Chapter 1: The Finite Element Method

Size: px
Start display at page:

Download "Chapter 1: The Finite Element Method"

Transcription

1 Chapter 1: The Finite Element Method Michael Hanke Read: Strang, p A Model Problem Mathematical Models, Analysis and Simulation, Part Applications: u = fx), < x < 1 u) = u1) = D) axial deformation of an elastic bar conduction of heat in a bar many others This formulation is the starting point for finite difference methods. Q: Are there alternatives? Michael Hanke, ADA, ovember 4, 25 Michael Hanke, ADA, ovember 4, 25 1 Principle of Virtual Work Principle of Minimum Energy n equilibrium, the virtual work vanishes for all possible virtual displacements. n equilibrium, the energy of a system attains a minimum. Multiply by a test function v virtual displacement) and integrate: u vdx = f vdx Since v) = v1) =, integration by parts yields: f vdx = u v dx [u v] 1 = u v dx We obtain the weak or variational formulation: Find u with u) = u1) = such that Energy: Pu) = The minimization formulation: [ ] 1 2 u 2 f u dx Find u with u) = u1) = such that Pu) Pv) for all admissible v ote: D is the Euler-Lagrange equation for M. M) u v dx = f vdx for all admissible v V) Michael Hanke, ADA, ovember 4, 25 2 Michael Hanke, ADA, ovember 4, 25 3

2 otes on These Formulations Sobolev Spaces M V Solutions of V and M need only be once differentiable. f u is twice differentiable, D and V are equivalent. M = V = D Hence, the variational formulation is the most general one. Q: What are admissible functions? They must be once differentiable in a generalized sense) and fulfill the essential) boundary conditions. 1 V := H 1,1) := {v v) = v1) =, v 2 + v 2 )dx < } This is a special case of Sobolev spaces H p ): Let be a domain in R n, H p ) := {v v p) ) 2 + +v 2 + v 2 ) dx < } These spaces are examples of a complete inner product space. otation: v p = v ) ) ) 1/2 p) v 2 + v 2 dx Michael Hanke, ADA, ovember 4, 25 4 Michael Hanke, ADA, ovember 4, 25 5 Ritz and Galerkin Methods Finite Element Method: Example Choose a convenient) finite dimensional subspace V h V. Choose a basis of V h. Ritz method: Start from M. Determine u h V h as the minimizer of Pv h ) where v h is taken from V h. Galerkin method: Start from V. Determine u h V h such that V is fulfilled for all v h V h. Theorem. Q: How to choose V h? Criteria include: The Ritz and Galerkin procedures are equivalent. good approximation quality, efficient numerical algorithms, stable computations. Consider the introductory example. Subdivide [, 1] into + 1 subintervals not necessarily equidistant): = x < x 1 < < x < x +1 = 1. V h : set of all piecewise linear functions with corners at the grid points x i. u Example of a basis function and a piecewise linear function x Basis functions: Hat functions x x i 1 x i x i 1, x i 1 x x i, x φ i x) = i x x i+1 x i, x i x x i+1,, elsewhere Ansatz u h x) = u j φ j x) Michael Hanke, ADA, ovember 4, 25 6 Michael Hanke, ADA, ovember 4, 25 7

3 Example cont.) Example cont.) Ritz: nsert into Pv): u h x) = Pu h ) = j,k=1 u j φ j x), u hx) = 1 2 u ju k = u T Au u T f. φ jφ kdx a jk u j u j φ jx) φ j f dx f j vector of unknowns: u = u 1,...,u ) T, where u i = u h x i ) stiffness matrix A load vector f properties of the stiffness matrix t is symmetric: a jk = a k j. t is positive semi-definite: t is positive definite: u T Au = u hx) u T Au = u 2 h dx. u j = for all j Definiteness depends on the boundary conditions! Pu h ) reduces to a quadratic functional. Derivation with respect to the unknowns yields Au = f How to integrate: numerical quadrature Exercise: Do the same analysis for the Galerkin method! cf. Strang, p 43) Michael Hanke, ADA, ovember 4, 25 8 Michael Hanke, ADA, ovember 4, 25 9 Error Estimation Error Estimation cont.) Read: Strang, p A reliable and efficient method requires an error estimate and a method to adapt the discretization to the problem at hand to produce a prescribed error with minimal resources. Some notation: Left-hand side of V: au,v) := R 1 u v dx. Exercise: Show that au,v) is a scalar product on V! Right-hand side of V: Lv) = R 1 f vdx M: Pv) = 1 2av,v) Lv) Exact solution: au,v) = Lv) for all v V Galerkin: au h,v h ) = Lv h ) for all v h V h The error: e h = u u h. With any interpolant Π h u of u in V h : ae h,e h ) = ae h,u u h ) = ae h,u Π h u+π h u u h ) = ae h,u Π h u) since ae h,π h u u h ) =. Cauchy-Schwarz inequality: Finally ae h,u Π h u) 2 ae h,e h )au Π h u,u Π h u). ae h,e h ) au Π h u,u Π h u) The right-hand term is computable if u is two times continuously differentiable. Since V h V : au,v h ) = Lv h ) for all v h V h au h,v h ) = Lv h ) for all v h V h ae h,v h ) = for all v h V h. This is called Galerkin orthogonality. Michael Hanke, ADA, ovember 4, 25 1 Michael Hanke, ADA, ovember 4, 25 11

4 Error Estimation cont.) Error Estimation cont.) Linear interpolation on = [x i,x i+1 ] gives: u x) Π h u) x) = u x) xx i+1) ux i ) = u x) u ξ) x i+1 x i where ξ x i,x i+1 ). u Π h u) ) 2 dx = u x) u ξ) ) 2 dx = x ξ x ξ u s)ds) 2 dx x u 2 s)ds x i+1 x i ) 2 ξ 1 2 ds)dx u 2 s)ds. Theorem. u u h 2 i= x i+1 x i ) 2 x i+1 x i u 2 s)ds A standard theorem says Friedrich s inequality): There is a constant C such that for all v H 1 ). Hence, v C v e h C e h h u. ote: n the present case, one can even show: Second order convergence: e h = Oh 2 ). Pointwise convergence: max x [,1] e h x) C 1 h 2. Michael Hanke, ADA, ovember 4, Michael Hanke, ADA, ovember 4, Adaptive Algorithms Adptive Algorithms cont.) The error estimate above is an a-priori one: t uses only qualitative assumption on the given data. An a-posteriori error estimate uses the actual discrete solution u h to approximate u. There are different ways available of doing this. ote that the error is localized. Adaptive algorithm: 1. Construct an initial grid 2. Discretize by FEM For the last step, a number of different strategies are available: Refine the worst elements. Equidistribution of the error. ote The success of the algorithm depends on the regularity of the solution. For problems with singularities, the refinement process may never terminate. 3. Compute the approximation u h 4. Compute an a-posteriori error estimate 5. User selected error criterion met? Yes: We are done. o: Select subintervals with large error and subdivide them. Michael Hanke, ADA, ovember 4, Michael Hanke, ADA, ovember 4, 25 15

5 The Program ADFEM A 2D Model Problem This program implements an adaptive algorithm for the problem d dx dx) du ) + cx) du + ax)u = fx) dx dx x = x min : u = g or d) du dx + k u = g x = x max : u = g 1 or d1) du dx + k 1u = g 1 Assumptions: dx) d > Error control: in L 2 norm in energy norm e h E := ae h,e h ) if c =,a ) pointwise error More explicit: x max v 2 E = x min dv 2 + av 2 )dx Read: Strang, p cx) u)+rx)u = fx),x R 2 = Γ D Γ on Γ D : u = g 1, on Γ : u n = g 2 with cx) c >, r and Γ D /. The variational formulation and the minimization formulation will be constructed by the principle of virtual work and the principle of minimum energy, respectively: Let v be a test function with vx) = on Γ D. f vdx = = = cx) u) + rx)u)vdx cx) u v cx) u v+rx)uv)dx } {{ } au,v) n cx) u)vdγ+ rx)uvdx Γ cx)g 2 x)vdγ. D) Michael Hanke, ADA, ovember 4, Michael Hanke, ADA, ovember 4, A 2D Problem cont.) The Galerkin Method Remember: H 1 ) = {v v 2 + v 2 )dx < } Define au,v) = cx) u v+rx)uv)dx, Lv) = f vdx+ u,v H 1 ) Γ cx)g 2 x)vdγ,v H 1 ) Let now V g := {v H 1 ) v = g on Γ D }. Variational formulation: Find u V g1 such that au,v) = Lv) for all v V. Minimization formulation: Find u V g1 such that Theorem. Pu) = min Pv) with Pv) = 1 av,v) Lv) v V g1 2 M) Exercise: Prove this! M and V are equivalent. V) We are following the lines of the one-dimensional example: 1. Choose a finite set of trial functions or, basis functions φ 1 x),...,φ x). 2. Admit approximations to u of the form u h x) = u 1 φ 1 x)+ + u φ x). 3. determine the unknown numbers u = u 1,...,u ) T from V, using different test functions φ k x). Lφ j ) = au h,φ j ) = a = k=1 f j Lφ j ) aφ k,φ j ) a jk k=1 The coefficients can be determined from Au = f u k u k φ k,φ j ) with the stiffness matrix A = a jk ) and the load vector f = f 1,..., f ) T. Exercise: Show that the Ritz approach leads to the same system. Michael Hanke, ADA, ovember 4, Michael Hanke, ADA, ovember 4, 25 19

6 A Finite Element Example: P1 Triangles P1 Triangles cont.) Read: Strang, p Bottlenecks of the Galerkin method: The computation of A is expensive. Every element is a 2D integral. Since the number of degrees of freedom is large, a high-dimensional linear system must be solved. Approximate as the union of non-overlapping triangles T k whose corners form the set of nodes x i. V h is defined as the set of continuous functions whose restriction to one triangle is a first degree polynomial. Choose basis functions cf the 1D case!) φ i x j ) = δ i j Wishes: Choose basis functions which are flexible enough to approximate the solution accurately with a small number of trial functions. Try to make A sparse. That means, use an almost orthogonal basis. The condition number should not be too large. dea borrowed from 1D: Choose piecewise polynomial trial functions which vanish almost everywhere on. ote: Later we will use other choices, too. Pseudo spectral method) Michael Hanke, ADA, ovember 4, 25 2 Michael Hanke, ADA, ovember 4, Properties Stability Estimate Consequences: The stiffness matrix is sparse. There is a very efficient algorithm for computing A and f assembly). The condition number is conda) = Oh 2 ). Theorem. Under the given assumption on the coefficients and some regularity assumptions on and the triangulation), the solution to the Galerkin equation exists and is unique. f u is sufficiently smooth, e 1 Ch. Under additional assumptions on the data, e Ch 2. The key properties of a and L for the theorem to hold are 1. av,v) α v 2 1 v V 2. au,v) C u 1 v 1 u,v V 3. Lv) M v 1 v V As a consequence of 1), we obtain a stability estimate: au, u) = Lu) α u 2 α u 2 1 f,u) f u Consequently, u 1 α f. Michael Hanke, ADA, ovember 4, Michael Hanke, ADA, ovember 4, 25 23

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem: Mathematics Chalmers & GU TMA37/MMG800: Partial Differential Equations, 011 08 4; kl 8.30-13.30. Telephone: Ida Säfström: 0703-088304 Calculators, formula notes and other subject related material are not

More information

A brief introduction to finite element methods

A brief introduction to finite element methods CHAPTER A brief introduction to finite element methods 1. Two-point boundary value problem and the variational formulation 1.1. The model problem. Consider the two-point boundary value problem: Given a

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Numerical Methods for Partial Differential Equations Eric de Sturler University of Illinois at Urbana-Champaign Read section 8. to see where equations of type (au x ) x = f show up and their (exact) solution

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Elliptic boundary value problems often occur as the Euler equations of variational problems the latter

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

Boundary Value Problems and Iterative Methods for Linear Systems

Boundary Value Problems and Iterative Methods for Linear Systems Boundary Value Problems and Iterative Methods for Linear Systems 1. Equilibrium Problems 1.1. Abstract setting We want to find a displacement u V. Here V is a complete vector space with a norm v V. In

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

The Plane Stress Problem

The Plane Stress Problem The Plane Stress Problem Martin Kronbichler Applied Scientific Computing (Tillämpad beräkningsvetenskap) February 2, 2010 Martin Kronbichler (TDB) The Plane Stress Problem February 2, 2010 1 / 24 Outline

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

PDE & FEM TERMINOLOGY. BASIC PRINCIPLES OF FEM.

PDE & FEM TERMINOLOGY. BASIC PRINCIPLES OF FEM. PDE & FEM TERMINOLOGY. BASIC PRINCIPLES OF FEM. Sergey Korotov Basque Center for Applied Mathematics / IKERBASQUE http://www.bcamath.org & http://www.ikerbasque.net 1 Introduction The analytical solution

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1. Introduction: Direct solvers versus iterative solvers In many applications we have to solve a linear system Ax = b with A R n n and b R n given. If n is large the

More information

10 The Finite Element Method for a Parabolic Problem

10 The Finite Element Method for a Parabolic Problem 1 The Finite Element Method for a Parabolic Problem In this chapter we consider the approximation of solutions of the model heat equation in two space dimensions by means of Galerkin s method, using piecewise

More information

Resources. Introduction to the finite element method. History. Topics

Resources. Introduction to the finite element method. History. Topics Resources Introduction to the finite element method M. M. Sussman sussmanm@math.pitt.edu Office Hours: 11:1AM-12:1PM, Thack 622 May 12 June 19, 214 Strang, G., Fix, G., An Analysis of the Finite Element

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods Introduction In this workshop we will introduce you to the least-squares spectral element method. As you can see from the lecture notes, this method is a combination of the weak formulation derived from

More information

Finite-Elements Method 2

Finite-Elements Method 2 Finite-Elements Method 2 January 29, 2014 2 From Applied Numerical Analysis Gerald-Wheatley (2004), Chapter 9. Finite-Elements Method 3 Introduction Finite-element methods (FEM) are based on some mathematical

More information

Continuous and Discontinuous Finite Element Methods for a Peridynamics Model of Mechanics DRAFT

Continuous and Discontinuous Finite Element Methods for a Peridynamics Model of Mechanics DRAFT Continuous and Discontinuous Finite Element Methods for a Peridynamics Model of Mechanics Xi Chen and Max Gunzburger Department of Scientific Computing, Florida State University, Tallahassee FL 3306-40,

More information

Introduction to the finite element method

Introduction to the finite element method Introduction to the finite element method Instructor: Ramsharan Rangarajan March 23, 2016 One of the key concepts we have learnt in this course is that of the stress intensity factor (SIF). We have come

More information

Variational Formulations

Variational Formulations Chapter 2 Variational Formulations In this chapter we will derive a variational (or weak) formulation of the elliptic boundary value problem (1.4). We will discuss all fundamental theoretical results that

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Finite Element Methods Michael Bader Technical University of Munich Summer 2016 Part I Looking Back: Discrete Models for Heat Transfer and the Poisson Equation Modelling

More information

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of -D Problems Historical Background Hrenikoff, 94 frame work method Courant, 943 piecewise polynomial interpolation Turner,

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Math Tune-Up Louisiana State University August, Lectures on Partial Differential Equations and Hilbert Space

Math Tune-Up Louisiana State University August, Lectures on Partial Differential Equations and Hilbert Space Math Tune-Up Louisiana State University August, 2008 Lectures on Partial Differential Equations and Hilbert Space 1. A linear partial differential equation of physics We begin by considering the simplest

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

Chapter 6: Fast Fourier Transform and Applications

Chapter 6: Fast Fourier Transform and Applications Chapter 6: Fast Fourier Transform and Applications Michael Hanke Mathematical Models, Analysis and Simulation, Part I Read: Strang, Ch. 4. Fourier Sine Series In the following, every function f : [,π]

More information

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma Chapter 5 A priori error estimates for nonconforming finite element approximations 51 Strang s first lemma We consider the variational equation (51 a(u, v = l(v, v V H 1 (Ω, and assume that the conditions

More information

Variational Principles for Equilibrium Physical Systems

Variational Principles for Equilibrium Physical Systems Variational Principles for Equilibrium Physical Systems 1. Variational Principles One way of deriving the governing equations for a physical system is the express the relevant conservation statements and

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

One-dimensional and nonlinear problems

One-dimensional and nonlinear problems Solving PDE s with FEniCS One-dimensional and nonlinear problems L. Ridgway Scott The Institute for Biophysical Dynamics, The Computation Institute, and the Departments of Computer Science and Mathematics,

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Dr. Rakesh K Kapania Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University, Blacksburg, VA AOE 524, Vehicle Structures Summer,

More information

Numerical Methods for Two Point Boundary Value Problems

Numerical Methods for Two Point Boundary Value Problems Numerical Methods for Two Point Boundary Value Problems Graeme Fairweather and Ian Gladwell 1 Finite Difference Methods 1.1 Introduction Consider the second order linear two point boundary value problem

More information

Time-dependent variational forms

Time-dependent variational forms Time-dependent variational forms Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Oct 30, 2015 PRELIMINARY VERSION

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

Finite Element Methods

Finite Element Methods Solving Operator Equations Via Minimization We start with several definitions. Definition. Let V be an inner product space. A linear operator L: D V V is said to be positive definite if v, Lv > for every

More information

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Høst 2014

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Høst 2014 Norwegian University of Science and Technology Department of Mathematical Sciences TMA422 Numerical Solution of Partial Differential Equations Using Element Methods Høst 214 Exercise set 2 1 Consider the

More information

PDEs, part 1: Introduction and elliptic PDEs

PDEs, part 1: Introduction and elliptic PDEs PDEs, part 1: Introduction and elliptic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Partial di erential equations The solution depends on several variables,

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS Victor S. Ryaben'kii Semyon V. Tsynkov Chapman &. Hall/CRC Taylor & Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor

More information

Chapter 1 Piecewise Polynomial Approximation in 1D

Chapter 1 Piecewise Polynomial Approximation in 1D Chapter 1 Piecewise Polynomial Approximation in 1D Abstract n this chapter we introduce a type of functions called piecewise polynomials that can be used to approximate other more general functions, and

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

Introduction to Finite Element Method. Dr. Aamer Haque

Introduction to Finite Element Method. Dr. Aamer Haque Introduction to Finite Element Method 4 th Order Beam Equation Dr. Aamer Haque http://math.iit.edu/~ahaque6 ahaque7@iit.edu Illinois Institute of Technology July 1, 009 Outline Euler-Bernoulli Beams Assumptions

More information

Finite Difference and Finite Element Methods

Finite Difference and Finite Element Methods Finite Difference and Finite Element Methods Georgy Gimel farb COMPSCI 369 Computational Science 1 / 39 1 Finite Differences Difference Equations 3 Finite Difference Methods: Euler FDMs 4 Finite Element

More information

Formulation of the displacement-based Finite Element Method and General Convergence Results

Formulation of the displacement-based Finite Element Method and General Convergence Results Formulation of the displacement-based Finite Element Method and General Convergence Results z Basics of Elasticity Theory strain e: measure of relative distortions u r r' y for small displacements : x

More information

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs Boundary Value Problems Numerical Methods for BVPs Outline Boundary Value Problems 2 Numerical Methods for BVPs Michael T. Heath Scientific Computing 2 / 45 Boundary Value Problems Numerical Methods for

More information

Contents. Prologue Introduction. Classical Approximation... 19

Contents. Prologue Introduction. Classical Approximation... 19 Contents Prologue........................................................................ 15 1 Introduction. Classical Approximation.................................. 19 1.1 Introduction................................................................

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

Inner Product Spaces 6.1 Length and Dot Product in R n

Inner Product Spaces 6.1 Length and Dot Product in R n Inner Product Spaces 6.1 Length and Dot Product in R n Summer 2017 Goals We imitate the concept of length and angle between two vectors in R 2, R 3 to define the same in the n space R n. Main topics are:

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

Weighted Residual Methods

Weighted Residual Methods Weighted Residual Methods Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents Problem definition. oundary-value Problem..................

More information

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen

CIV-E1060 Engineering Computation and Simulation Examination, December 12, 2017 / Niiranen CIV-E16 Engineering Computation and Simulation Examination, December 12, 217 / Niiranen This examination consists of 3 problems rated by the standard scale 1...6. Problem 1 Let us consider a long and tall

More information

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation Chapter 12 Partial di erential equations 12.1 Di erential operators in R n The gradient and Jacobian We recall the definition of the gradient of a scalar function f : R n! R, as @f grad f = rf =,..., @f

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

2 Elliptic Differential Equations

2 Elliptic Differential Equations 2 Elliptic Differential Equations 2.1 Classical solutions As far as existence and uniqueness results for classical solutions are concerned, we restrict ourselves to linear elliptic second order elliptic

More information

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen Steps in the Finite Element Method Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen General Idea Engineers are interested in evaluating effects such as deformations, stresses,

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

We consider the problem of finding a polynomial that interpolates a given set of values:

We consider the problem of finding a polynomial that interpolates a given set of values: Chapter 5 Interpolation 5. Polynomial Interpolation We consider the problem of finding a polynomial that interpolates a given set of values: x x 0 x... x n y y 0 y... y n where the x i are all distinct.

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 06 In the last lecture, we have seen a boundary value problem, using the formal

More information

Lu u. µ (, ) the equation. has the non-zero solution

Lu u. µ (, ) the equation. has the non-zero solution MODULE 18 Topics: Eigenvalues and eigenvectors for differential operators In analogy to the matrix eigenvalue problem Ax = λx we shall consider the eigenvalue problem Lu = µu where µ is a real or complex

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

arxiv: v1 [math.na] 1 May 2013

arxiv: v1 [math.na] 1 May 2013 arxiv:3050089v [mathna] May 03 Approximation Properties of a Gradient Recovery Operator Using a Biorthogonal System Bishnu P Lamichhane and Adam McNeilly May, 03 Abstract A gradient recovery operator based

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

Polynomial Approximation: The Fourier System

Polynomial Approximation: The Fourier System Polynomial Approximation: The Fourier System Charles B. I. Chilaka CASA Seminar 17th October, 2007 Outline 1 Introduction and problem formulation 2 The continuous Fourier expansion 3 The discrete Fourier

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE MATEMATICS OF COMPUTATION Volume 73, Number 246, Pages 517 523 S 0025-5718(0301570-9 Article electronically published on June 17, 2003 ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR TE POINTWISE GRADIENT

More information

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS LIN MU, JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This article introduces and analyzes a weak Galerkin mixed finite element method

More information

FINITE ELEMENT METHODS

FINITE ELEMENT METHODS FINITE ELEMENT METHODS Lecture notes arxiv:1709.08618v1 [math.na] 25 Sep 2017 Christian Clason September 25, 2017 christian.clason@uni-due.de https://udue.de/clason CONTENTS I BACKGROUND 1 overview of

More information

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives CIV 7/87 Chapter 4 - Development of Beam Equations - Part /4 Chapter 4b Development of Beam Equations earning Objectives To introduce the work-equivalence method for replacing distributed loading by a

More information

Finite Elements for Nonlinear Problems

Finite Elements for Nonlinear Problems Finite Elements for Nonlinear Problems Computer Lab 2 In this computer lab we apply finite element method to nonlinear model problems and study two of the most common techniques for solving the resulting

More information

The continuity method

The continuity method The continuity method The method of continuity is used in conjunction with a priori estimates to prove the existence of suitably regular solutions to elliptic partial differential equations. One crucial

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Exercises - Chapter 1 - Chapter 2 (Correction)

Exercises - Chapter 1 - Chapter 2 (Correction) Université de Nice Sophia-Antipolis Master MathMods - Finite Elements - 28/29 Exercises - Chapter 1 - Chapter 2 Correction) Exercise 1. a) Let I =], l[, l R. Show that Cl) >, u C Ī) Cl) u H 1 I), u DĪ).

More information

The Finite Element Method for the Wave Equation

The Finite Element Method for the Wave Equation The Finite Element Method for the Wave Equation 1 The Wave Equation We consider the scalar wave equation modelling acoustic wave propagation in a bounded domain 3, with boundary Γ : 1 2 u c(x) 2 u 0, in

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence John Pearson MSc Special Topic Abstract Numerical approximations of

More information