Geant4 Hadronic Physics Working group progress and status.

Size: px
Start display at page:

Download "Geant4 Hadronic Physics Working group progress and status."

Transcription

1 Geant4 Hadronic Physics Working group progress and status. J.P. Wellisch

2 Outline 6WDWXVRQPLOHVWRQHVDQGUHFHQW GHYHORSPHQWV 9DOLGDWLRQYHULILFDWLRQ 1HZVRQRXWVLGHFRQWDFWV UG SDUWLHV

3 The dry numbers 1XPEHURISDFNDJHV 5HOHDVHG 7RWDO 1XPEHURIFODVVHV 5HOHDVHG 7RWDO /LQHVRIVRXUFHFRGH 5HOHDVHGa 7RWDOa

4 $WSUHVHQWDERXWSHRSOHDUH FRQWULEXWLQJWRWKLVHIIRUWZLWKVRPHRI WKHLUWLPHFUHDWLYLW\RUH[SHUWLVH 7KHQXPEHURIXVHFDVHSDFNDJHV FRQVLGHUHGLVFXUUHQWO\DQGZH SURYLGHDWRWDORISK\VLFVOLVWVIRUWKH YDULRXVDUHDVRIDSSOLFDELOLW\

5 The milestones. 'LVWULEXWHµHGXFDWHGJXHVV SK\VLFVOLVWVIRUPDMRUXVHFDVHV FDVHV,QFOXGHDWOHDVWRQHWHVWEHDPVLPXODWLRQLQSUH EHDPVLPXODWLRQLQSUHUHOHDVH:*OHYHOUHOHDVH:*OHYHO YDOLGDWLRQ,PSURYHGYHULILFDWLRQVXLWHIRUWKHFDVFDGHHQHUJ\UDQJH 5HOHDVHELDVHG0$56UHZULWHIRUHQHUJLHVEHORZ ZULWHIRUHQHUJLHVEHORZ*H9,QFOXGHγQXFOHDUUHDFWLRQVLQTXDUN QXFOHDUUHDFWLRQVLQTXDUNJOXRQVWULQJPRGHO,PSURYHWKHFKDUJHVWDWHWUHDWPHQWIRUUHFRLOVUHVLGXDOV %ULQJNLQHWLFPRGHOWRDUHOHDVDEOHVWDWHRQJRLQJ 5HOHDVHRIDFDVFDGHFRGHIURP+(7&PLOHVWRQHRQJRLQJ 3URYLGHDJHQHULFVFDWWHULQJWHUPIRUFDVFDGHW\SHPRGHOV,PSURYHHOHFWURQXFOHDUFURVV QXFOHDUFURVVVHFWLRQWRLQFOXGHKDUGVFDWWHULQJVHFWLRQWRLQFOXGHKDUGVFDWWHULQJ 3XEOLVKZRUN DWOHDVWSDSHUVVXEPLWWHGWRUHIHUHHGMRXUQDOV GRQH UHDFKHG

6 Particle physics relevant requirements collected Specifically from LHC: Have starting physics list (done) Improve information flow on V&V (done, to be verified) Provide a cascade code (two focused efforts) Fix known problems in low energy models (released)

7 A complete sample requirement. Name and E Dennis Wright, SLAC Title: Pion and kaon nuclear prodution cross-sections sections Description: 1-51 GeV pions and kaons interacting inelastically.. 10% precision would be great. Rationale: Representation of how the shower develops. Supporting use-cases that require this: Trying to model hadronic interactions in the BaBar intsrumented flux return. Responsible cathegory: hadronics Fulfillment criterion: Comparison to the data from particles interacting in the beam-pipe and flux return. Relevace: : very highly relevant for BaBar,, relevant also for LHCb References: An E from Dennis pointing to the data.

8 Requirements collected titles only During the last geant4 workshop, the users workshop at SLAC, and in private mails: Ensure that the physics reference manual match the implementation, n, and the models are mentioned in the applications developers guide, Referencing papers is just fine. Memory usage for G4NDL cross-sections sections Energy and momentum conservation should be checked in regression independently by the working group for all models, and publish the t test-suite. suite. Use well known international benchmarks to validate; publish results. r More understandable hadronic physics lists Get documentation on which model is good/usefull usefull/required for which use-case

9 Requirements Cont. Provide a set of plots, and put them u; i.e. provide a place to put these plots for users. Cross-sections sections for n,p inelastic scattering below 150 MeV in CMS tracker materials at 10% level of precisions. Pion and kaon nuclear prodution cross-sections: sections: 1-51 GeV pions and kaons interacting inelastically.. 10% precision would be great % level of description for GeV 100GeV incident protons for example on Beryllium or copper. Enroll a set of users to validate on complete application; as beta testers so to say. Compare inclusive and exclusive cross-sectios sectios to data from the RAL/Durham database

10 Requirements Cont. Description on how to set cuts, and its effects Possibility to stop low energy neutral particles (like neutrons) Each model should be specified concerning its application area/use-cases Provide a list of models per use-case package List of models per use-case package Include physics list samples, once they exists, into the phsics editor Ensure tracability of data to the primary source Well defined process for updating the databases on request. Parametrizations of hadronic showers in CsI and Iron. Parametrizations of neutron background in LHC experiments Models for alpha incident inelastic reactions

11 Requirements Cont. Models for alpha incident difractive dissociation reactions Where the modelling approach allows to produce the residual, it should be provided. Neutron production by alphas at energies below 10 MeV; ; including reaction cross-sections sections at 20%precision and kinematics of neutrons and gammas produced. Include K0 oszillations Provide muon nuclear reactions Provide internal conversion Provide neutron elastic scattering, in particular recoil energy and momentum distributions for neutrons below 10MeV. Dito for n inelastic scattering off Xenon and SiO2, CaCO3, H2O

12 Requirements Cont. Dito for capture Provide gamma nuclear reactions for gamma energies of less than 100 MeV,, including cross- sections. Provide radioactive decay after transmutation. Provide k-shell k excitation in radioactive decay Activation of detector material and environment by shower particles

13 Note: Almost all of these requirements are by now fulfilled. Many were fulfilled when the issue was entered as a requirement, so only information was to be provided.the rest are to be scheduled for being addressed, according to priorities.

14 Requirements cont. IUHVKUHTXLUHPHQWVKDUYHVWHGGXULQJ WKHJHDQWZRUNVKRSODVWZHHN 'LUHFWLQWHUDFWLRQZLWKWKHH[SHUWVLV YHU\SURGXFWLYHLQWKLV

15 Sample plots energy deposition BTEV: All distributions are in the expected energy range

16 Active tasks 2002 Write educated guess physics lists for major use-cases Include at least one test-beam simulation into regular validation Include a complete radiation benchmark into WG level validation Improved validation suite for the cascade energy range Possibly further extension of the high energy validation suite Plan to contribute to SATIF-6 Release fully leading particle biased mars-5 5 re-write Release of cascade part of HETC re-write Improve gamma nuclear reactions in QGS model Make a validation/verification WWW page

17 Active tasks 2002, cont. Possibly first release of high energy heavy ion reactions in QGS model, with option to further extension to QMD Revision of the reaction cross-sections sections Improve the charge state treatment for recoils. Bring kinetic model to releasable state Bring inucl cascade code to releasable state Research the use of CHIPS in string fragmentation for intrinsically 3D fragmentation Provide a generic scattering term for cascade type models Alternative coherent elastic model (reggee( theory based)

18 Active tasks 2002, cont. Improve electro-nuclear cross-sections sections to take hard scattering into account. Investigate JENDL2.2, and LA150 neutron data libraries Collect (even more) requirements Release work, coordination Contribute to maintenance and user support Contribute to architecture working group Contribute to process improvement/establishment Contribute to training Publish work (11 papers in the plan )

19 Conclusions :HKDYHDW7,0(12:PHWPLOHVWRQHVIRU :HJHWDFRQVWDQWIORZRIUHTXLUHPHQWVIHHEDFNDQG WHVWEHDPUHVXOWVIURPWKHGHWHFWRUJURXSVWKLVLV H[FHOOHQWQHZV :HKDYHDJRRGWHDPDQGZHDUHQRUPDOO\DEOHWR DWWUDFWWKHH[SHUWLVHQHHGHGIRUPRGHOLQJ :HIXOO\GHSHQGRQYLVLWRUDQGWUDYHOPRQH\IURP&(51 )URQWOLQHVXSSRUWPDQ OLQHVXSSRUWPDQSRZHUQRQWULYLDOWRILQG

20 Some hadronic physics highlights of late 2001 and HXWURQVSHFWUDIURPSUHHTXLOLEULXPGHFD\DQG HTXLOLEULXPGHFD\DQG DVQHDNSUHYLHZRQNLQHWLFPRGHOSHUIRUPDQFH TJV PRGHOIRU SLRQ DQGNDRQ NDRQDQGJDPPD LQGXFHGUHDFWLRQV 'RSSOHUEURDGHQLQJRQWKHIO\,QWHUQDOFRQYHUVLRQDQGDQHZSKRWRQ HYDSRUDWLRQGDWDEDVH &KLUDO LQYDULDQWSKDVHVSDFHGHFD\ VSDFHGHFD\ $SURSDJDWLRQWHVWIRUTXDQWXPPROHFXODU G\QDPLFV

21 Swapping to show a few transparencies on pre-compound neutron yields.

22 Preview on kinetic model 160 MeV p on Pb, forward neutrons 585MeV p on Al, forward And backward n and π

23 Low energy neutrons: G4NDL0.2, 3.7 Are granular selections of data from (alphabetic) Brond 2.1 CENDL 2.2 EFF-3 ENDF/B (VI.0, VI.1, VI.5) ENSDF FENDL/E2.0 JEF 2.2 JENDL (3.1, 3.2, FF, 3.3 currently under study) MENDL-2(P) Large parts of the selection is guided by the FENDL-2 2 selection G4NDL0.2 for non-thermal application

24 The neutron_hp transport models Simulate the cross-sections sections and interactions of neutrons with kinetic energies below 20 MeV down to thermal energies. The upper limit is set only by the evaluated data libraries the code is based on. We consider elastic scattering, fission, capture and inelastic scattering as separate models Neutron_hp sampling codes for the ENDF/B-VI derived data formats are completely generic (not including (not including general R-matrix R for the time being) Note that for fission there is a quite competitive theory driven alternative model, G4ParaFissionModel.

25 Models for neutron interaction and thermalization. QHXWURQBKSPRGHOVDQGFURVVVHFWLRQV VHFWLRQV 8VHVWKHXQL[ ILOHV\VWHPWRHQVXUH JUDQXODUDQGWUDQVSDUHQWDFFHVVXVDJHRI GDWDVHWV 0RUHWKDQAHYHQWVUXQ 8VHVSRLQWZLVHFURVV ZLVHFURVVVHFWLRQVÎ QR DUWLIDFWVGXHWRPXOWLJURXSVWUXFWXUH

26 Doppler broadening 'RHVH[DFW GRSSOHU EURDGHQLQJRQWKHIO\ EDVHGRQ.GDWDÎ QRSUHIRUPDWWLQJRI GDWDWRIL[HGWHPSHUDWXUHVDQGHDV\ VLPXODWLRQRIVHWXSVZLWKPL[HG XSVZLWKPL[HG WHPSHUDWXUHV $GGVWKH GRSSOHU ELDVWRWKHQXFOHDU PRPHQWXPGLVWULEXWLRQ 3RLQWRQHLVWRWKHEHVWRIRXUNQRZOHGJHQRW DYDLODEOHIURPDQ\RWKHUWUDQVSRUWFRGHWKH VHFRQGLVDOVRLQ0&13

27 The doppler bias illustrated for Carbon

28 qgs model for π and K induced reactions 3RPHURQWUDMHFWRU\DQGYHUWH[ SDUDPHWHUVWXQHGWRGHVFULEHHODVWLF WRWDODQGGLIIUDFWLYHDVVXPHG FURVVVHFWLRQVIRU VHFWLRQVIRUNDRQDQGSLRQ VFDWWHULQJRIIQXFOHRQV 1RWXQLQJRQILQDOVWDWHGLVWULEXWLRQV $IHZSORWVWRLOOXVWUDWHWKHTXDOLW\RI SUHGLFWLRQ

29 K-,, scattering off Au (for pions see V&V section)

30 Photon Evaporation data base 2ULJLQDOO\FRQWDLQLQJDGRSWHGOHYHODQGJDPPDUD\ UD\ WUDQVLWLRQHQHUJLHVSKRWRQLQWHQVLW\PXOWLSRODULW\ PXOWLSRODULW\ KDOIOLIHDQGVSLQSDULW\IRULVRWRSHVXSWR= OLIHDQGVSLQSDULW\IRULVRWRSHVXSWR= $ ([SDQGHGWRLQFOXGHSUREDELOLW\RILQWHUQDOFRQYHUVLRQ DQGLQWHUQDOFRQYHUVLRQFRHIILFLHQWV,&&IURPVKHOOV.///00000DQG1 %DVHGRQ(16')GDWDIURP/%1/DQGWDEXODWHG WKHRUHWLFDO,&&GDWDIURP%DQGHWDO HWDO XVHGIRU= DQG DQG5 VHOHWDOHWDO XVHG =

31 ,&&V DUHFDOFXODWHGE\ FXELFVSOLQH LQWHUSRODWLRQ XVLQJDERYHWDEOHVDWWKH UHTXLUHGJDPPDUD\ UD\ HQHUJ\,&&FDOFXODWHGIRU0L[HG PXOWLSRODULW\0(LI PL[LQJUDWLRDYDLODEOH 6RPHFKDQJHVZHUH LQWURGXFHGLQWKHIRUPDW RIWKHGDWDEDVHHQWULHV WRNHHSWKHVL]HRIWKH ILOHVGRZQGDWDEDVHLV QRZWLPHVODUJHU

32 Preliminary test results (16')GHFD\GDWDSURFHVVHGZLWK5$'/,67 %1/FRGHDQG*HDQWIRUGHFD\V &V

33 57 Co

34 A sample development: Chiral Invariant Phase-space space Decay. $TXDUNOHYHOGLPHQVLRQDOHYHQWJHQHUDWRUIRU IUDJPHQWDWLRQRIH[FLWHGKDGURQLF KDGURQLFV\VWHPVLQWR KDGURQV %DVHGRQWKH4&'LGHDRIDV\PSWRWLFIUHHGRP /RFDOFKLUDO FKLUDOLQYDULDQFHUHVWRUDWLRQOHWVXVFRQVLGHULQYDULDQFHUHVWRUDWLRQOHWVXVFRQVLGHU TXDUNSDUWRQVPDVVOHVV SDUWRQVPDVVOHVVDQGZHFDQLQWHJUDWHWKH LQYDULDQWSKDVHVSDFHGLVWULEXWLRQRITXDUN VSDFHGLVWULEXWLRQRITXDUN SDUWRQVDQGTXDUNH[FKDQJHIXVLRQPHFKDQLVP DQGTXDUNH[FKDQJHIXVLRQPHFKDQLVP RIKDGURQL]DWLRQ 7KHRQO\QRQNLQHPDWLFDOFRQFHSWXVHGLVWKDWRID WHPSHUDWXUHRIWKHKDGURQLF KDGURQLFV\VWHPTXDVPRQ

35 Vacuum CHIPS 7KLVDOORZVWRFDOFXODWHWKHGHFD\RIIUHHH[FLWHG KDGURQLF V\VWHPV,QDQILQLWHWKHUPDOL]HG WKHUPDOL]HG V\VWHPRI1SDUWRQV ZLWK WRWDOPDVV0WKHLQYDULDQWSKDVHVSDFHLQWHJUDOLV VSDFHLQWHJUDOLV 2N 4 SURSRUWLRQDOWR M DQGWKHVWDWLVWLFDO M / T GHQVLW\RIVWDWHVLVSURSRUWLRQDOWR+HQFH e ZHFDQZULWHWKHSUREDELOLW\WRILQG1SDUWRQV SDUWRQVZLWK WHPSHUDWXUH7LQDVWDWHZLWKPDVV0DV dw 1RWHWKDWIRUWKLVGLVWULEXWLRQWKHPHDQPDVV VTXDUHLV 2 2 M = 2N(2N 2) T M e 2N 4 M / T dm

36 Vacuum CHIPS :HXVHWKLVIRUPXODWRFDOFXODWHWKHQXPEHU RI SDUWRQV LQDQH[FLWHGWKHUPDOL]HG WKHUPDOL]HG KDGURQLF V\VWHPDQGREWDLQWKHSDUWRQ SDUWRQVSHFWUXP dw kdk 1 2k M 7RREWDLQWKHSUREDELOLW\IRUTXDUNIXVLRQLQWR KDGURQVZHFDQQRZFRPSXWHWKHSUREDELOLW\ WRILQGWZRSDUWRQV SDUWRQVZLWKPRPHQWD TDQGN ZLWKWKHLQYDULDQWPDVVµ N 4 2q 2 2kq(1 cosθ ) P( k, M, µ ) = 1 δ µ qdqd cosθ M 1 2k M 1 2k M N 3

37 Vacuum CHIPS 8VLQJWKHGHOWDIXQFWLRQWRSHUIRUPWKHLQWHJUDWLRQ DQGWKHPDVVFRQVWUDLQWZHILQGWKHWRWDO NLQHPDWLFDOSUREDELOLW\RIKDGURQL]DWLRQ KDGURQL]DWLRQRIDSDUWRQ ZLWKPRPHQWXPNLQWRDKDGURQ KDGURQ ZLWKPDVVµ: $FFRXQWLQJIRUVSLQDQGTXDUNFRQWHQWRIWKHILQDO VWDWHKDGURQ KDGURQDGGVVDQGDFRPELQDWRULDODGGVVDQGDFRPELQDWRULDO IDFWRU $WWKLVOHYHORIWKHODQJXDJH&+,36FDQEHDSSOLHG WRSSEDU SEDUDQQLKLODWLRQDQQLKLODWLRQ M 4k( N k 3) 2 ( 2 ) N 1 µ 2kM 3

38 Anti proton annihilation

39 Anti proton annihilation

40 Nuclear CHIPS,QRUGHUWRDSSO\&+,36IRUDQH[FLWHGKDGURQLF V\VWHPZLWKLQQXFOHLZHKDYHWRDGGSDUWRQ H[FKDQJHZLWKQXFOHDUFOXVWHUVWRWKHPRGHO 7KHNLQHPDWLFDOSLFWXUHLVWKDWDFRORUQHXWUDO TXDVPRQHPLWVD HPLWVDSDUWRQZKLFKLVDEVRUEHGE\D QXFOHRQRUDQXFOHDUFOXVWHU7KLVUHVXOWVLQD FRORUHGUHVLGXDOTXDVPRQ TXDVPRQDQGDFRORUHG FRPSRXQG 7KHFRORUHGFRPSRXQGWKHQGHFD\VLQWRDQ RXWJRLQJQXFOHDUIUDJPHQWDQGDµUHFRLO TXDUN WKDWLVLQFRUSRUDWHGE\WKHFRORUHGTXDVPRQ TXDVPRQ

41 Nuclear CHIPS $SSO\LQJPHFKDQLVPVDQDORJXHWRYDFXXP&+,36 ZHFDQZULWHWKHSUREDELOLW\RIHPLVVLRQRID QXFOHDUIUDJPHQWZLWKPDVVµ DVDUHVXOWRIWKH WUDQVLWLRQRIDSDUWRQ SDUWRQZLWKPRPHQWXPNIURPWKH TXDVPRQWRDIUDJPHQWZLWKPDVV µ DV P 2( k ) µ ( k ) k, µ, µ ) = 1 d cosθ [ + ] µ + k(1 cosθ kq ) 2 µ k(1 cosθ kq ) +HUHQLVWKHQXPEHURITXDUNSDUWRQV SDUWRQVLQWKH QXFOHDUFOXVWHUDQG LVWKHFRYDULDQWELQGLQJ HQHUJ\RIWKHFOXVWHUDQGWKHLQWHJUDOLVRYHUWKH DQJOHEHWZHHQSDUWRQ SDUWRQDQGUHFRLOSDUWRQ n 3 ( 2 kq

42 Nuclear CHIPS 7RFDOFXODWHWKHIUDJPHQW\LHOGVLWLV QHFHVVDU\WRFDOFXODWHWKHSUREDELOLW\WRILQGD FOXVWHURIν QXFOHRQVZLWKLQDQXFOHXV:HGR WKLVXVLQJWKHIROORZLQJDVVXPSWLRQV $IUDFWLRQε1 RIDOOQXFOHRQVLVQRWFOXVWHULVLQJ FOXVWHULVLQJ $IUDFWLRQε2 RIWKHQXFOHRQVLQWKHSHULSKHU\RI WKHQXFOHXVLVFOXVWHULQJLQWRWZRQXFOHRQFOXVWHUV 7KHUHLVDVLQJOH FOXVWHUL]DWLRQ SUREDELOLW\ω DQGILQGZLWKDEHLQJWKHQXPEHURI QXFOHRQVLQYROYHGLQFOXVWHUL]DWLRQ FOXVWHUL]DWLRQ a 1 C ω ν ν Pν = a 1 (1 + ω)

43 Nuclear CHIPS $WWKLVOHYHORIWKHODQJXDJH&+,36FDQ EHDSSOLHGWRFDSWXUHRISLRQV SLRQVDQG SKRWRQXFOHDUUHDFWLRQV

44 Intra-nuclear nuclear CHIPS ([WHQVLRQVWRLQFOXGHWKHEHKDYLRURI PXOWLSOH TXDVPRQV ZLWKLQRQHQXFOHXV KDYHEHHQDGGHG

45 Hard scattering in electro-nuclear

46 Hard scattering in electro-nuclear

47 A propagation test for QMD development 6RPHFKDUDFWHULVWLFVRI4'0 $NLQHPDWLFDOFDVFDGHZLWKGHWDLOHGPRGHOLQJRI WKHQXFOHXV 1XFOHDU+DPLOWRQLDQFDOFXODWHGIURPDQGERG\ SRWHQWLDOVRIDOOKDGURQVSUHVHQWLQWKHV\VWHP 6ROYLQJWKHHTXDWLRQRIPRWLRQE\LQWHJUDWLQJWKLV WLPHGHSHQGHQW+DPLOWRQLDQ 6FDWWHULQJWHUPLQWHUPVRIORFDOL]HGLQWHUDFWLRQV DQGGHFD\V (WF

48 The support process static view

49 The support process dynamic view

50 Test-beams +DGURQLF WHVWEHDPFRPSDULVRQVFRPHIURPFROODERUDWLRQRI H[SHULPHQWV GHWHFWRUJURXSVZLWKµFRUH JHDQWSHUVRQQHO $7/$67LOHWHVWEHDP &067LOHWHVWEHDP $7/$6+(&WHVWEHDP $7/$6)&$/WHVWEHDP %7(9FU\VWDOWHVWEHDP &06FRPELQHGWHVWEHDP EHDP &V, WHVWEHDPEHQFKPDUN */$67VWDUWLQJWHVWEHDP 3ORWVEHLQJVROLFLWHGDVFRXUWHV\RIWKHH[SHULPHQWDOJURXSV

51 Other areas of known usage (likely incomplete) 7UDFNHUSHUIRUPDQFH $7/$6&06%D%DU 0HGLFDO 8SSVDOD7(5$ 1HXWURQGRVLPHWU\ GRVLPHWU\PHDVXUHPHQWEHDPOLQHV 612/RV$ODPRV&(5136'R' 'R'&DQHWF 5DGLDWLRQVFKLHOGLQJ VFKLHOGLQJDFWLYDWLRQWKHUPDOL]DWLRQWKHUPDOL]DWLRQ '<1$0,;0(&2$/,&("&06(6$HWF 2LOVHDUFKDQGVLPLODU 0LWVXELVKL*HQHUDOHOHFWULFV(;;21$/&$7(/«

52 The hopefully no longer dry numbers 1XPEHURISDFNDJHV 5HOHDVHG 7RWDO 1XPEHURIFODVVHV 5HOHDVHG 7RWDO /LQHVRIVRXUFHFRGH 5HOHDVHGa 7RWDOa

53 Conclusions :HKDYHDJRRGWHDP :HDUHQRUPDOO\DEOHWRDWWUDFWWKH H[SHUWLVHZHQHHG :HIXOO\GHSHQGRQYLVLWRUDQGWUDYHO PRQH\IURP&(51 )URQWOLQHVXSSRUWPDQ OLQHVXSSRUWPDQSRZHUQRQ WULYLDOWRILQG

54 Conclusions 7KHPDLQIRFXVRIDOOWKHVHGHYHORSPHQWVLVRI FRXUVHRQ/+&DQG%D%DU VKRZHUSK\VLFVDQG GRVLPHWU\ $//HIIRUWVWKDWZDQWWRFRQWULEXWHWRSK\VLFVLQ WKHJHDQWFRQWH[WDUHZHOFRPH 3K\VLFVPRGHOLQJSK\VLFV9 9DQGSK\VLFV UHVHDUFKLVERWKWKHVFRSHDQGFRQFHUQRIWKH JHDQWKDGURQLF KDGURQLFZRUNLQJJURXS 1RWHWKDWZHVWULYHWRPDNHVXUHWKDWLQGLYLGXDO DFWLYLWLHVDUHLQWHJUDWHGWRDYRLGGXSOLFDWLRQRIZRUN EXWDOVRWULYLDOPLVWDNHV

55 Collaboration with 3 rd parties Some of the reasoning: Geant3 had used two strategies. There were shower packages released with geant3, and there were interfaces released with geant3; the latter were interfacing to external packages. The first was a working model, for the latter, geant3 always was claimed to be obsolete. GISMO: the no physics situation, but only interfacing to external packages. They never really got support for the use of these codes with GISMO. MCNPX: Gets it right. They encourage and help 3 rd parties to release MCNP interfaces with their 3 rd party code. It solves the support question.

56 Collaboration with 3 rd parties Basis: Basis: We provide a set of well defined, published, and highly stable interfaces that allows interested 3 rd parties to release adapters to use their code, or to use geant4 physics implementations within their infrastructure. EGS: geant4 chips code for γ-nuclear reactions also in EGS HETC: Being re-written to become natively available in G4 INUCL: Being integrated to become natively available in G4 UrQMD: In the process of being re-engineered engineered to become natively available in geant4 MCNP: Discussion on using the geant4 interfaces in MCNP FLUKA: Interfaced by air shower users for their own use. Liege Cascade code: Discussion in progress. We hope that they will release a G4 interface soon, and are of course happy to help. EGS: HETC: INUCL: UrQMD MCNP: G-FLUKA: Liege

57 Conclusions,WLVYHU\LPSRUWDQWWKDWLQGLYLGXDOFRQWULEXWRUV DUHHQIUDQFKLVHGWRMRLQWKHFROODERUDWLRQLQ SDUWLFXODULQWKHDUHDRISK\VLFVPRGHOLQJ 7KH\PXVWIHHODVVXUHGWKDWWKH\DUHZHOO SURWHFWHGIURPDQ\DWWHPSWWRGHSULYHWKHPRII RUFRS\VWHDOVXEOWLOLVHU VXEOWLOLVHUWKHZRUNWKDWEXLOWWKHLU FDUHHUV,HWKHLUFRGH 7KH\RWKHUZLVHZRXOGEHDVNHGWRFRQWULEXWHDW WKHLURZQSHULO :HVKRXOGH[SOLFLWO\VWDWHDSROLF\HQVXULQJWKLVLQ WKH0R8 0R8UHYLVLRQ

Geant4 Hadronic Physics Working group progress and status.

Geant4 Hadronic Physics Working group progress and status. Geant4 Hadronic Physics Working group progress and status. J.P. Wellisch Outline 6WDWXVRQPLOHVWRQHVDQGUHFHQW GHYHORSPHQWV 9DOLGDWLRQYHULILFDWLRQ 1HZVRQRXWVLGHFRQWDFWV UG SDUWLHV The dry numbers 1XPEHURISDFNDJHV

More information

Geant4 Physics Lists: Status and Proposed Upgrades. Dennis Wright (SLAC) 25 February 2011

Geant4 Physics Lists: Status and Proposed Upgrades. Dennis Wright (SLAC) 25 February 2011 Geant4 Physics Lists: Status and Proposed Upgrades Dennis Wright (SLAC) 25 February 2011 Outline Contents of a few preferred Geant4 physics lists Updating/augmenting the physics lists Comparing Fluka and

More information

Lepton and gamma nuclear reactions. J.P. Wellisch, CERN/EP, Geant4 Users Workshop, SLAC, Feb 2002

Lepton and gamma nuclear reactions. J.P. Wellisch, CERN/EP, Geant4 Users Workshop, SLAC, Feb 2002 Lepton and gamma nuclear reactions J.P. Wellisch, CERN/EP, Geant4 Users Workshop, SLAC, Feb 00 Outline Partices treated Cross-section calculations The modeling Classes exposed to users Restrictions of

More information

Recent Developments in Geant4 Hadronic Physics

Recent Developments in Geant4 Hadronic Physics Recent Developments in Geant4 Hadronic Physics Dennis Wright (SLAC) 1 st Geant4 Australian School Recently Released Many new features added in Geant4 9.4 (December 2010) and patch 9.4 p01 2 Energy/Momentum

More information

Geant4 Hadronic Physics Developments

Geant4 Hadronic Physics Developments Geant4 Hadronic Physics Developments José Manuel Quesada University of Sevilla on behalf of Geant4 Hadronic Working Group 9th Geant4 Space Users Workshop Barcelona, March 2013 Outline General matters Photo-nuclear

More information

Recent Developments in Geant4 Hadronics. Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright

Recent Developments in Geant4 Hadronics. Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright Recent Developments in Geant4 Hadronics Geant4/Spenvis Workshop at JPL 6 November 2006 Dennis Wright Outline Treatment of isotopes (abundance,masses,pdg code) Cross section improvements Elastic scattering

More information

Recent Developments in Geant4. Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group)

Recent Developments in Geant4. Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group) Recent Developments in Geant4 Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group) Outline Geant4 and Calice Geant4 Validation Physics Lists and Simplified

More information

GEANT4 HADRONIC PHYSICS

GEANT4 HADRONIC PHYSICS GEANT4 HADRONIC PHYSICS Training course at International User Conference on Medicine and Biology applications Bordeaux, 8-11 October 2013 V. Ivanchenko Based on lectures developed by Dennis Wright Geant4

More information

Hadronic Physics I. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant4 V9.4

Hadronic Physics I. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant4 V9.4 Hadronic Physics I University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright Geant4 V9.4 Outline Overview of hadronic physics processes, cross sections, models hadronic framework and organization

More information

Geant Hadronic Physics I. Geant4 Tutorial at Lund University. 6 September 2018 Dennis Wright

Geant Hadronic Physics I. Geant4 Tutorial at Lund University. 6 September 2018 Dennis Wright Geant4 10.4 Hadronic Physics I Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright Outline Overview of hadronic physics Precompoundand de-excitation models Cascade models 2 Hadronic Processes,

More information

Geant4 version 10.0.p01. Hadronic Physics I. Geant4 Tutorial: version 10.0.p01. Michael Kelsey, Wed 5 Mar 2014

Geant4 version 10.0.p01. Hadronic Physics I. Geant4 Tutorial: version 10.0.p01. Michael Kelsey, Wed 5 Mar 2014 Michael Kelsey, Wed 5 Mar 2014 Hadronic Physics I Geant4 Tutorial: version 10.0.p01 Hadronic Physics I What is Hadronic Physics? The Hadronic Framework - Processes vs. Models - Cross sections and process

More information

Hadronic Physics II. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant April 2011, CMRP, UOW

Hadronic Physics II. University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright. Geant April 2011, CMRP, UOW Hadronic Physics II University of Pennsylvania Geant4 Tutorial 17 May 2011 Dennis Wright Geant4 9.4 Outline Low energy neutrons Ion-ion collisions Radioactive decay High energy models (QCD strings) 2 Low

More information

Validation of Geant4 Hadronic Physics Models at Intermediate Energies. Outline

Validation of Geant4 Hadronic Physics Models at Intermediate Energies. Outline Models at Intermediate Energies Outline Motivation Models Data Used Validation Results Summary CHEP 2009 Prague, March 23-27, 2009 Sunanda Banerjee, Fermilab (on behalf of Geant4 Hadronic Group) Motivation

More information

Hadronic Physics III. University of Pennsylvania Geant4 Tutorial 18 May 2011 Dennis Wright. Geant4 V9.4

Hadronic Physics III. University of Pennsylvania Geant4 Tutorial 18 May 2011 Dennis Wright. Geant4 V9.4 Hadronic Physics III University of Pennsylvania Geant4 Tutorial 18 May 2011 Dennis Wright Geant4 V9.4 2 Outline Gamma and lepto-nuclear models Chiral Invariant Phase Space (CHIPS) model Other models capture

More information

Detector Simulation. Mihaly Novak CERN PH/SFT

Detector Simulation. Mihaly Novak CERN PH/SFT Detector Simulation Mihaly Novak CERN PH/SFT CERN Summer Student Program, 1 August 2017 Foreword This lecture is aimed to offer a simple and general introduction to detector simulation. Geant4 will be

More information

Usage of GEANT 4 versions: 6, 7 & 8 in BABAR

Usage of GEANT 4 versions: 6, 7 & 8 in BABAR Usage of GEANT 4 versions: 6, 7 & 8 in BABAR Swagato Banerjee Computing in High Energy and Nuclear Physics (CHEP) 4 September 27, Victoria. SLAC-Based B-Factory: PEP II & BABAR The BABAR Detector: Simulation

More information

Results obtained with nuclear models of Geant4 in IAEA Benchmark of Spallation

Results obtained with nuclear models of Geant4 in IAEA Benchmark of Spallation Results obtained with nuclear models of Geant4 in IAEA Benchmark of Spallation J. M. Quesada on behalf of the Geant4 Hadronic Group IAEA, Vienna, 05.05.2009 1 General Introduction 2 What is Geant4? Geant4

More information

Hadronic physics.

Hadronic physics. Hadronic physics http://geant4.cern.ch PART I Intro to the philosophy of hadronic processes Hadronic physics challenge Even though there is an underlying theory (QCD), applying it is much more difficult

More information

Beam Dump Experiments with Photon and Electron Beams

Beam Dump Experiments with Photon and Electron Beams Beam Dump Experiments with Photon and Electron Beams Electron beams BDX at Jefferson Lab Signal and backgrounds Muon flux measurements Status Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information

Improvements and developments of physics models in PHITS for radiotherapy and space applications

Improvements and developments of physics models in PHITS for radiotherapy and space applications Improvements and developments of physics models in PHITS for radiotherapy and space applications L. Sihver 1-9, T. Sato 10, S. Hashimoto 10, T. Ogawa 10, K. Niita 11 1 Atominstitut, TU Wien, Austria, 2

More information

INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION MODELS IN GEANT4

INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION MODELS IN GEANT4 Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA + MC) Hitotsubashi Memorial Hall, Tokyo, Japan, October -, INCL INTRA-NUCLEAR CASCADE AND ABLA DE-EXCITATION

More information

Shielding Design Considerations for Proton Therapy Facilities

Shielding Design Considerations for Proton Therapy Facilities Shielding Design Considerations for Proton Therapy Facilities p p n π ± INC π 0 Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos, CA, U.S.A. Email:

More information

Introduction to Geant4 Physics Overview

Introduction to Geant4 Physics Overview Introduction to Geant4 Physics Overview Koi, Tatsumi SLAC SCCS Based on Presentations at SLAC Geant4 Tutorial 2007 Outline Geant4 Physics Overview Process Physics List Standard EM Low Energy EM Hadron

More information

Geant Hadronic Physics III. Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright (SLAC)

Geant Hadronic Physics III. Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright (SLAC) Geant4 10.4 Hadronic Physics III Geant4 Tutorial at Lund University 6 September 2018 Dennis Wright (SLAC) QCD string models Outline Quark-gluon string (QGS) model Fritiof (FTF) model Gamma- and lepto-nuclear

More information

Ion-ion Physics in Geant4. Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008

Ion-ion Physics in Geant4. Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008 Ion-ion Physics in Geant4 Dennis Wright (SLAC) 5 th Geant4 Space Users' Workshop 14 February 2008 Outline Introduction and Motivation Cross sections Existing models New Models Interfaces to external models

More information

Secondary Radiation and Shielding Design for Particle Therapy Facilities

Secondary Radiation and Shielding Design for Particle Therapy Facilities Secondary Radiation and Shielding Design for Particle Therapy Facilities π± A p, n, π± A p, n A Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos,

More information

Neutrino-Nucleus Scattering at MINERvA

Neutrino-Nucleus Scattering at MINERvA 1 Neutrino-Nucleus Scattering at MINERvA Elba XIII Workshop: Neutrino Physics IV Tammy Walton Fermilab June 26, 2014 2 MINERvA Motivation Big Picture Enter an era of precision neutrino oscillation measurements.

More information

Photon transport mode in Serpent 2

Photon transport mode in Serpent 2 Photon transport mode in Serpent 2 Toni Kaltiaisenaho VTT Technical Research Centre of Finland, LTD Serpent User Group Meeting, Knoxville, TN October 13 16, 215 October 14, 215 1/21 Outline Photon physics

More information

Code improvements and shielding benchmarks for Geant4 version 10.02

Code improvements and shielding benchmarks for Geant4 version 10.02 Code improvements and shielding benchmarks for Geant4 version 10.02 KOI, Tatsumi on behalf of Geant4 collaboration SD/EPP/Computing SLAC National Accelerator Laboratory Outline Highlights of Geant4 v10.01

More information

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Status of the physics validation studies using Geant4 in ATLAS

Status of the physics validation studies using Geant4 in ATLAS Status of the physics validation studies using Geant4 in ATLAS On behalf of the ATLAS Geant4 Validation Team A.Dell Acqua CERN EP/SFT, Geneva, CH dellacqu@mail.cern.ch The new simulation for the ATLAS

More information

Hadron Production Generators: Progress

Hadron Production Generators: Progress Rakitha S. Beminiwattha SoLID Collaboration Meeting January 12 th, 2016 1/19 Hadron Production Generators: Progress Rakitha S. Beminiwattha Department of Physics, Syracuse University January 12 th, 2016

More information

Beam Dump Experiments at JLab and SLAC

Beam Dump Experiments at JLab and SLAC Beam Dump Experiments at JLab and SLAC Brief History (E137 at SLAC) BDX at Jefferson Lab Detector and signal Backgrounds Expected Sensitivity Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information

User Documents and Examples II

User Documents and Examples II User Documents and Examples II John Apostolakis Most slides from Dennis Wright s talk at SLAC Geant4 Tutorial, May 2007 Geant4 V8.3 Outline User Documents Toolkit Developers' Guide Physics Reference Manual

More information

Fundamentals in Nuclear Physics

Fundamentals in Nuclear Physics 018/ Fundamentals in Nuclear Physics Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 Schedule Nuclear reactions 5/1 Nuclear decays and fundamental interactions

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA)

Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA) Benchmark Experiments of Accelerator Driven Systems (ADS) in Kyoto University Critical Assembly (KUCA) C. H. Pyeon, T. Misawa, H. Unesaki, K. Mishima and S. Shiroya (Kyoto University Research Reactor Institute,

More information

Overview of validations at LHC

Overview of validations at LHC G4 Workshop, Bordeaux, 8 November 2005 Overview of validations at LHC Alberto Ribon CERN PH/SFT http://lcgapp.cern.ch/project/simu/validation/ Physics Validation First cycle of electromagnetic physics

More information

arxiv:nucl-th/ v1 2 Jun 2003

arxiv:nucl-th/ v1 2 Jun 2003 CHEP 2003, La Jolla, California, USA, March 24-28 2003 1 Bertini intra-nuclear cascade implementation in Geant4 Aatos Heikkinen, Nikita Stepanov Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University

More information

Light ion recoil detector

Light ion recoil detector Light ion recoil detector Overall design The detector for light (target-like) particles is a substantial part of the R3B setup. It allows registration of recoils in coincidence with the heavy fragments,

More information

Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center

Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center 1 Nuclear Cross-Section Measurements at the Manuel Lujan Jr. Neutron Scattering Center M. Mocko 1, G. Muhrer 1, F. Tovesson 1, J. Ullmann 1 1 LANSCE, Los Alamos National Laboratory, Los Alamos NM 87545,

More information

Low Energy Neutron Verification in GEANT4: to 4.9.5

Low Energy Neutron Verification in GEANT4: to 4.9.5 Low Energy Neutron Verification in GEANT4: 4.9.3 to 4.9.5 Kimberly J. Palladino MiniCLEAN Collaboration Presenting the work of Katie Harrington, Peder Bruusgaard, Will Yashar What we've studied Neutron

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Studies of charmonium production in e + e - annihilation and B decays at BaBar

Studies of charmonium production in e + e - annihilation and B decays at BaBar Studies of charmonium production in e + e - annihilation and B decays at BaBar I. Garzia, INFN Sezione di Ferrara On behalf of the BaBar Collaboration XVI International Conference on Hadron Spectroscopy

More information

G4 vs. Fluka comparison for single neutron

G4 vs. Fluka comparison for single neutron From SguazzWiki NeuCal: NeuCalG4vsFlukaReport G4 vs. Fluka comparison for single neutron Sguazzoni & Sorichetti On this page... (hide) 1.!Prototype geometry 2.!Simulated samples 2.1!G4 details 2.2!Fluka

More information

Unit 6 Modern Physics

Unit 6 Modern Physics Unit 6 Modern Physics Early Booklet E.C.: + 1 Unit 6 Hwk. Pts.: / 46 Unit 6 Lab Pts.: / 16 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Modern Physics 1. A photon s energy

More information

Nuclear Data Activities in the IAEA-NDS

Nuclear Data Activities in the IAEA-NDS Nuclear Data Activities in the IAEA-NDS R.A. Forrest Nuclear Data Section Department of Nuclear Sciences and Applications Outline NRDC NSDD EXFOR International collaboration CRPs DDPs Training Security

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

Low-Energy Neutron Treatment in FLUKA. Beginners FLUKA Course

Low-Energy Neutron Treatment in FLUKA. Beginners FLUKA Course Low-Energy Neutron Treatment in FLUKA Beginners FLUKA Course Introduction In FLUKA we call neutrons below 20 MeV low energy neutrons Neutron interactions at higher energy are handled by FLUKA nuclear models

More information

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A.

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. 2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. Abstract We report our simulation results for K L -beam and

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Progress in Hadronic Physics Modeling in Geant4

Progress in Hadronic Physics Modeling in Geant4 Progress in Hadronic Physics Modeling in Geant4 Gunter Folger, V.Grichine, A.Heikkinen, A.Howard, V.Ivanchenko, P.Kaitaniemi, T.Koi, M.Kosov, J.M.Quesada Molina, A.Ribon, V.Uzhinskiy, D.Wright For the

More information

Complete activation data libraries for all incident particles, all energies and including covariance data

Complete activation data libraries for all incident particles, all energies and including covariance data Complete activation data libraries for all incident particles, all energies and including covariance data Arjan Koning NRG Petten, The Netherlands Workshop on Activation Data EAF 2011 June 1-3 2011, Prague,

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Vyacheslav Ivanov *1, Evgeny Solodov 1, Evgeny Kozyrev 1, and Georgiy Razuvaev 1 1 Budker Institute of Nuclear Physics,

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Upcoming features in Serpent photon transport mode

Upcoming features in Serpent photon transport mode Upcoming features in Serpent photon transport mode Toni Kaltiaisenaho VTT Technical Research Centre of Finland Serpent User Group Meeting 2018 1/20 Outline Current photoatomic physics in Serpent Photonuclear

More information

External MC code : PHITS

External MC code : PHITS External MC code : PHITS Particle and Heavy Ion Transport code System Koji. Niita 1, Tatsuhiko Sato 2, Hiroshi Iwase 3, Yosuke Iwamoto 2, Norihiro Matsuda 2, Yukio Sakamoto 2, Hiroshi Nakashima 2, Davide

More information

Heavy Ion Interactions. Beginners FLUKA Course

Heavy Ion Interactions. Beginners FLUKA Course Heavy Ion Interactions Beginners FLUKA Course 1 Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

Simulation for LHC Radiation Background

Simulation for LHC Radiation Background Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation M. Glaser1, S. Guatelli2, B. Mascialino2, M. Moll1, M.G. Pia2, F. Ravotti1 1 CERN, Geneva, Switzerland

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Nicolas Berger SLAC, Menlo Park, California, U.S.A.

Nicolas Berger SLAC, Menlo Park, California, U.S.A. SLAC-PUB-11414 August 25 Frascati Physics Series Vol. VVVVVV (xxxx), pp. - DAΦNE 24: Physics at meson factories Frascati, June. 7-11, 24 Selected Contribution in Plenary Session INCLUSIVE HADRONIC RESULTS

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6.

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Neutral Current Single Photon Production (NCγ) Outline physics ν Z ν N ω γ Teppei Katori Queen Mary University of London INT workshop, Seattle, USA, Dec. 12, 2013 N 1 2 NuSTEC protocol - way to avoid Donkey

More information

Reconstruction in Collider Experiments (Part IX)

Reconstruction in Collider Experiments (Part IX) Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments (Part IX) Peter Loch University of Arizona Tucson,

More information

HERA e-p scattering events observed in the H1Detector. H1 Events Joachim Meyer DESY

HERA e-p scattering events observed in the H1Detector. H1 Events Joachim Meyer DESY HERA e-p scattering events observed in the H1Detector H1 Events Joachim Meyer DESY 2005 1 The idea The realisation The Physics The events H1 Events Joachim Meyer DESY 2005 2 What we think what happens,

More information

Electronuclear Interactions in FLUKA

Electronuclear Interactions in FLUKA Electronuclear Interactions in FLUKA Pavel Degtiarenko Jefferson Lab Contents What are the inelastic direct electronuclear (ea) reactions Why ea reactions important/critical for JLab s needs What is our

More information

Photonuclear reactions in Geant4: inefficiency of electromagnetic calorimeters.

Photonuclear reactions in Geant4: inefficiency of electromagnetic calorimeters. Photonuclear reactions in Geant4: inefficiency of electromagnetic calorimeters. Mikhail Kosov, ITEP/, Krare 2005 May 26, 2005. CHIPS model of photonuclear reactions in Geant4 (CHIPS/GHAD). 2. Test9 frame

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

Neutrino Flux Requirements for DUNE Leo Aliaga

Neutrino Flux Requirements for DUNE Leo Aliaga Neutrino Flux Requirements for DUNE Leo Aliaga WG1: Neutrino Flux October 16, 2017 Outline LBNF beamline designs. Current flux uncertainties. Reducing the flux uncertainties 2 LBNF Beamline Designs 3 LBNF

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Kaon Identification at NA62 Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Francis Newson April 2015 Kaon Identification at NA62 K πνν NA48 and NA62 K + π + νν

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments

Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments Geant4 simulation of SOI microdosimetry for radiation protection in space and aviation environments Dale A. Prokopovich,2, Mark I. Reinhard, Iwan M. Cornelius 3 and Anatoly B. Rosenfeld 2 Australian Nuclear

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

String Parton Models in Geant4

String Parton Models in Geant4 String Parton Models in Geant4 G.Folger, J.P.Wellisch CERN, CH-2 Geneva, Switzerland Dual parton or quark gluon string model are the by now almost standard theoretical techniques by which one can arrive

More information

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers em + strong interaction with absorber similarities to em-showers, but much more complex different

More information

The EIC Physics List. EIC Workshop (29 July 1 August, 2018) Dennis Wright (SLAC)

The EIC Physics List. EIC Workshop (29 July 1 August, 2018) Dennis Wright (SLAC) The EIC Physics List EIC Workshop (29 July 1 August, 2018) Dennis Wright (SLAC) Outline Focus of EIC Physics List Physics list features Hadronic Physics Constructors Gamma-nuclear and lepto-nuclear 2 Physics

More information

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014 Hadronization model model tuning 4. Impact of Hadronization model for PINGU Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014 Teppei

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Physics sources of noise in ring imaging Cherenkov detectors

Physics sources of noise in ring imaging Cherenkov detectors Nuclear Instruments and Methods in Physics Research A 433 (1999) 235}239 Physics sources of noise in ring imaging Cherenkov detectors For the ALICE HMPID Group Andreas Morsch EP Division, CERN, CH-1211

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Neutrino Cross Sections and Scattering Physics

Neutrino Cross Sections and Scattering Physics Neutrino Cross Sections and Scattering Physics Bonnie Fleming Yale University, New Haven, CT. Abstract. Large flux uncertainties and small cross sections have made neutrino scattering physics a challenge.

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Background simulations and shielding calculations

Background simulations and shielding calculations Background simulations and shielding calculations Vitaly A. Kudryavtsev University of Sheffield Contributions from many others Outline Note 1: results are relevant to many experiments and techniques (mainly

More information

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) 1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) N. Terentiev* (Carnegie Mellon U./Fermilab) V. Di Benedetto, C. Gatto (INFN) A. Mazzacane, N. Mokhov, S. Striganov

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

Heavy Ion Interactions. Beginners FLUKA Course

Heavy Ion Interactions. Beginners FLUKA Course Heavy Ion Interactions Beginners FLUKA Course Overview The models DPMJET RQMD BME Input options Beam definition Transport thresholds 2 Heavy ion interaction models in FLUKA - 1 E > 5 GeV/n Dual Parton

More information

Neutrino Event Tagging Based On Nucleon Energy Spectra

Neutrino Event Tagging Based On Nucleon Energy Spectra Neutrino Event Tagging Based On Nucleon Energy Spectra Joshua Gevirtz Dr. Robert Svoboda UC Davis REU Program 2009 October 20, 2009 Abstract Since they were first theorized in 1930 by Wolfgang Pauli, much

More information

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS LC Workshop, CERN, 15 Nov 2001 Dario Barberis Genova University/INFN 1 The ATLAS detector LC Workshop, CERN, 15 Nov 2001

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

COMPRESSED SUSY AND BEAMCAL SIMULATION STUDIES AT SCIPP

COMPRESSED SUSY AND BEAMCAL SIMULATION STUDIES AT SCIPP SCIPP ILC SID/FCAL SIMULATION GROUP JANE SHTALENKOVA BRUCE SCHUMM, WILLIAM WYATT, BENJAMIN SMITHERS COMPRESSED SUSY AND BEAMCAL SIMULATION STUDIES AT SCIPP ILC BEAMCAL Accepts E+&E- scattered between 5

More information