Hadronic Physics II. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant April 2011, CMRP, UOW

Size: px
Start display at page:

Download "Hadronic Physics II. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant April 2011, CMRP, UOW"

Transcription

1 Hadronic Physics II University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright Geant4 9.4

2 Outline Low energy neutrons Ion-ion collisions Radioactive decay High energy models (QCD strings) 2

3 Low Energy Neutron Physics Below 20 MeV incident energy, Geant4 provides several models for treating neutron interactions in detail The high precision neutron models (NeutronHP) are datadriven and depend on a large database of cross sections, etc. the G4NDL database is available for download from the Geant4 web site elastic, inelastic, capture and fission models all use this isotope-dependent data There are also models to handle thermal scattering from chemically bound atoms 3

4 Geant4 Neutron Data Library (G4NDL) Contains the data files for the high precision neutron models includes both cross sections and final states Data are derived from the following evaluated data libraries Brond-2.1, CENDL2.2, EFF-3, ENDF/B-VI, FENDL/E2.0, JEF2.2, JENDL-FF, JENDL-3, MENDL-2 evaluated libraries are subsets of existing data that have been carefully sifted and examined The format of G4NDL is similar but not identical to that of ENDF difficult job to combine data from all the above libraries into one format 4

5 Evaluated Nuclear Data File-6 (ENDF) ENDF has two meanings data formats and procedures how to write nuclear data files how to use them name of libraries from US nuclear data projects ENDF/B-VI.8 : 313 isotopes, 5 isomers, 15 elements ENDF/B-VII.0 : 400 isotopes Geant4 has not yet migrated to ENDF/B-VII The latest version of G4NDL (3.14) concentrates mainly on translation from ENDF library Geant4 no longer does evaluations of these data 5

6 G4NeutronHPElastic Handles elastic scattering of neutrons by sampling differential cross section data interpolates between points in the cross section tables as a function of energy also interpolates between Legendre polynomial coefficients to get the angular distribution as a function of energy scattered neutron and recoil nucleus generated as final state 6

7 G4NeutronHPInelastic Currently supports 34 inelastic final states + n s (discrete and continuum) n (A,Z) -> (A-1, Z-1) n p n (A,Z) -> (A-3, Z) n n n n N (A,Z) -> (A-4, Z-2) d t... Secondary distribution probabilities isotropic emission discrete two-body kinematics N-body phase space continuum energy-angle distributions (in lab and CM) 7

8 G4NeutronHPCapture Neutron capture on a nucleus produces photons described by either the number of photons (multiplicity), or photon production cross sections Photon spectra are either discrete emission, using either cross sections or multiplicities from data libraries, or continuous, with the spectrum calculated according to tabulated parameters f(e -> E ) = i p i (E) g i (E -> E ) where p i and g i come from the libraries 8

9 G4NeutronHPFission Currently only uranium fission data are available in Geant4 First chance, second chance, third chance and fourth chance fission taken into account Resulting neutron energy distributions are implemented in six different ways as a function of incoming and outgoing neutron energy as a Maxwell spectrum general evaporation spectrum evaporation spectrum energy-independent Watt spectrum Madland-Nix spectrum 9

10 10

11 11

12 Including HP Neutrons in Elastic scattering Your Physics List G4HadronElasticProcess* thenep = new G4HadronElasticProcess; // the cross sections G4NeutronHPElasticData* thenedata = new G4NeutronHPElasticData; thenep->adddataset(thenedata); // the model G4NeutronHPElastic* thenem = new G4NeutronHPElastic; thenep->registerme(thenem); neutmanager->adddiscreteprocess(thenep); 12

13 G4NeutronHPorLE models The high precision neutron models do not cover all elements/isotopes no data data, but no evaluation of data evaluated data, but not included in G4NDL Geant4 application must have a model under all circumstances, otherwise a fatal error appears G4NeutronHPorLE models developed to solved this problem HP models used if there is data if not, LEP (GHEISHA-style) models used elastic, inelastic, capture and fission provided 13

14 Thermal neutron scattering from Chemically Bound Atoms At thermal neutron energies, atomic motion, vibration and rotation of bound atoms affect the neutron scattering cross section, as well as the angular distribution of secondary neutrons The energy loss (or gain) of such scattered neutrons may be different from those from interactions with unbound atoms Original HP models included only individual Maxwellian motion of the target nucleus (free gas model) New behavior handled by model and cross section classes: G4HPThermalScatteringData, and G4HPThermalScattering 14

15 Ion-Ion Inelastic Scattering Up to now we've considered only hadron-nucleus interactions, but Geant4 has five different nucleus-nucleus collision models G4BinaryLightIon G4WilsonArasion/G4WilsonAblation G4EMDissociationModel G4QMD G4Incl/G4Abla Also provided are several ion-ion cross section data sets Currently no ion-ion elastic scattering models provided 15

16 G4BinaryLightIonReaction This model is an extension of the G4BinaryCascade model discussed earlier The hadron-nuclear interaction part is identical, but the nucleus-nucleus part involves: preparation of two 3D nuclei with Woods-Saxon or harmonic oscillator potentials lighter nucleus always assumed to be the projectile nucleons in the projectile are entered with their positions and momenta into the initial collision state nucleons are interacted one-by-one with the target nucleus, using the original Binary cascade model 16

17 G4WilsonAbrasion and G4WilsonAblation A simplified macroscopic model nucleus-nucleus collisions based largely on geometric arguments faster than Binary cascade or QMD models, but less accurate Two models are used together G4WilsonAbrasion handles the initial collision in which a chunk of the target nucleus is gouged out by the projectile nucleus G4WilsonAblation handles the de-excitation of the resulting fragments Based on the NUCFRG2 model (NASA TP 3533) Can be used up to 10 GeV/n 17

18 18

19 G4EMDissociation Model Electromagnetic dissociation is the liberation of nucleons or nuclear fragments as a result of strong EM fields exchange of virtual photons instead of nuclear force Useful for relativistic nucleus-nucleus collisions where the Z of the nucleus is large The G4EMDissociation model and cross sections are an implementation of the NUCFRG2 model (NASA TP 3533) Can be used up to 100 TeV 19

20 INCL/ABLA Ion-ion Model 20

21 G4QMD Model BinaryLightIonReaction has some limitations neglects participant-participant scattering uses simple time independent nuclear potential => imposes small A limitation for target or projectile binary cascade itself contributes energy limitation Solution is QMD (quantum molecular dynamics) model an extension of the classical molecular dynamics model treats each nucleon as a gaussian wave packet propagation with scattering which takes Pauli principle into account can be used for high energy, high Z collisions 21

22 22

23 23

24 Putting QMD in Your Physics List G4HadronInelasticProcess* ioninel = G4HadronInelasticProcess( ioninelastic, G4GenericIon::G4GenericIon()); // Cross sections G4TripathiCrossSection* tripcs = new G4TripathiCrossSection; G4IonsShenCrossSection* shencs = new G4IonsShenCrossSection; ioninel->adddataset(shencs); ioninel->adddataset(tripcs); // Assign model to process G4QMDReaction* theqmd = new G4QMDReaction; ioninel->registerme(theqmd); G4ProcessManager* pman = G4GenericIon::G4GenericIon() ->GetProcessManager(); pman->adddiscreteprocess(ioninel); 24

25 Ion-ion Cross Sections Cross section data sets available from 10 MeV/N to 10 GeV/N Tripathi, TripathiLight (for light nuclei) Kox Shen Sihver These are empirical and parameterized cross section formulae with some theoretical insight G4GeneralSpaceNNCrossSection was prepared to assist users in selecting the appropriate cross section formula 25

26 Ion-ion Cross Sections 26

27 Radioactive Decay Simulates the decay of radioactive nuclei Handles, +, decay, electron capture (EC) and isomeric transition (IT) It is a data-driven model using the Evaluated Nuclear Structure Data Files (ENSDF), containing: nuclear half-lives nuclear level structure for the parent or daughter nuclide decay branching ratios energy of the decay process (Q) If daughter nuclide of a decay is an excited isomer, its prompt de-excitation is handled by G4PhotonEvaprotation 27

28 Biasing Radioactive Decay Analog sampling is the default Many options for biased sampling also available increased frequency of decay within a given time window all branching ratios for a decay can be sampled with equal probability a single parent nucleus can be decayed a specified number of times within an event etc. 28

29 Radioactive Decay in a Physics List G4RadioactiveDecay* rd = new G4RadioactiveDecay; G4ProcessManager* pmanager = G4ParticleTable::GetParticleTable()->FindParticle( GenericIon ) ->GetProcessManager(); pmanager->addprocess(rd); pmanager->setprocessordering(rd, idxpoststep); pmanager->setprocessordering(rd, idxatrest); Only have to do this once, even though there are thousands of isotopes Note: if you want tritium decay, make sure G4Triton is NOT created in your physics list 29

30 QCD String Models For incident p, n,, K Also for high energy g when CHIPS model is connected ~10 GeV < E < ~TeV Model handles: selection of collision partners (hadrons and nucleons) splitting nucleons into quarks and di-quarks formation and excitation of strings string hadronization (how strings produce more hadrons) Damaged nucleus remains. Another Geant4 model must be added for nuclear fragmentation and de-excitation 30

31 String Model Algorithm Build up 3-D model of nucleus Large gamma factor collapses nucleus to 2 dimensions Calculate impact parameter with all nucleons Calculate hadron-nucleon collision probabilities use gaussian density distributions for hadrons and nucleons Sample number of strings exchanged in each collision String formation and fragmentation into hadrons 31

32 Longitudinal String Fragmentation QCD string extends between quarks in hadron and nucleon As string is stretched, it breaks. At each break, a new quark-antiquark pair is inserted according to the ratios u : d : s : diquark = 1 : 1 : 0.27 : 0.1 each quark-antiquark pair represents a new hadron Created hadron gets longitudinal momentum from sampling of fragmentation functions fragmentation functions based on parameterizations of DIS data Transverse momentum distribution taken to be gaussian < p t 2 > = 0.25 GeV 2 32

33 Quark-Gluon String Model One of the Geant4 QCD string models valid from 20 GeV - ~TeV In this model, two or more strings are stretched between the partons (quarks or gluons) within the hadrons technically, it is the cutting of a Pomeron exchanged between the hadrons that forms the strings Parton interaction leads to color coupling of quarks sea quarks included as well as valence quarks 33

34 Fritiof Fragmentation Model Alternative QCD string fragmentation model valid from 3 GeV - ~TeV This model applies at much lower energies due to ability to handle lower string masses Reggeon cascade Model uses a different set of fragmentation functions and relies more on fitted parameters than QGS model 34

35 Diffraction Both QGS and FTF models include diffraction projectile or target both break up into hadrons amount of diffraction is adjusted empirically 35

36 QGS Results at 400 GeV/c p Ta -> + X 36

37 FTF Results at 400 GeV/c p Ta -> + X 37

38 Summary Geant4 provides two high precision neutron models for energies below 20 MeV G4NeutronHP, G4NeutronHPorLE Five ion-ion collision models are available + cross sections BinaryLightIon, QMD, Wilson Abrasion/Ablation, Electromagnetic dissociation, INCL/ABLA Radioactive decay model supports the basic decay modes plus biasing of decays Two QCD string models are available for the highest energies in your physics list QGS, FTF 38

Geant4 Hadronic Physics - II

Geant4 Hadronic Physics - II Geant4 Hadronic Physics - II Geant4 Tutorial, Marshall Space Flight Center April 2012 Daniel Brandt (based on slides by T. Koi) based on Geant4 v9.5-p01 Overview Low energy neutron physics High-precision

More information

Ion-ion Physics in Geant4. Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008

Ion-ion Physics in Geant4. Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008 Ion-ion Physics in Geant4 Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008 Outline Introduction and Motivation Cross sections Existing models New Models Interfaces to external models

More information

Geant Hadronic Physics III. Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright (SLAC)

Geant Hadronic Physics III. Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright (SLAC) Geant4 10.4 Hadronic Physics III Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright (SLAC) QCD string models Outline Quark-gluon string (QGS) model Fritiof (FTF) model Gamma- and lepto-nuclear

More information

Hadronic physics.

Hadronic physics. Hadronic physics http://geant4.cern.ch PART I Intro to the philosophy of hadronic processes Hadronic physics challenge Even though there is an underlying theory (QCD), applying it is much more difficult

More information

Geant4 version 10.0.p01. Hadronic Physics I. Geant4 Tutorial: version 10.0.p01. Michael Kelsey, Wed 5 Mar 2014

Geant4 version 10.0.p01. Hadronic Physics I. Geant4 Tutorial: version 10.0.p01. Michael Kelsey, Wed 5 Mar 2014 Michael Kelsey, Wed 5 Mar 2014 Hadronic Physics I Geant4 Tutorial: version 10.0.p01 Hadronic Physics I What is Hadronic Physics? The Hadronic Framework - Processes vs. Models - Cross sections and process

More information

Geant Hadronic Physics I. Geant4 Tutorial at Lund University. 6 September 2018 Dennis Wright

Geant Hadronic Physics I. Geant4 Tutorial at Lund University. 6 September 2018 Dennis Wright Geant4 10.4 Hadronic Physics I Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright Outline Overview of hadronic physics Precompoundand de-excitation models Cascade models 2 Hadronic Processes,

More information

GEANT4 HADRONIC PHYSICS

GEANT4 HADRONIC PHYSICS GEANT4 HADRONIC PHYSICS Training course at International User Conference on Medicine and Biology applications Bordeaux, 8-11 October 2013 V. Ivanchenko Based on lectures developed by Dennis Wright Geant4

More information

Hadronic Physics I. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant4 V9.4

Hadronic Physics I. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant4 V9.4 Hadronic Physics I University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright Geant4 V9.4 Outline Overview of hadronic physics processes, cross sections, models hadronic framework and organization

More information

Recent Developments in Geant4 Hadronic Physics

Recent Developments in Geant4 Hadronic Physics Recent Developments in Geant4 Hadronic Physics Dennis Wright (SLAC) 1 st Geant4 Australian School Recently Released Many new features added in Geant4 9.4 (December 2010) and patch 9.4 p01 2 Energy/Momentum

More information

Geant4 v10.00.p01. Hadronic Physics II. Koi, Tatsumi SLAC National accelerator Laboratory

Geant4 v10.00.p01. Hadronic Physics II. Koi, Tatsumi SLAC National accelerator Laboratory Geant4 v10.00.p01 Hadronic Physics II Koi, Tatsumi SLAC National accelerator Laboratory Overview Elastic process, cross section and model Low Energy Neutron Physics High Precision Neutron Package Thermal

More information

Geant4 Hadronic Physics Developments

Geant4 Hadronic Physics Developments Geant4 Hadronic Physics Developments José Manuel Quesada University of Sevilla on behalf of Geant4 Hadronic Working Group 9th Geant4 Space Users Workshop Barcelona, March 2013 Outline General matters Photo-nuclear

More information

Geant4 Physics Lists: Status and Proposed Upgrades. Dennis Wright (SLAC) 25 February 2011

Geant4 Physics Lists: Status and Proposed Upgrades. Dennis Wright (SLAC) 25 February 2011 Geant4 Physics Lists: Status and Proposed Upgrades Dennis Wright (SLAC) 25 February 2011 Outline Contents of a few preferred Geant4 physics lists Updating/augmenting the physics lists Comparing Fluka and

More information

Introduction to Geant4 Physics Overview

Introduction to Geant4 Physics Overview Introduction to Geant4 Physics Overview Koi, Tatsumi SLAC SCCS Based on Presentations at SLAC Geant4 Tutorial 2007 Outline Geant4 Physics Overview Process Physics List Standard EM Low Energy EM Hadron

More information

Recent Developments in Geant4 Hadronics. Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright

Recent Developments in Geant4 Hadronics. Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright Recent Developments in Geant4 Hadronics Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright Outline Treatment of isotopes (abundance,masses,pdg code) Cross section improvements Elastic scattering

More information

Recent Developments in Geant4. Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group)

Recent Developments in Geant4. Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group) Recent Developments in Geant4 Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group) Outline Geant4 and Calice Geant4 Validation Physics Lists and Simplified

More information

String Parton Models in Geant4

String Parton Models in Geant4 String Parton Models in Geant4 G.Folger, J.P.Wellisch CERN, CH-2 Geneva, Switzerland Dual parton or quark gluon string model are the by now almost standard theoretical techniques by which one can arrive

More information

Hadronic Physics III. University of Pennsylvania Geant4 Tutorial 18 May 2011 Dennis Wright. Geant4 V9.4

Hadronic Physics III. University of Pennsylvania Geant4 Tutorial 18 May 2011 Dennis Wright. Geant4 V9.4 Hadronic Physics III University of Pennsylvania Geant4 Tutorial 18 May 2011 Dennis Wright Geant4 V9.4 2 Outline Gamma and lepto-nuclear models Chiral Invariant Phase Space (CHIPS) model Other models capture

More information

Validation of Geant4 Hadronic Physics Models at Intermediate Energies. Outline

Validation of Geant4 Hadronic Physics Models at Intermediate Energies. Outline Models at Intermediate Energies Outline Motivation Models Data Used Validation Results Summary CHEP 2009 Prague, March 23-27, 2009 Sunanda Banerjee, Fermilab (on behalf of Geant4 Hadronic Group) Motivation

More information

Improvements and developments of physics models in PHITS for radiotherapy and space applications

Improvements and developments of physics models in PHITS for radiotherapy and space applications Improvements and developments of physics models in PHITS for radiotherapy and space applications L. Sihver 1-9, T. Sato 10, S. Hashimoto 10, T. Ogawa 10, K. Niita 11 1 Atominstitut, TU Wien, Austria, 2

More information

The EIC Physics List. EIC Workshop (29 July 1 August, 2018) Dennis Wright (SLAC)

The EIC Physics List. EIC Workshop (29 July 1 August, 2018) Dennis Wright (SLAC) The EIC Physics List EIC Workshop (29 July 1 August, 2018) Dennis Wright (SLAC) Outline Focus of EIC Physics List Physics list features Hadronic Physics Constructors Gamma-nuclear and lepto-nuclear 2 Physics

More information

Hadron-Nucleus Interactions. Beginners FLUKA Course

Hadron-Nucleus Interactions. Beginners FLUKA Course Hadron-Nucleus Interactions Beginners FLUKA Course Hadronic showers: many particle species, wide energy range 100 GeV p on Pb shower longitudinal development 100 GeV p in a Fe absorber: space-averaged

More information

Lepton and gamma nuclear reactions. J.P. Wellisch, CERN/EP, Geant4 Users Workshop, SLAC, Feb 2002

Lepton and gamma nuclear reactions. J.P. Wellisch, CERN/EP, Geant4 Users Workshop, SLAC, Feb 2002 Lepton and gamma nuclear reactions J.P. Wellisch, CERN/EP, Geant4 Users Workshop, SLAC, Feb 00 Outline Partices treated Cross-section calculations The modeling Classes exposed to users Restrictions of

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

Geant4 Hadronic Physics Working group progress and status.

Geant4 Hadronic Physics Working group progress and status. Geant4 Hadronic Physics Working group progress and status. J.P. Wellisch Outline 6WDWXVRQPLOHVWRQHVDQGUHFHQW GHYHORSPHQWV 9DOLGDWLRQYHULILFDWLRQ 1HZVRQRXWVLGHFRQWDFWV UG SDUWLHV The dry numbers 1XPEHURISDFNDJHV

More information

Hadronic Interactions. FLUKA Beginner s Course

Hadronic Interactions. FLUKA Beginner s Course Hadronic Interactions FLUKA Beginner s Course Hadronic showers: many particle species, wide energy range 100 GeV p on Pb shower longitudinal development 100 GeV p in a Fe absorber: space-averaged particle

More information

Progress in Hadronic Physics Modeling in Geant4

Progress in Hadronic Physics Modeling in Geant4 Progress in Hadronic Physics Modeling in Geant4 Gunter Folger, V.Grichine, A.Heikkinen, A.Howard, V.Ivanchenko, P.Kaitaniemi, T.Koi, M.Kosov, J.M.Quesada Molina, A.Ribon, V.Uzhinskiy, D.Wright For the

More information

What is Spallation???

What is Spallation??? What is Spallation??? Definition found in Nuclear Physics Academic press: projectile (p, n, π,...) target Spallation---a type of nuclear reaction in which the high-energy level of incident particles causes

More information

Chem 481 Lecture Material 1/30/09

Chem 481 Lecture Material 1/30/09 Chem 481 Lecture Material 1/30/09 Nature of Radioactive Decay The Standard Model in physics postulates that all particles in nature are composed of quarks and leptons and that they interact by exchange

More information

Heavy Ion Interactions. Beginners FLUKA Course

Heavy Ion Interactions. Beginners FLUKA Course Heavy Ion Interactions Beginners FLUKA Course Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

Heavy Ion Interactions. Beginners FLUKA Course

Heavy Ion Interactions. Beginners FLUKA Course Heavy Ion Interactions Beginners FLUKA Course 1 Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers em + strong interaction with absorber similarities to em-showers, but much more complex different

More information

Fission-yield data. Karl-Heinz Schmidt

Fission-yield data. Karl-Heinz Schmidt Fission-yield data Karl-Heinz Schmidt Topical day From nuclear data to a reliable estimate of spent fuel decay heat October 26, 2017 SCK CEN Lakehouse, Mol, Belgium Lay out Introduction Stages of the fission

More information

Reconstruction of Neutron Cross-sections and Sampling

Reconstruction of Neutron Cross-sections and Sampling Reconstruction of Neutron Cross-sections and Sampling Harphool Kumawat Nuclear Physics Division, BARC 1 Outline Introduction Reconstruction of resonance cross-section Linearization of cross-section Unionization

More information

Results obtained with nuclear models of Geant4 in IAEA Benchmark of Spallation

Results obtained with nuclear models of Geant4 in IAEA Benchmark of Spallation Results obtained with nuclear models of Geant4 in IAEA Benchmark of Spallation J. M. Quesada on behalf of the Geant4 Hadronic Group IAEA, Vienna, 05.05.2009 1 General Introduction 2 What is Geant4? Geant4

More information

Low Energy Neutron Verification in GEANT4: to 4.9.5

Low Energy Neutron Verification in GEANT4: to 4.9.5 Low Energy Neutron Verification in GEANT4: 4.9.3 to 4.9.5 Kimberly J. Palladino MiniCLEAN Collaboration Presenting the work of Katie Harrington, Peder Bruusgaard, Will Yashar What we've studied Neutron

More information

Heavy Ions Interactions. FLUKA Beginner s Course

Heavy Ions Interactions. FLUKA Beginner s Course Heavy Ions Interactions FLUKA Beginner s Course Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Detector Simulation. Mihaly Novak CERN PH/SFT

Detector Simulation. Mihaly Novak CERN PH/SFT Detector Simulation Mihaly Novak CERN PH/SFT CERN Summer Student Program, 1 August 2017 Foreword This lecture is aimed to offer a simple and general introduction to detector simulation. Geant4 will be

More information

7. Fission Products and Yields, ϒ

7. Fission Products and Yields, ϒ 7. Fission Products and Yields, ϒ 7.1 Nuclear Fission Among the processes of nuclear decay, fission is certainly the most complicated. Spontaneous fission (SF) was discovered by Flerov and Petrzhak in1940,

More information

Physics Lists. Dennis Wright (SLAC) Geant4 Tutorial Bordeaux 3-5 November 2005

Physics Lists. Dennis Wright (SLAC) Geant4 Tutorial Bordeaux 3-5 November 2005 Physics Lists Dennis Wright (SLAC) Geant4 Tutorial Bordeaux 3-5 November 2005 Outline Physics list introduction Step-by-step example for building a simple physics list Modular physics lists Best guess

More information

Validation of Hadronic Models in Geant4

Validation of Hadronic Models in Geant4 SLAC-PUB-12836 Validation of Hadronic Models in Geant4 Tatsumi Koi, Dennis H. Wright, Gunter Folger, Vladimir Ivantchenko, Mikhail Kossov, Nikolai Starkov, Aatos Heikkinen, Pete Truscott, Fan Lei, and

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Nuclear Physics for Applications

Nuclear Physics for Applications Stanley C. Pruss'm Nuclear Physics for Applications A Model Approach BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Table of Contents Preface XIII 1 Introduction 1 1.1 Low-Energy Nuclear Physics for

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Fundamentals in Nuclear Physics

Fundamentals in Nuclear Physics 018/ Fundamentals in Nuclear Physics Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 Schedule Nuclear reactions 5/1 Nuclear decays and fundamental interactions

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

Electromagnetic and hadronic showers development. G. Gaudio, M. Livan The Art of Calorimetry Lecture II

Electromagnetic and hadronic showers development. G. Gaudio, M. Livan The Art of Calorimetry Lecture II Electromagnetic and hadronic showers development 1 G. Gaudio, M. Livan The Art of Calorimetry Lecture II Summary (Z dependence) Z Z 4 5 Z(Z + 1) Z Z(Z + 1) 2 A simple shower 3 Electromagnetic Showers Differences

More information

Introduction to Nuclear Engineering

Introduction to Nuclear Engineering 2016/9/27 Introduction to Nuclear Engineering Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 References Nuclear Physics basic properties of nuclei nuclear

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Geant4 Hadronic Physics Working group progress and status.

Geant4 Hadronic Physics Working group progress and status. Geant4 Hadronic Physics Working group progress and status. J.P. Wellisch Outline 6WDWXVRQPLOHVWRQHVDQGUHFHQW GHYHORSPHQWV 9DOLGDWLRQYHULILFDWLRQ 1HZVRQRXWVLGHFRQWDFWV UG SDUWLHV The dry numbers 1XPEHURISDFNDJHV

More information

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS T. Falter, W. Cassing,, K. Gallmeister,, U. Mosel Contents: Motivation Model Results Summary & Outlook Motivation elementary en reaction

More information

Upcoming features in Serpent photon transport mode

Upcoming features in Serpent photon transport mode Upcoming features in Serpent photon transport mode Toni Kaltiaisenaho VTT Technical Research Centre of Finland Serpent User Group Meeting 2018 1/20 Outline Current photoatomic physics in Serpent Photonuclear

More information

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions

Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.931-935 (2011) ARTICLE Application and Validation of Event Generator in the PHITS Code for the Low-Energy Neutron-Induced Reactions Yosuke IWAMOTO

More information

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

CHEM 312: Lecture 9 Part 1 Nuclear Reactions CHEM 312: Lecture 9 Part 1 Nuclear Reactions Readings: Modern Nuclear Chemistry, Chapter 10; Nuclear and Radiochemistry, Chapter 4 Notation Energetics of Nuclear Reactions Reaction Types and Mechanisms

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION MODELS IN GEANT4

INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION MODELS IN GEANT4 Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA + MC) Hitotsubashi Memorial Hall, Tokyo, Japan, October -, INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION

More information

Chapter Three (Nuclear Radiation)

Chapter Three (Nuclear Radiation) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Three (Nuclear Radiation) (3-1) Nuclear Radiation Whenever a nucleus can attain a

More information

G4 vs. Fluka comparison for single neutron

G4 vs. Fluka comparison for single neutron From SguazzWiki NeuCal: NeuCalG4vsFlukaReport G4 vs. Fluka comparison for single neutron Sguazzoni & Sorichetti On this page... (hide) 1.!Prototype geometry 2.!Simulated samples 2.1!G4 details 2.2!Fluka

More information

Heavy-Ion Jet INteraction Generator -- HIJING

Heavy-Ion Jet INteraction Generator -- HIJING Heavy-Ion Jet INteraction Generator -- HIJING XI SERC School on Experimental High-Energy Physics NISER Bhubaneswar, November 07-27, 2017 Event Generators Session 1 Introduction Heavy Ion Jet INteraction

More information

Technical Note on Software Validation

Technical Note on Software Validation Technical Note on Software Validation Title: Nuclear-Nuclear Interaction Models in Geant4 Document reference Project reference: Prepared by: Parent project: QINETIQ/KI/SPACE/20/119 Dr Pete Truscott Signature:

More information

Alpha decay, ssion, and nuclear reactions

Alpha decay, ssion, and nuclear reactions Alpha decay, ssion, and nuclear reactions March 11, 2002 1 Energy release in alpha-decay ² Consider a nucleus which is stable against decay by proton or neutron emission { the least bound nucleon still

More information

Low-Energy Neutron Treatment in FLUKA. Beginners FLUKA Course

Low-Energy Neutron Treatment in FLUKA. Beginners FLUKA Course Low-Energy Neutron Treatment in FLUKA Beginners FLUKA Course Introduction In FLUKA we call neutrons below 20 MeV low energy neutrons Neutron interactions at higher energy are handled by FLUKA nuclear models

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

GEANT4 simulation of hadronic interactions at 8 10 GeV/c: response to the HARP-CDP group

GEANT4 simulation of hadronic interactions at 8 10 GeV/c: response to the HARP-CDP group Eur. Phys. J. C (2009) 61: 237 246 DOI 10.1140/epjc/s10052-009-1023-1 Regular Article - Experimental Physics GEANT4 simulation of hadronic interactions at 8 10 GeV/c: response to the HARP-CDP group V.

More information

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation

Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Simulating Gamma-Ray Telescopes in Space Radiation Environments with Geant4: Detector Activation Andreas Zoglauer University of California at Berkeley, Space Sciences Laboratory, Berkeley, USA Georg Weidenspointner

More information

Features of PHITS2.82. PHITS development team, Dec. 25, 2015

Features of PHITS2.82. PHITS development team, Dec. 25, 2015 1 Features of PHITS2.82 PHITS development team, Dec. 25, 2015 Map of Models used in PHITS2.82 Low Energy High Neutron Proton, Pion (other hadrons) 1 TeV 1 TeV/n Intra-nuclear cascade (JAM) Evaporation

More information

Absorber Alpha emission Alpha particle Atom. Atomic line spectra Atomic mass unit Atomic number Atomic structure. Background radiation

Absorber Alpha emission Alpha particle Atom. Atomic line spectra Atomic mass unit Atomic number Atomic structure. Background radiation Material that prevent radioactive emission from passing through it Release of alpha particle from unstable nucleus(a 2+ helium ion or a helium nucleus) The nucleus of a helium atom (two protons and two

More information

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore Polarizing Helium-3 for down quark spin enrichment Nigel Buttimore Trinity College Dublin 12 September 2012 Diffraction 2012 Polarized Helium-3 OUTLINE Introduction to the spin structure of polarized protons

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

CORSIKA: Extensive Air Shower Simulation

CORSIKA: Extensive Air Shower Simulation CORSIKA: Extensive Air Shower Simulation Stefan Klepser DESY Zeuthen, Humboldt-Universität zu Berlin dec 2006 Outline CORSIKA basics introduction work flow the code steering a simulation Interaction Models

More information

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems Slide 1 / 57 Nuclear Physics & Nuclear Reactions Practice Problems Slide 2 / 57 Multiple Choice Slide 3 / 57 1 The atomic nucleus consists of: A B C D E Electrons Protons Protons and electrons Protons

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

CHAPTER 2 ELECTRON-PROTON COLLISION

CHAPTER 2 ELECTRON-PROTON COLLISION CHAPTER ELECTRON-PROTON COLLISION.1 Electron-proton collision at HERA The collision between electron and proton at HERA is useful to obtain the kinematical values of particle diffraction and interaction

More information

arxiv:nucl-th/ v1 2 Jun 2003

arxiv:nucl-th/ v1 2 Jun 2003 CHEP 2003, La Jolla, California, USA, March 24-28 2003 1 Bertini intra-nuclear cascade implementation in Geant4 Aatos Heikkinen, Nikita Stepanov Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Introduction to Modern Physics Problems from previous Exams 3

Introduction to Modern Physics Problems from previous Exams 3 Introduction to Modern Physics Problems from previous Exams 3 2007 An electron of mass 9 10 31 kg moves along the x axis at a velocity.9c. a. Calculate the rest energy of the electron. b. Calculate its

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Quantum properties of QCD string fragmentation

Quantum properties of QCD string fragmentation EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 216 Quantum properties of QCD string fragmentation Šárka Todorova-Nová

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Masses and binding energies

Masses and binding energies Masses and binding energies Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 10, 2011 NUCS 342 (Lecture 1) January 10, 2011 1 / 23 Outline 1 Notation NUCS 342 (Lecture

More information

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly Conclusion This small book presents a description of the results of studies performed over many years by our research group, which, in the best period, included 15 physicists and laboratory assistants

More information

arxiv: v1 [nucl-th] 23 Jan 2019

arxiv: v1 [nucl-th] 23 Jan 2019 arxiv:1901.08157v1 [nucl-th] 23 Jan 2019 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA E-mail: rjfries@comp.tamu.edu Michael Kordell Cyclotron

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University MODERN NUCLEAR CHEMISTRY WALTER D. LOVELAND Oregon State University DAVID J. MORRISSEY Michigan State University GLENN T. SEABORG University of California, Berkeley O WILEY- INTERSCIENCE A JOHN WILEY &

More information

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1. NERS311/Fall 2014 Revision: August 27, 2014 Index to the Lecture notes Alex Bielajew, 2927 Cooley, bielajew@umich.edu NERS 311 Current Old notes notes Chapter 1 1 1 Chapter 1: Introduction to the course

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

T7-1 [255 marks] The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable?

T7-1 [255 marks] The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable? T7-1 [255 marks] 1. In the Geiger Marsden experiment alpha particles were directed at a thin gold foil. Which of the following shows how the majority of the alpha particles behaved after reaching the foil?

More information

Code improvements and shielding benchmarks for Geant4 version 10.02

Code improvements and shielding benchmarks for Geant4 version 10.02 Code improvements and shielding benchmarks for Geant4 version 10.02 KOI, Tatsumi on behalf of Geant4 collaboration SD/EPP/Computing SLAC National Accelerator Laboratory Outline Highlights of Geant4 v10.01

More information

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion General information Nuclei are composed of combinations of nucleons (protons and neutrons); certain combinations of these nucleons (i.e., certain nuclides) possess a high degree of stability while others

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Cross Running Head: Geant4 Hadronic Physics and the Geant4-DNA project.

Cross Running Head: Geant4 Hadronic Physics and the Geant4-DNA project. Cross Running Head: Geant4 Hadronic Physics and the Geant4-DNA project. Geant4 Hadronic Physics and the Geant4-DNA project ANTON V. IVANTCHENKO a,c, VLADIMIR N. IVANTCHENKO b,c,d, JOSE-MANUEL QUESADA MOLINA

More information