframing and Interpola8on Computer Graphics Keyframing and Interpola8on This Lecture Keyframing and Interpola2on two topics you are already familiar with from your Blender modeling and anima2on of a robot arm Interpola2on linear

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13 Computer Vision Pa0ern Recogni4on Concepts Part I Luis F. Teixeira MAP- i 2012/13 What is it? Pa0ern Recogni4on Many defini4ons in the literature The assignment of a physical object or event to one of

More information

A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions

A new class of highly accurate differentiation schemes based on the prolate spheroidal wave functions We introduce a new class of numerical differentiation schemes constructed for the efficient solution of time-dependent PDEs that arise in wave phenomena. The schemes are constructed via the prolate spheroidal

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

Effec%ve Field Theory of Dissipa%ve Fluids

Effec%ve Field Theory of Dissipa%ve Fluids Effec%ve Field Theory of Dissipa%ve Fluids Hong Liu Paolo Glorioso arxiv: 1511.03646 and to appear Michael Crossley Conserved quan%%es and hydrodynamics Consider long wavelength disturbances of a system

More information

Introduction to the FDTD method

Introduction to the FDTD method Introduction to the FDTD method Ilkka Laakso Department of Electrical Engineering and Automa8on Tfy- 99.3227 4.11.2015 Contents Principle of FDTD Deriva8on Basic proper8es Stability Dispersion Boundary

More information

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA Introduction to Finite and Spectral Element Methods Using MATLAB Second Edition C. Pozrikidis University of Massachusetts Amherst, USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC

More information

Quadrature approaches to the solution of two point boundary value problems

Quadrature approaches to the solution of two point boundary value problems Quadrature approaches to the solution of two point boundary value problems Seth F. Oppenheimer Mohsen Razzaghi Department of Mathematics and Statistics Mississippi State University Drawer MA MSU, MS 39763

More information

REGRESSION AND CORRELATION ANALYSIS

REGRESSION AND CORRELATION ANALYSIS Problem 1 Problem 2 A group of 625 students has a mean age of 15.8 years with a standard devia>on of 0.6 years. The ages are normally distributed. How many students are younger than 16.2 years? REGRESSION

More information

Least Square Es?ma?on, Filtering, and Predic?on: ECE 5/639 Sta?s?cal Signal Processing II: Linear Es?ma?on

Least Square Es?ma?on, Filtering, and Predic?on: ECE 5/639 Sta?s?cal Signal Processing II: Linear Es?ma?on Least Square Es?ma?on, Filtering, and Predic?on: Sta?s?cal Signal Processing II: Linear Es?ma?on Eric Wan, Ph.D. Fall 2015 1 Mo?va?ons If the second-order sta?s?cs are known, the op?mum es?mator is given

More information

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler + Machine Learning and Data Mining Linear regression Prof. Alexander Ihler Supervised learning Notation Features x Targets y Predictions ŷ Parameters θ Learning algorithm Program ( Learner ) Change µ Improve

More information

Polynomials and Gröbner Bases

Polynomials and Gröbner Bases Alice Feldmann 16th December 2014 ETH Zürich Student Seminar in Combinatorics: Mathema:cal So

More information

Binary black holes and gravita4onal waves: Introduc4on to SpEC

Binary black holes and gravita4onal waves: Introduc4on to SpEC Binary black holes and gravita4onal waves: Introduc4on to SpEC Abdul Mroue Canadian Ins4tute for Theore4cal Astrophysics 2011 Interna4onal School on Numercical Rela4vity and Gravita4onal waves July 27-

More information

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Work On: - Prac0ce problems from the textbook and assignments from the coursepack as assigned

More information

Fields, wave and electromagne3c pulses. fields, waves <- > par0cles pulse <- > bunch (finite in 0me),

Fields, wave and electromagne3c pulses. fields, waves <- > par0cles pulse <- > bunch (finite in 0me), Fields, wave and electromagne3c pulses fields, waves par0cles pulse bunch (finite in 0me), 1 Op3cs ray or geometric op0cs: ABCD matrix, wave op0cs (used e.m. field to describe the op0cal field):

More information

Priors in Dependency network learning

Priors in Dependency network learning Priors in Dependency network learning Sushmita Roy sroy@biostat.wisc.edu Computa:onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

Fairness with Indivisible Goods: Solu6on Concepts and Algorithms

Fairness with Indivisible Goods: Solu6on Concepts and Algorithms Fairness with Indivisible Goods: Solu6on Concepts and Algorithms Vangelis Markakis Athens University of Economics and Business (AUEB) Dept. of Informa

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Bioelectrical Circuits: Lecture 9

Bioelectrical Circuits: Lecture 9 City University of New York (CUNY) CUNY Academic Works Open Educational Resources City College of New York 2019 Bioelectrical Circuits: Lecture 9 Jacek P. Dmochowski CUNY City College Luis Cardoso CUNY

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 1 Evalua:on

More information

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA 1 BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545.

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Performance and Quality Analysis of Interpolation Methods for Coupling

Performance and Quality Analysis of Interpolation Methods for Coupling Performance and Quality Analysis of Interpolation Methods for Coupling Neda Ebrahimi Pour, Sabine Roller Outline Motivation Coupling Approaches Interpolation/Evaluation Results of Investigation Summary

More information

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University Algorithms, Graph Theory, and Linear Equa9ons in Laplacians Daniel A. Spielman Yale University Shang- Hua Teng Carter Fussell TPS David Harbater UPenn Pavel Cur9s Todd Knoblock CTY Serge Lang 1927-2005

More information

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS Victor S. Ryaben'kii Semyon V. Tsynkov Chapman &. Hall/CRC Taylor & Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor

More information

Deriva'on of The Kalman Filter. Fred DePiero CalPoly State University EE 525 Stochas'c Processes

Deriva'on of The Kalman Filter. Fred DePiero CalPoly State University EE 525 Stochas'c Processes Deriva'on of The Kalman Filter Fred DePiero CalPoly State University EE 525 Stochas'c Processes KF Uses State Predic'ons KF es'mates the state of a system Example Measure: posi'on State: [ posi'on velocity

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

Math S1201 Calculus 3 Chapters

Math S1201 Calculus 3 Chapters Math S1201 Calculus 3 Chapters 14.2 14.4 Summer 2015 Instructor: Ilia Vovsha h?p://www.cs.columbia.edu/~vovsha/calc3 1 Outline CH 14.2 MulGvariate FuncGons: Limits and ConGnuity Limits along paths Determining

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

Example 3.3 Moving-average filter

Example 3.3 Moving-average filter 3.3 Difference Equa/ons for Discrete-Time Systems A Discrete-/me system can be modeled with difference equa3ons involving current, past, or future samples of input and output signals Example 3.3 Moving-average

More information

The par/cle-hole picture

The par/cle-hole picture Nuclear pairing The par/cle-hole picture The lowest state ground state- of a system A A of N=A fermions with an energy E 0 = ε i i=1 i=1 Fermi level: the highest occupied state with energy ε A The expecta/on

More information

Legendre Pseudospectral Approximations of Optimal Control Problems

Legendre Pseudospectral Approximations of Optimal Control Problems Legendre Pseudospectral Approximations of Optimal Control Problems I. Michael Ross 1 and Fariba Fahroo 1 Department of Aeronautics and Astronautics, Code AA/Ro, Naval Postgraduate School, Monterey, CA

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

Improved Lebesgue constants on the triangle

Improved Lebesgue constants on the triangle Journal of Computational Physics 207 (2005) 625 638 www.elsevier.com/locate/jcp Improved Lebesgue constants on the triangle Wilhelm Heinrichs Universität Duisburg-Essen, Ingenieurmathematik (FB 10), Universitätsstrasse

More information

Direct Optimal Control and Costate Estimation Using Least Square Method

Direct Optimal Control and Costate Estimation Using Least Square Method 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeB22.1 Direct Optimal Control and Costate Estimation Using Least Square Method Baljeet Singh and Raktim Bhattacharya

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity Electronic Structure Calcula/ons: Density Func/onal Theory and Predic/ng Cataly/c Ac/vity Review Examples of experiments that do not agree with classical physics: Photoelectric effect Photons and the quan/za/on

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on prac0ce problems from the textbook

More information

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs CSCI1950 Z Computa3onal Methods for Biology Lecture 24 Ben Raphael April 29, 2009 hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs Subnetworks with more occurrences than expected by chance. How to

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr Two common difficul:es with HW : Problem 1c: For what values of n does the divergence of v = r n ˆr diverge at the origin? In this context, diverge means becomes arbitrarily large ( goes to infinity ).

More information

Numerical Integra/on

Numerical Integra/on Numerical Integra/on The Trapezoidal Rule is a technique to approximate the definite integral where For 1 st order: f(a) f(b) a b Error Es/mate of Trapezoidal Rule Truncation error: From Newton-Gregory

More information