256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

Size: px
Start display at page:

Download "256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim."

Transcription

1 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW = π k x ν = k c t π Phase error: Leading term of the relative error. Often ( ) order π PE(p, ν) Cν. PPW Work per wavelength: W m = m PPW t t, where m = order. Infinite-order finite differences: As above with m. Demand exactness for trig. polynomial e ilx. Find coefficients by comparing with Fourier series for x x. Rearranging the sum gives du dx x j = N [ ( )] π ( )j+i sin (j i) u i. N + i=0?d i,j Trigonometric Polynomial Approximation Assume u: [0, π] R periodic. N even. Spaces: BˆN 4 span{einx { ( : n )} N/} N + -dim. N B N 4 Bˆn \ sin x N-dim.. Continuous Expansion Fourier series: P N u(x) = û n = π n= π 0 û n e inx, f(x)e inx dx.

2 Section Special cases: u real û n = û n, u even only cosines, u odd only sines. Approximation: n= û n < u P N u L 0. n= û n < u P N u L 0. u (0 m ) (viewed periodically) is continuous, u (m) L û n (/n) m. Spectral convergence: u C û n decays faster than any power of n. PD = DP. Projection and differentiation commute. (start with expansion above, carry out both.) Truncation error: P N L(Id P N )=0... Approximation Theory for the Continuous Expansion Sobolev norm: Parseval s Identity: h = /N. u H r : q u q = m=0 n D m u L Proof: Parseval, consider tail, smuggle in an n q u analytic: n= û n = π u. π 0 u P N u L Ch q u (q). L n q. u P N u L Ce cn u L Proof: u (q) L Cq! u,stirling s Formula: q! q q e q, q N. L u H r : u P N u H q Ch r q u H r. û n (+ n ) q. Proof: Parseval, (+ n ) q (+ n r ). (r q) N u C q, q > /: u P N u L h q / u (q). L Proof: u P N u, smuggle in n q, CSU. L a constant coefficient differential operator:. Discrete Expansion.. Discrete Even Expansion x j =πj/n, j = 0 N. (N points) s Lu = j= a j d j u dx j. Lu LP N u H q h r q s u H r.

3 Trigonometric Polynomial Approximation 3 Exactness: Periodic case: Trapezoidal rule is Gauß quadrature. Proof: Evaluate geometric series. Coefficients: u BˆN : ũ n = Nc n π u(x)= π 0 N N u(x j ) N e inxj u(x j ), where c n =+ n=n/ to compensate for ũ N/ =ũ N/. N coefficients, N quadrature points. Interpolant: with I N : L B N. I N u(x) = g j (x) = N sin ( n N/ N = ũ n e inx. g j (x)u(x j ) N x x ) j cot I N u(x j )=u(x j ). (rewrite sums, geometric series) ( x xj Two different ways to differentiate: go through mode space or don t. Differentiation matrix is circulant. sin N/ consequences: I N d dx DI N (d/dx: B N B N) D D (). Spatial discretization does not cause phase error deterioration... Discrete Odd Expansion x j =πj/(n +) j = 0 N. (N + points) Exactness: Periodic case: Trapezoidal rule is Gauß quadrature. Coefficients: Interpolant: u BˆN: π u(x) = π 0 N + ũ n = N + J N u(x) = ). N u(x j ). N u(x j )e inxj. n N/ N = l=0 ũ n e inx u(x l )h l (x) with J N : L BˆN. h l (x)= sin N + sin ( N + ( ) (x x l ) N/ ) = (x x l) k= N/ e ik(x xl).

4 4 Section 3 J N u(x j ) =u(x j ). May also be viewed as Lagrange trigonometric interpolant: Same differentiation matrix as -order FD. I N d dx = DI N...3 Approximation Theory for Discrete Expansions u H q, q >/: c nũ n =û n + m,m 0 û n+nm Proof: Substitute continuous into discrete, exchange sums because of absolute convergence, smuggle+csu. Aliasing error: u H r, r >/: Proof: smuggle, CSU. u H r, r >/: A N u 4 c nũ n û n. A N u L h r u (r). L u I N u L h r u (r). L Proof: Error = aliasing+truncation. u H r, r >/: u H r, r >/: A N u H q h r q u H r. u I N u H q h r q u H r, Lu LI N u H q h r q s u H r. 3 Fourier Spectral Methods Consider u t = Lu. 3. Fourier Galerkin Defining assumption: R N = t u N Lu N BˆN. Build method: Calculate residual, project onto BˆN, set to zero. Multiplication (for nonlinear problems) becomes convolution. (e.g. Burgers) More complicated nonlinearities: no way. Very efficient for linear, constant-coefficient problems with periodic BCs. 3.. Stability L semi-bounded: stability. L+L αid

5 Fourier Spectral Methods 5 Proving semi-boundedness: Integrate by parts. Examples: L=a(x) x L= x b(x) x L semi-bounded Fourier-Galerkin stable. Proof: show P N = P N by (P N u, v)=(p N u, P N v). Then L N = P N LP N semi-bounded. 3. Fourier Collocation Defining assumption: R N yj = 0 Optionally: Collocation points {y j } Quadrature points {x j }. (we won t do that) Build method: Expand u with Lagrange interpolation polynomial. Obtain residual. Set to zero at collocation points simply replace derivatives by application of the differentiation matrix. 3.. Stability I N I N, so Fourier Galerkin proof breaks. Discrete inner product: u N N = u N L for odd expansion. u N N u N L for even expansion. L = a(x)u(x), 0 </k a(x) k: (u, v) N = N + N f(x j )g(x j ) u N (t) N k u N (0). Proof: Multiply by u N /a, obtain (/a)d/dt( u ). Use exactness of quad. formula, periodicity to get d/dt =0. Exploit boundedness of a. u = A D u: Use A / as a change of variables, then bound u = e ADt u 0 by saying A / D A / is skew-symmetric. Proof remains valid for u = DAu, L= a(x), L = a(x)u(x) with a(x) changing sign, but a x / α uniformly treat skew-symmetric form Lu= a u x+ (a u) x a xu to get u N N e αt u 0 N : Proof: Multiply by u N, get d/dt u N. Integrate (exact) by parts in the second term, only third term left over, yields bound. skew-symmetric equation can be written u N t + J Na x u N + xj N [a u N ] J N(a x u N ) = 0, u N t + J Na x u N + xj N [a u N ] (J N x (a u N ) J N a x u N ) = 0, u N t + J Na x u N + xj N [a u N ] J N x (au N )?A N 4 = 0 A N L h s un (s) L

6 6 Section 4 (it s s because A N contains derivatives). This motivates the......superviscosity method L u = Lu +( ) s ε N s x s u N. Stable if ε > some constant C. (s) Proof: Add A N on both sides, integrate (u N, A N ) N by parts, u N L. Bound superviscosity term by same norm, bound for (u, t u) N involving a x shows up. Using Fourier Galerkin, see that superviscosity = filtering. L = b(x) x u, b > 0: matrix method: Define D () = D, note D u BˆN, D () real u B N, use skew-hermiticity. integral method: x 4 I N x I N x I N, then rewrite as integral. L = f(u) x : Spectral viscosity method where Q m is a filter Superspectral viscosity method t u N + x P N f(u N )=ε N ( ) s+ x s [Q m x s u N ] t u N + x P N f(u N ) =ε N ( ) s+ x s u N. 4 Orthogonal Polynomials B N 4 span{x n : 0 n N}. Fourier methods achieve exponential accuracy only if u is periodic. Sturm-Liouville operator: p > 0, 0 q <M, w the weight function. Parseval identity: Lϕ = x (p x ϕ)+ qϕ = λwϕ (u, u) Lw = γ n û n, γ n =(ϕ n, ϕ n ), û n = γ n (u, ϕ n ) Lw. Estimate decay of û n by plugging in eigenvalue problem, using selfadjointness of operator. Singular Sturm-Liouville problem: p vanishes at boundary. û n C ( ) m L u w λ n m spectral decay for C functions with zero BCs. (Regular problem: only for periodic problems, otherwise boundary causes error.) Jacobi polynomials: P n (α,β), α, β > p(x)=( x) α+ ( +x) β+, w(x) =( x) α (+x) β, q(x) =cw. Lw. Rodrigues formula: Derivative: ( x) α ( +x) β P n α,β (x) = n n! x n ( x) α+n ( + x) β+n. d dx P n (α,β) = n + α + β + P (α+,β+) n (x).

7 Polynomial Expansions 7 Odd/Even: P n (α,β) = ( ) n P n (α,β) ( x). There are various three-term recurrence for these polynomials, P (α,β) 0 =, P (α,β) = (α + β + )x + (α β)/. Legendre polynomials: α = β =0, w, called P n Chebyshev polynomials: p = x, q =0, w = p. T n = cos(n arccos(x)). x T n = T n + T n+. Chebyshev is best approximation to x n+ among polynomials of degree n. Ultraspherical/Gegenbauer polynomials: α = β. PPW for polynomials: 4. (Gegenbauer expansion, decay of the Bessel function) 5 Polynomial Expansions Can somewhat easily differentiate and integrate, requires three-term stuff and its inverse. Gauß-Lobatto quadrature: both endpoints part of the quadrature. Exact for B N. Gauß-Radau quadrature: one endpoint part of the quadrature. Exact for B N. Pure Gauß quadrature: no endpoints part of the quadrature. Exact for B N+. Each different kind of polynomial has a different set of quadrature points and weights because each has a different weight function. Chebyshev Quadrature: with GL ( ) GR ( ) G ( ) j j j + x j = cos N π w j = cos N + π z j = cos N + π w j = π v j = π u j = π c j N c j N + N + c j = + N + 0. j = 0,, N [, ] w denotes discrete inner product, N,w discrete norm. Discrete Gauß-Lobatto norm: not exact for n = N, but equivalent. Discrete Expansion: N I N u(x)= n=0 P n (α) (x)ũ n, ũ n = N u(x j )P (α) n (x j )w j γ n Quadrature points are interpolation points. Proof: Plug coefficient terms into expansion, exchange sums to find l j (x)=w j is the Lagrange interpolation polynomial. N n=0 P (α) n (x)p (α) n (x j ) γ n Differentiation matrices are nilpotent. (Decrease in order) GL Differentiation matrix is centro-antisymmetric. D (q) = D q.

8 8 Section 6 Runge phenomenon: Wild behavior of polynomials near interval boundaries. u C 0 [, ], {x j } interpolation nodes. Then u I n u +Λ N u p, where p is the best-approximating polynomial and Λ N C log(n + )+C. Cauchy interpolation remainder: Λ n = max λ n, λ n = N l j (x). [,] u(x) I N u(x)= u(n+) (ξ) (N + )! Grid points should cluster quadratically near the boundary. n (x x j ). 6 Polynomial Spectral Methods & Stability 6. Galerkin Defining assumption: Residual orthogonal to B N. Stiffness matrix: Mass matrix: positive definite because L -norm is a norm. Formulation: S k,n = ϕ k Lϕ n wdx. γ k M k,n = ϕ k ϕ n wdx, γ k ȧ =M Sa. Basis constructed as a linear combination of P n (α) to ensure BCs are kept. u t = Lu. If L is semi-bounded (L+L γid), then the Galerkin method is stable. Linear hyperbolic equation well-posed in Jacobi norm for α 0, β 0, but not for Chebyshev. (Consider x /ε. Norm blows up, because Cheb weights blow up.) 6. Tau Defining assumption: Residual orthogonal to B N k, where k is the number of BCs, demand that it is zero. BC coefficients can be obtained once PDE-discretizing coefficients are computed. Mass matrix remains diagonal. Usable for elliptic problems, allows efficient preconditioners. Burgers: Product once again becomes convolution-like term. 6.3 Collocation Defining assumption: Residual zero at interpolation/quadrature nodes.

9 Polynomial Spectral Methods & Stability 9 Stability: Usual go-to-integral stuff. 6.4 Penalty Method for Boundary Conditions Example: Q (x) = ( x)p N (x) P N ( ) { x=, = 0 x=x j. u N t + a u N x = τa Q (x)(u N ( ) BC) Consistent because exact solution satisfies scheme exactly. Stable: go back to integral, gives boundary values, tweak τ to be bigger than corresponding weight.

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS 31 October, 2007 1 INTRODUCTION 2 ORTHOGONAL POLYNOMIALS Properties of Orthogonal Polynomials 3 GAUSS INTEGRATION Gauss- Radau Integration Gauss -Lobatto Integration

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Advanced Computational Fluid Dynamics AA215A Lecture 2 Approximation Theory. Antony Jameson

Advanced Computational Fluid Dynamics AA215A Lecture 2 Approximation Theory. Antony Jameson Advanced Computational Fluid Dynamics AA5A Lecture Approximation Theory Antony Jameson Winter Quarter, 6, Stanford, CA Last revised on January 7, 6 Contents Approximation Theory. Least Squares Approximation

More information

Polynomial Approximation: The Fourier System

Polynomial Approximation: The Fourier System Polynomial Approximation: The Fourier System Charles B. I. Chilaka CASA Seminar 17th October, 2007 Outline 1 Introduction and problem formulation 2 The continuous Fourier expansion 3 The discrete Fourier

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

23 Elements of analytic ODE theory. Bessel s functions

23 Elements of analytic ODE theory. Bessel s functions 23 Elements of analytic ODE theory. Bessel s functions Recall I am changing the variables) that we need to solve the so-called Bessel s equation 23. Elements of analytic ODE theory Let x 2 u + xu + x 2

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs Boundary Value Problems Numerical Methods for BVPs Outline Boundary Value Problems 2 Numerical Methods for BVPs Michael T. Heath Scientific Computing 2 / 45 Boundary Value Problems Numerical Methods for

More information

Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 2013

Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 2013 Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 013 August 8, 013 Solutions: 1 Root Finding (a) Let the root be x = α We subtract α from both sides of x n+1 = x

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

SPECTRAL METHODS ON ARBITRARY GRIDS. Mark H. Carpenter. Research Scientist. Aerodynamic and Acoustic Methods Branch. NASA Langley Research Center

SPECTRAL METHODS ON ARBITRARY GRIDS. Mark H. Carpenter. Research Scientist. Aerodynamic and Acoustic Methods Branch. NASA Langley Research Center SPECTRAL METHODS ON ARBITRARY GRIDS Mark H. Carpenter Research Scientist Aerodynamic and Acoustic Methods Branch NASA Langley Research Center Hampton, VA 368- David Gottlieb Division of Applied Mathematics

More information

A fast and well-conditioned spectral method: The US method

A fast and well-conditioned spectral method: The US method A fast and well-conditioned spectral method: The US method Alex Townsend University of Oxford Leslie Fox Prize, 24th of June 23 Partially based on: S. Olver & T., A fast and well-conditioned spectral method,

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

PDEs, part 3: Hyperbolic PDEs

PDEs, part 3: Hyperbolic PDEs PDEs, part 3: Hyperbolic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2011 Hyperbolic equations (Sections 6.4 and 6.5 of Strang). Consider the model problem (the

More information

Boundary Value Problems and Iterative Methods for Linear Systems

Boundary Value Problems and Iterative Methods for Linear Systems Boundary Value Problems and Iterative Methods for Linear Systems 1. Equilibrium Problems 1.1. Abstract setting We want to find a displacement u V. Here V is a complete vector space with a norm v V. In

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Chapter 4. Series Solutions. 4.1 Introduction to Power Series

Chapter 4. Series Solutions. 4.1 Introduction to Power Series Series Solutions Chapter 4 In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation adds a new story to the old

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS MATHEMATICAL METHODS PARTIAL DIFFERENTIAL EQUATIONS I YEAR B.Tech By Mr. Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. SYLLABUS OF MATHEMATICAL

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence John Pearson MSc Special Topic Abstract Numerical approximations of

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Rational Chebyshev pseudospectral method for long-short wave equations

Rational Chebyshev pseudospectral method for long-short wave equations Journal of Physics: Conference Series PAPER OPE ACCESS Rational Chebyshev pseudospectral method for long-short wave equations To cite this article: Zeting Liu and Shujuan Lv 07 J. Phys.: Conf. Ser. 84

More information

Generalised Summation-by-Parts Operators and Variable Coefficients

Generalised Summation-by-Parts Operators and Variable Coefficients Institute Computational Mathematics Generalised Summation-by-Parts Operators and Variable Coefficients arxiv:1705.10541v [math.na] 16 Feb 018 Hendrik Ranocha 14th November 017 High-order methods for conservation

More information

Finite difference methods for the diffusion equation

Finite difference methods for the diffusion equation Finite difference methods for the diffusion equation D150, Tillämpade numeriska metoder II Olof Runborg May 0, 003 These notes summarize a part of the material in Chapter 13 of Iserles. They are based

More information

Examination paper for TMA4130 Matematikk 4N: SOLUTION

Examination paper for TMA4130 Matematikk 4N: SOLUTION Department of Mathematical Sciences Examination paper for TMA4 Matematikk 4N: SOLUTION Academic contact during examination: Morten Nome Phone: 9 84 97 8 Examination date: December 7 Examination time (from

More information

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT Received: 31 July, 2008 Accepted: 06 February, 2009 Communicated by: SIMON J SMITH Department of Mathematics and Statistics La Trobe University,

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x).

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x). Problem set 4: Solutions Math 27B, Winter216 1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u, u 1 : u t = u xx < x < 1, t > u(, t) = u, u(1, t) =

More information

Spectral Methods for Hyperbolic Problems

Spectral Methods for Hyperbolic Problems Spectral Methods for Hyperbolic Problems J. S. Hesthaven EPFL-SB-MATHICSE-MCSS, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland E-mail: Jan.Hesthaven@epfl.ch We review spectral methods

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

Examination paper for TMA4215 Numerical Mathematics

Examination paper for TMA4215 Numerical Mathematics Department of Mathematical Sciences Examination paper for TMA425 Numerical Mathematics Academic contact during examination: Trond Kvamsdal Phone: 93058702 Examination date: 6th of December 207 Examination

More information

Polynomial approximation via de la Vallée Poussin means

Polynomial approximation via de la Vallée Poussin means Summer School on Applied Analysis 2 TU Chemnitz, September 26-3, 2 Polynomial approximation via de la Vallée Poussin means Lecture 2: Discrete operators Woula Themistoclakis CNR - National Research Council

More information

A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC COEFFICIENT APPROXIMATIONS

A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC COEFFICIENT APPROXIMATIONS Proceedings of ALGORITMY 2005 pp. 222 229 A FAST SOLVER FOR ELLIPTIC EQUATIONS WITH HARMONIC COEFFICIENT APPROXIMATIONS ELENA BRAVERMAN, MOSHE ISRAELI, AND ALEXANDER SHERMAN Abstract. Based on a fast subtractional

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Fractional Spectral and Spectral Element Methods

Fractional Spectral and Spectral Element Methods Fractional Calculus, Probability and Non-local Operators: Applications and Recent Developments Nov. 6th - 8th 2013, BCAM, Bilbao, Spain Fractional Spectral and Spectral Element Methods (Based on PhD thesis

More information

CLASSROOM NOTES PART II: SPECIAL TOPICS. APM526, Spring 2018 Last update: Apr 11

CLASSROOM NOTES PART II: SPECIAL TOPICS. APM526, Spring 2018 Last update: Apr 11 CLASSROOM NOTES PART II: SPECIAL TOPICS APM526, Spring 2018 Last update: Apr 11 1 Function Space Methods General Setting: Projection into finite dimensional subspaces t u = F (u), u(t = 0) = u I, F : B

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations Numerical Analysis of Differential Equations 215 6 Numerical Solution of Parabolic Equations 6 Numerical Solution of Parabolic Equations TU Bergakademie Freiberg, SS 2012 Numerical Analysis of Differential

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Chapter 1: The Finite Element Method

Chapter 1: The Finite Element Method Chapter 1: The Finite Element Method Michael Hanke Read: Strang, p 428 436 A Model Problem Mathematical Models, Analysis and Simulation, Part Applications: u = fx), < x < 1 u) = u1) = D) axial deformation

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution Math 5 (006-007 Yum-Tong Siu. Derivation of the Poisson Kernel by Fourier Series and Convolution We are going to give a second derivation of the Poisson kernel by using Fourier series and convolution.

More information

AND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup

AND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES An Introduction to Partial Differential Equations with MATLAB Second Edition Matthew P Coleman Fairfield University Connecticut, USA»C)

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

PDEs, part 1: Introduction and elliptic PDEs

PDEs, part 1: Introduction and elliptic PDEs PDEs, part 1: Introduction and elliptic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Partial di erential equations The solution depends on several variables,

More information

School on spectral methods,

School on spectral methods, School on spectral methods, with applications to General Relativity and Field Theory CIAS, Meudon Observatory, 14-18 November 2005 http://www.lorene.obspm.fr/school/ Lectures by Silvano Bonazzola, Eric

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS * 1. Introduction

ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS * 1. Introduction Journal of Computational Mathematics, Vol.6, No.6, 008, 85 837. ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS * Tao Tang Department of Mathematics, Hong Kong Baptist

More information

The Fourier spectral method (Amath Bretherton)

The Fourier spectral method (Amath Bretherton) The Fourier spectral method (Amath 585 - Bretherton) 1 Introduction The Fourier spectral method (or more precisely, pseudospectral method) is a very accurate way to solve BVPs with smooth solutions on

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

arxiv: v1 [physics.comp-ph] 30 Sep 2015

arxiv: v1 [physics.comp-ph] 30 Sep 2015 On the quasi-unconditional stability of BDF-ADI solvers for the compressible Navier-Stokes equations arxiv:1509.09213v1 [physics.comp-ph] 30 Sep 2015 Oscar P. Bruno and Max Cubillos Abstract The companion

More information

Finite Differences: Consistency, Stability and Convergence

Finite Differences: Consistency, Stability and Convergence Finite Differences: Consistency, Stability and Convergence Varun Shankar March, 06 Introduction Now that we have tackled our first space-time PDE, we will take a quick detour from presenting new FD methods,

More information

Wojciech Czernous PSEUDOSPECTRAL METHOD FOR SEMILINEAR PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Wojciech Czernous PSEUDOSPECTRAL METHOD FOR SEMILINEAR PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS Opuscula Mathematica Vol. 30 No. 2 2010 http://dx.doi.org/10.7494/opmath.2010.30.2.133 Wojciech Czernous PSEUDOSPECTRAL METHOD FOR SEMILINEAR PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS Abstract. We present

More information

The Heat Equation John K. Hunter February 15, The heat equation on a circle

The Heat Equation John K. Hunter February 15, The heat equation on a circle The Heat Equation John K. Hunter February 15, 007 The heat equation on a circle We consider the diffusion of heat in an insulated circular ring. We let t [0, ) denote time and x T a spatial coordinate

More information

Appendix C: Recapitulation of Numerical schemes

Appendix C: Recapitulation of Numerical schemes Appendix C: Recapitulation of Numerical schemes August 31, 2009) SUMMARY: Certain numerical schemes of general use are regrouped here in order to facilitate implementations of simple models C1 The tridiagonal

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning

A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 22, 1097-1106 A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning M. T. Darvishi a,, S.

More information

Recurrence Relations and Fast Algorithms

Recurrence Relations and Fast Algorithms Recurrence Relations and Fast Algorithms Mark Tygert Research Report YALEU/DCS/RR-343 December 29, 2005 Abstract We construct fast algorithms for decomposing into and reconstructing from linear combinations

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007 PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator Lecture No. 1 Introduction to Method of Weighted Residuals Solve the differential equation L (u) = p(x) in V where L is a differential operator with boundary conditions S(u) = g(x) on Γ where S is a differential

More information

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods Introduction In this workshop we will introduce you to the least-squares spectral element method. As you can see from the lecture notes, this method is a combination of the weak formulation derived from

More information

Class notes: Approximation

Class notes: Approximation Class notes: Approximation Introduction Vector spaces, linear independence, subspace The goal of Numerical Analysis is to compute approximations We want to approximate eg numbers in R or C vectors in R

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

MATHEMATICAL METHODS INTERPOLATION

MATHEMATICAL METHODS INTERPOLATION MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

Solutions: Problem Set 3 Math 201B, Winter 2007

Solutions: Problem Set 3 Math 201B, Winter 2007 Solutions: Problem Set 3 Math 201B, Winter 2007 Problem 1. Prove that an infinite-dimensional Hilbert space is a separable metric space if and only if it has a countable orthonormal basis. Solution. If

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Dr. Rakesh K Kapania Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University, Blacksburg, VA AOE 524, Vehicle Structures Summer,

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Sturm-Liouville Theory

Sturm-Liouville Theory More on Ryan C. Trinity University Partial Differential Equations April 19, 2012 Recall: A Sturm-Liouville (S-L) problem consists of A Sturm-Liouville equation on an interval: (p(x)y ) + (q(x) + λr(x))y

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration.

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration. Unit IV Numerical Integration and Differentiation Numerical integration and differentiation quadrature classical formulas for equally spaced nodes improper integrals Gaussian quadrature and orthogonal

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Borel Summability in PDE initial value problems

Borel Summability in PDE initial value problems Borel Summability in PDE initial value problems Saleh Tanveer (Ohio State University) Collaborator Ovidiu Costin & Guo Luo Research supported in part by Institute for Math Sciences (IC), EPSRC & NSF. Main

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

Numerical Methods for Two Point Boundary Value Problems

Numerical Methods for Two Point Boundary Value Problems Numerical Methods for Two Point Boundary Value Problems Graeme Fairweather and Ian Gladwell 1 Finite Difference Methods 1.1 Introduction Consider the second order linear two point boundary value problem

More information