arxiv: v3 [math.st] 8 Mar 2018

Size: px
Start display at page:

Download "arxiv: v3 [math.st] 8 Mar 2018"

Transcription

1 arxiv: arxiv: Robus Modificaios of U-saisics ad Applicaios o Covariace Esimaio Problems Saislav Miser 1,* ad Xiaoha Wei,** 1 Deparme of Mahemaics, Uiversiy of Souher Califoria, Los Ageles, CA * miser@usc.edu Deparme of Elecrical Egieerig, Uiversiy of Souher Califoria, Los Ageles, CA ** xiaohaw@usc.edu arxiv: v3 mah.st] 8 Mar Iroducio Absrac: Le Y be a d-dimesioal radom vecor wih uow mea µ ad covariace marix Σ. This paper is moivaed by he problem of desigig a esimaor of Σ ha admis igh deviaio bouds i he operaor orm uder miimal assumpios o he uderlyig disribuio, such as exisece of oly 4h momes of he coordiaes of Y. To address his problem, we propose robus modificaios of he operaor-valued U-saisics, obai o-asympoic guaraees for heir performace, ad demosrae he implicaios of hese resuls o he covariace esimaio problem uder various srucural assumpios. Keywords ad phrases: U-saisics, heavy ails, covariace esimaio, robus esimaors. I mahemaical saisics, i is commo o assume ha daa saisfy a uderlyig model alog wih a se of assumpios o his model for example, ha he sequece of vecor-valued observaios is i.i.d. ad has mulivariae ormal disribuio. Sice real-world daa ypically do o fi he model or saisfy he assumpios exacly e.g., due o ouliers ad oise, reducig he umber ad sricess of he assumpios helps o reduce he gap bewee he mahemaical world ad he real world. The cocep of robusess occupies oe he ceral roles i udersadig his gap. Oe of he viable ways o model oisy daa ad ouliers is o assume ha he observaios are geeraed by a heavy-ailed disribuio, ad his is precisely he approach ha we follow i his wor. Robus M-esimaors iroduced by P. Huber ] cosiue a powerful mehod i he oolbox for he aalysis of heavy-ailed daa. Huber oed ha i is a empirical fac ha he bes oulier] rejecio procedures do o quie reach he performace of he bes robus procedures. His coclusio remais valid i oday s age of high-dimesioal daa ha poses ew challegig quesios ad demad ovel mehods. The goal of his wor is o iroduce robus modificaios for he class of operaor-valued U-saisics, which aurally appear i he problems relaed o esimaio of covariace marices. Saisical esimaio i he presece of ouliers ad heavy-ailed daa has recely araced he aeio of he research commuiy, ad he lieraure o he opic covers he wide rage of opics. A comprehesive review is beyod he scope of his secio, so we meio oly few oable coribuios. Several popular approach o robus covariace esimaio ad robus pricipal compoe aalysis are discussed i 4, 36, 7], icludig he Miimum Covariace Deermia MCD esimaor ad he Miimum Volume Ellipsoid esimaor MVE. Maroa s 3] ad Tyler s 38, 41] M-esimaors are oher well-ow aleraives. Rigorous resuls for hese esimaors are available oly for special families of disribuios, such as ellipically symmeric. Robus esimaors based o Kedall s au have bee recely sudied i 40, 19], agai for he family of ellipically symmeric disribuios ad is geeralizaios. The papers 10, 11, 18] discuss robus covariace esimaio for heavy-ailed disribuios ad are all based o he ideas origiaig i wor 9] ha provided deailed o-asympoic aalysis of robus M-esimaors of he uivariae mea. The prese paper ca be see as a direc exesio of hese ideas o he case of marix-valued U-saisics, ad coiues he lie of wor iiiaed i 15] ad 33]; he mai advaage of he echiques proposed is ha hey resul i esimaors ha ca be compued efficiely, ad cover scearios beyod covariace esimaio problem. Rece advaces i his direcio iclude he wors 16] ad 34] ha prese ew resuls o robus covariace esimaio; see Remar 4.1 for more deails. Fially, le us meio he paper 5] ha ivesigaes robus aalogues of U-saisics obaied via he media-of-meas echique, 14, 35, 9]. We iclude a more deailed discussio ad compariso 1

2 S. Miser ad X. Wei/Robus U-saisics wih he mehods of his wor i Secio 3 below. The res of he paper is orgaizes as follows. Secio explais he mai oaio ad bacgroud maerial. Secio 3 iroduces he mai resuls. Implicaios for covariace esimaio problem ad is versios are oulied i Secio 4. Fially, he proofs of he mai resuls are coaied i Secio 5.. Prelimiaries I his secio, we iroduce mai oaio ad recall useful facs ha we rely o i he subseque exposiio..1. Defiiios ad oaio Give A C d1 d, le A C d d1 be he Hermiia adjoi of A. The se of all d d self-adjoi marices will be deoed by H d. For a self-adjoi marix A, we will wrie λ max A ad λ mi A for he larges ad smalles eigevalues of A. Hadamard ery-wise produc of marices A, B C d1 d will be deoed A 1 A. Nex, we will iroduce he marix orms used i he paper. Everywhere below, sads for he operaor orm A := λ max A A. If d 1 = d = d, we deoe by r A he race of A. Nex, for A C d1 d, he uclear orm 1 is defied as A 1 = r A A, where A A is a oegaive defiie marix such ha A A = A A. The Frobeius or Hilber-Schmid orm is A F = r A A, ad he associaed ier produc is A 1, A = r A 1A. Fially, defie A max := sup i,j A i,j. For a vecor Y R d, Y sads for he usual Euclidea orm of Y. Give wo self-adjoi marices A ad B, we will wrie A B or A B iff A B is oegaive or posiive defiie. Give a radom marix Y C d1 d wih E Y <, he expecaio EY deoes a d 1 d marix such ha EY i,j = EY i,j. For a sequece Y 1,..., Y of radom marices, E j ] will sad for he codiioal expecaio E Y 1,..., Y j ]. For a, b R, se a b := maxa, b ad a b := mia, b. Fially, recall he defiiio of he fucio of a marix-valued argume. Defiiio.1. Give a real-valued fucio f defied o a ierval T R ad a self-adjoi A H d wih he eigevalue decomposiio A = UΛU such ha λ j A T, j = 1,..., d, defie fa as fa = UfΛU, where 1 fλ = f λ... λ d = fλ fλd Fially, we iroduce he Hermiia dilaio which allows o reduce he problems ivolvig geeral recagular marices o he case of Hermiia marices. Defiiio.. Give he recagular marix A C d1 d, he Hermiia dilaio D : C d1 d C d1+d d1+d is defied as 0 A DA = A..1 0 AA Sice DA 0 = 0 A, i is easy o see ha DA = A. A.. U-saisics Cosider a sequece of i.i.d. radom variables X 1,..., X aig values i a measurable space S, B, ad le P be he disribuio of X 1. Assume ha H : S m H d m is a S m -measurable permuaio symmeric erel, meaig ha Hx 1,..., x m = Hx π1,..., x πm for ay x 1,..., x m S m ad ay permuaio π. The U-saisic wih erel H is defied as 0] U := m!! i 1,...,i m I m HX i1,..., X im,.

3 S. Miser ad X. Wei/Robus U-saisics 3 where I m := {i 1,..., i m : 1 i j,, i j i if j }; clearly, i is a ubiased esimaor of EHX 1,..., X m. Throughou his paper, we will impose a mild assumpio saig ha E HX1,..., X m <. Oe of he ey quesios i saisical applicaios is o udersad he coceraio of a give esimaor aroud he uow parameer of ieres. Majoriy of exisig resuls for U-saisics assume ha he erel H is bouded 4], or ha EHX 1,..., X m has sub-gaussia ails 17]. However, i he case whe oly he momes of low orders of HX 1,..., X m are fiie, deviaios of he radom variable HX 1,..., X m EHX 1,..., X m do o saisfy expoeial coceraio iequaliies. A he same ime, as we show i his paper, i is possible o cosruc robus modificaios of U for which sub-gaussia ype deviaio resuls hold. I he remaider of his secio, we recall several useful facs abou U-saisics. The projecio operaor π m, m is defied as π m, Hx i1,..., x i := δ xi1 P... δ xi P P m H, where Q m H :=... Hy 1,..., y m dqy 1... dqy m, for ay probabiliy measure Q i S, B, ad δ x is a Dirac measure coceraed a x S. For example, π m,1 Hx = E HX 1,..., X m X 1 = x] EHX 1,..., X m. Defiiio.3. A S m -measurable fucio F : S m H d is P -degeerae of order r 1 r < m, if EF x 1,..., x r, X r+1,..., X m = 0, x 1,..., x r S, ad EF x 1,..., x r, x r+1, X r+,..., X m is o a cosa fucio. Oherwise, F is o-degeerae. The followig resul is commoly referred o as Hoeffdig s decomposiio; see 13] for deails. Proposiio.1. The followig equaliy holds almos surely: where V π m, H = U = m =0!! m V π m, H, i 1,...,i I For isace, he firs order erm = 1 i he decomposiio is π m, HX i1,..., X i. mv π m,1 H = m π m,1 HX j. I his paper, we cosider o-degeerae U-saisics which commoly appear i applicaios such as esimaio of covariace marices ad ha serve as a mai moivaio for his paper. I is well-ow ha E U EHX 1,..., X m = m 1 m =1 m m m Σ, where Σ = E π m, HX 1, X,..., X, = 1,..., m. As ges large, he firs erm i he sum above domiaes he res ha are of smaller order, so ha E U P m H ] 1 m = m Σ m 1 m 1 + o 1 = m Σ 1 + o 1 as.

4 S. Miser ad X. Wei/Robus U-saisics a ψx b Ψx Fig 1: Graphs of he fucios ψx ad Ψx. 3. Robus modificaios of U-saisics The goal of his secio is o iroduce he robus versios of U-saisics, ad sae he mai resuls abou heir performace. Defie 1/, x > 1, ψx = x sigx x /, x 1, 3.1 1/, x < 1 ad is aiderivaive Ψx = { x x 3 6 1, x 1, x 1, x > The fucio Ψx is closely relaed o Huber s loss 3]; cocree choice of Ψx is moivaed by is properies, amely covexiy ad he fac ha is derivaive ψx is operaor Lipschiz ad bouded see Lemma 3.1 below. Le U be H d -valued U-saisic, U := m!! i 1,...,i m I m HX i1,..., X im. Sice U is he average of marices of he form HX i1,..., X im, i 1,..., i m I m, i ca be equivalely wrie as U = argmi HX i1,..., X im U F U H d i 1,...,i m I m = argmi r HX i1,..., X im U ]. U H d i 1,...,i m I m A robus versio of U is he defied by replacig he quadraic loss by rescaled loss Ψx. Namely, le θ > 0 be a scalig parameer, ad defie ] Û = argmi r Ψ θ HX i1,..., X im U. 3.3 U H d For breviy, we will se H i1...i m i 1,...,i m I m i wha follows. Defie F θ U := 1 m! θ r! := HX i1,..., X im ad EH := EH i1...i m i 1,...,i m I m ] Ψ θ H i1...i m U. 3.4

5 Clearly, Û ca be equivalely wrie as S. Miser ad X. Wei/Robus U-saisics 5 Û = argmi U H d r F θ U]. The followig resul describes he basic properies of his opimizaio problem. Lemma 3.1. The followig saemes hold: 1. Problem 3.3 is a covex opimizaio problem.. The gradie F θ U ca be represeed as F θ U = 1 θ m!! i 1,...,i m I m ψ θ H i1...i m U. Moreover, F θ : H d H d is Lipschiz coiuous i Frobeius ad operaor orms wih Lipschiz cosa Problem 3.3 is equivale o ψ θ H i1...i m Û = 0 d d. 3.5 i 1,...,i m I m Proofs of hese facs are give i Secio 5.. Nex, we prese our mai resul regardig he performace of he esimaor Û. Defie he effecive ra 39] of a oegaive defiie marix A H d as ra = r A A. I is easy o see ha for ay marix A H d, ra d. We will be ieresed i he effecive ra of he marix E H 1...m EH, ad will deoe r H := r E H 1...m EH. Theorem 3.1. Le = /m, ad assume ha > 0 is such ha r H , The for ay E H 1...m EH 1/ ad θ := θ = 1 Û EH 3 wih probabiliy 1 4d + 1e. The proof is preseed i Secio 5.3. Remar 3.1. Codiio r H i Theorem 3.1 ca be weaeed o r E H 1...m EH 1 104, where E H 1...m EH. This fac follows from he sraighforward modificaio of he proof of Theorem 3.1 ad ca be useful i applicaios. Remar 3.. The paper 5] ivesigaes robus aalogues of uivariae U-saisics based o he mediaof-meas MOM echique. This approach ca be exeded o higher dimesios via replacig he uivariae media by a appropriae mulivariae geeralizaio e.g., he spaial media. Whe applied o covariace esimaio problem, i yields esimaes for he error measured i Frobeius orm; however, is o o clear wheher i ca be used o obai he error bouds i he operaor orm. More specifically, o obai such a boud via he MOM mehod, oe would eed o esimae E 1 Y j EY Y j EY T Σ, where Y 1,..., Y j are i.i.d. copies of a radom vecor Y R d such ha EY EY Y EY T = Σ ad E Y 4 <. We are o aware of ay exisig o-rivial upper bouds for he aforemeioed expecaio ha require oly 4 fiie momes of Y. O he oher had, i is sraighforward o obai he upper boud i he Frobeius orm as E 1 Y j EY Y j EY T Σ F = 1 E Y EY 4 Σ F.

6 3.1. Cosrucio of he adapive esimaor S. Miser ad X. Wei/Robus U-saisics 6 The dowside of he esimaor Û defied i 3.3 is he fac ha i is o compleely daa-depede as he choice of θ requires he owledge of a upper boud o := E H 1...m EH. To alleviae his difficuly, we propose a adapive cosrucio based o a varia of Lepsi s mehod 8]. Assume ha mi is a ow possible crude lower boud o. Choose γ > 1, le j := mi γ j, ad for each ieger j 0, se j := + log jj + 1] ad where = /m as before. Le wih F θ was defied i 3.4. Fially, se L := L = θ j = θj, = j 1 j, Û,j = argmi F θj U, U H d { l l N : r H 1 } 104 ad j := mi { j L : l L, l > j, Û,l Û,j } l 46 l 3.6 ad Ũ := Û,j ; if codiio 3.6 is o saisfied by ay j L, we se j = + ad Ũ = 0 d d. Le log / Ξ = log mi log / + 1 mi ] log γ log γ Theorem 3.. Assume ha > 0 is such ha The wih probabiliy 1 4d + 1e, r H + Ξ Ũ + Ξ EH 69γ, I oher words, adapive esimaor ca be obaied a he cos of he addiioal muliplicaive facor 3γ i he error boud. Proof. Le j = mi {j 1 : j }, ad oe ha j log / mi log γ + 1 ad j γ. Noe ha codiio of Theorem 3. guaraees ha j L. We will show ha j j wih high probabiliy. Ideed, Pr j > j Pr { } j Û,l Û, j > 46 l l L:l> j j Pr Û, j EH > 3 j + l Pr Û,l EH > 3 l l L:l> j 4d + 1e 1 j j d + 1 1e ll + 1 4d + 1e. l> j

7 S. Miser ad X. Wei/Robus U-saisics 7 where we used Theorem 3.1 o boud each of he probabiliies i he sum. The display above implies ha he eve B = { } l Û,l EH 3 l l L:l j of probabiliy 1 4d + 1e is coaied i E = {j j}. Hece, o B we have Ũ EH Ũ Û, j j + Û, j EH 46 j + j 3 j + Ξ γ 69, ] where Ξ = log log / mi + 1 log / mi +. log γ log γ 3.. Exesio o recagular marices I his secio, we assume a more geeral seig where H : S m C d1 d is a C d1 d -valued permuaiosymmeric fucio. As before, our goal is o cosruc a esimaor of EH. We reduce his geeral problem o he case of H d1+d -valued fucios via he self-adjoi dilaio defied i.1. Le 0 HX DH i1...i m = i1,..., X im HX i1,..., X im ], 0 ad Ū = argmi r U H d 1 +d i 1,...,i m I m ] Ψ θ DH i1...i m U. Le Û 11 C d1 d1, Û C d d, Û1 C d1 d be such ha Ū ca be wrie i he bloc form as Û Ū = 11 Û1 Û 1 Û. Moreover, defie := max EH1...m EHH 1...m EH, EH1...m EH H 1...m EH ad r H := r EH 1...m EHH 1...m EH ]. Corollary 3.1. Le = /m, ad assume ha > 0 is such ha The for ay ad θ := θ = 1, wih probabiliy 1 4d 1 + d + 1 e. The proof is oulied i Secio 5.7. r H Û 1 EH Compuaioal cosideraios Sice he esimaor Û is he soluio of he covex opimizaio problem 3.3, i ca be approximaed via he gradie desce. We cosider he simples gradie desce scheme wih cosa sep size equal 1. Noe ha he Lipschiz cosa of F θ U is L F = 1 by Lemma 3.1, hece his sep choice is exacly

8 S. Miser ad X. Wei/Robus U-saisics 8 equal o 1 L F. Give a sarig poi U 0 H d, he gradie desce ieraio for miimizaio of r F θ U is U 0 : = U 0, U j : = U j 1 = U j 1 r F θ + 1 θ m!! U j 1 i 1,...,i m I m ψ θ H i1...i m U j 1, j 1. Lemma 3.. The followig iequaliies hold for all j 1: ] U 0 a r F θ U j F θ Û Û j Moreover, uder he assumpios of Theorem 3.1, j b U j 3 EH U 0 EH The proof is give is Secio 5.6. Noe ha par b implies ha a small umber of ieraios suffice o ge a esimaor of EH ha achieves performace boud similar o Û. 4. Esimaio of covariace marices I his secio, we cosider applicaios of he previously discussed resuls o covariace esimaio problems. Le Y R d be a radom vecor wih mea EY = µ, covariace marix Σ = E Y µy µ T ], ad such ha E Y µ 4 <. Assume ha Y 1,..., Y be i.i.d. copies of Y. Our goal is o esimae Σ; oe ha whe he observaios are he heavy-ailed, mea esimaio problem becomes o-rivial, so he assumpio µ = 0 is o plausible. U-saisics offer a coveie way o avoid explici mea esimaio. Ideed, observe ha Σ = 1 E Y 1 Y Y 1 Y T ], hece he aural esimaor of Σ is he U-saisic Σ = 1 Y i Y j Y i Y j T i j I is easy o chec ha Σ coicides wih he usual sample covariace esimaor Σ = 1 Y j 1 ȲY j Ȳ T. The robus versio is defied accordig o 3.3 as Σ = argmi S R d d,s=s T r i j Ψ θ Yi Y j Y i Y j T F ; S ], 4. which, by Lemma 3.1, is equivale o Yi Y j Y i Y j T ψ θ i j Σ = 0 d d. Remar 4.1. Assume ha Σ 0 4. is Σ 1 Σ 1 = 0 d d, he he firs ieraio of he gradie desce for he problem = 1 θ 1 1 i j ψ θ Y i Y j Y i Y j T. ca iself be viewed as a esimaor of he covariace marix. I has bee proposed i 33] see Remar 7 i ha paper, ad is performace has bee laer aalyzed i 16] see Theorem 3.. These resuls suppor he claim ha a small umber of gradie desce seps for problem 3.3 suffice i applicaios.

9 S. Miser ad X. Wei/Robus U-saisics 9 To assess performace of Σ, we will apply Theorem 3.1. Firs, le us discuss he marix variace appearig i he saeme. Direc compuaio shows ha for HY 1, Y = Y1 YY1 YT EH i1,...,i m EH = 1 E Y µy µ T + r ΣΣ., The followig resul which is a exesio of Lemma.3 i 34] coecs EH EH wih rσ, he effecive ra of he covariace marix Σ. Lemma 4.1. ha sup v: v =1 a Assume ha urosis of he liear forms Y, v is uiformly bouded by K, meaig E Y EY,v 4 K. The E Y EY,v ] E Y µy µ T K r Σ Σ b Assume ha he urosis of he coordiaes Y j := Y, e j of Y is uiformly bouded by K <, EY meaig ha j EY j 4 EY j EY j ] K. The max,...,d r E Y µy µ T ] K r Σ. c The followig iequaliy holds: E Y µy µ T r Σ Σ. Lemma 4.1 immediaely implies ha uder he bouded urosis assumpio, EH EH K rσ Σ. The followig corollary of Theorem 3.1 ogeher wih Remar 3.1 is immediae: Corollary 4.1. Assume ha he urosis of liear forms Y, v, v R d, is uiformly bouded by K. Moreover, le > 0 be such ha rσ / The for ay K rσ Σ ad θ := θ = 1 wih probabiliy 1 4d + 1e. /, Σ Σ 3 / A adapive versio of he esimaor Σ ca be cosruced as i 3.6, ad is performace follows similarly from Theorem 3.. Remar 4.. I is ow 7] ha he quaiy rσ Σ corols he expeced error of he sample covariace esimaor i he Gaussia seig. O he oher had, flucuaios of he error aroud is expeced value i he Gaussia case 7] are corolled by he wea variace sup v Rd : v =1 E 1/ Z, v 4 K Σ, while i our bouds flucuaios are corolled by he larger quaiy ; his fac leaves room for improveme i our resuls Esimaio i Frobeius orm Nex, we show ha hresholdig he sigular values of he adapive esimaor Σ defied as i 3.6 for some γ > 1 yields he esimaor ha achieves opimal performace i Frobeius orm. Give τ > 0, defie d Σ τ = max λ j Σ τ/, 0 v j Σ v j Σ T, 4.3 where λ j Σ ad v j Σ are he eigevalues ad he correspodig eigevecors of Σ.

10 S. Miser ad X. Wei/Robus U-saisics 10 Corollary 4.. Assume ha he urosis of liear forms Y, v, v R d, is uiformly bouded by K. Moreover, le > 0 be such ha rσ + Ξ / 1 104, where Ξ was defied i 3.7 wih := K rσ Σ. The for ay τ γ 138 rσ + Ξ K Σ, / Σ τ Σ if F wih probabiliy 1 4d + 1e. S R d d,s=s T The proof of his corollary is give i Secio Mased covariace esimaio S Σ F ] τ ras Mased covariace esimaio framewor is based o he assumpio ha some eries of he covariace marix Σ are more impora. This is quaified by a symmeric mas marix M R d d, whece he goal is o esimae he marix M Σ ha dowweighs he eries of Σ ha are deemed less impora, or icorporaes he prior iformaio o Σ. This problem formulaio has bee iroduced i 30], ad laer sudied i a umber of papers icludig 1] ad 6]. We will be ieresed i fidig a esimaor Σ M such ha Σ M M Σ is small wih high probabiliy, ad specifically i depedece of he esimaio error o he mas marix M. Cosider he followig esimaor: Σ M = argmi S R d d,s=s T r i j Ψ M Yi Y j Y i Y j T θ S ], 4.5 which is he robus versio of he esimaor M Σ, where Σ is he sample covariace marix defied i 4.1. Nex, followig 1] we iroduce addiioal parameers ha appear i he performace bouds for Σ M. Le M 1 := max d,...,d be he maximum orm of he colums of M. We also defie ad ν 4 Y := i=1 M ij sup E 1/4 v, Y EY 4 v 1 µ 4 Y = max...d E1/4 Y j EY j 4. The followig resul describes he fiie-sample performace guaraees for Σ M. Corollary 4.3. Assume ha he urosis of he coordiaes Y j = Y, e j of Y is uiformly bouded by K. Moreover, le > 0 be such ha r Σ K ν4 Y / The for ay M 1 ν 4 Y µ 4 Y ad θ = 1 /, wih probabiliy 1 4d + 1e. Σ M M Σ 3 /

11 S. Miser ad X. Wei/Robus U-saisics 11 Proof. Le X ad X be idepede ad ideically disribued radom variables. The i is easy o chec ha EX X 4 8EX EX I implies ha ν4y 1 Y ν4y ad µ 4 Y 1 Y µ 4 Y. Nex, Lemma 4.1 i 1] yields ha E Y1 Y Y 1 Y T M M 1 µ 4Y ν4y. 4.7 Nex, we will fid a upper boud for he race of E Y1 Y. Y 1 Y T M I is easy o see ha e.g., see equaio 4.1 i 1] Y1 Y Y 1 Y T E M = d M j M j T E 1 Y j Y1 Y Y 1 Y T, where M j deoes he j-h colum of he marix M. I follows from 4.6, Hölder s iequaliy ad he bouded urosis assumpio ha Y1 Y Y 1 Y T ] d r E M = M i,je Y i 1 Y i Y j 1 Y j i, Y j d Mi,jE 1/ Y i EY i 4 E 1/ Y j EY j 4 i, K µ 4Y M 1 r Σ. Nex, we deduce ha for M 1 µ 4Y ν4y, ] r E Y1 Y Y 1 Y T M r Σ K ν4 Y. Resul ow follows from Theorem 3.1 ad Remar 3.1. Remar 4.3. Le K := sup v: v =1 E Y EY, v 4 E Y EY, v ]. Sice ν4y K Σ by Lemma 4.1 ad µ 4 K Σ max, we ca sae a slighly modified versio of Corollary 4.3. Namely, le > 0 be such ha K K rσ / The for ay K M 1 Σ max Σ ad θ = 1 /, Σ M M Σ 3 / wih probabiliy 1 4d + 1e. I paricular, if M 1 rσ Σ Σ max, he our bouds show ha M Σ ca be esimaed a a faser rae ha Σ iself. This coclusio is cosise wih resuls i 1] for Gaussia radom vecors e.g., see Theorem 1.1 i ha paper; however, we should oe ha our bouds were obaied uder much weaer assumpios.

12 5. Proofs of he mais resuls S. Miser ad X. Wei/Robus U-saisics 1 I his secio, we prese he proofs ha were omied from he mai exposiio Techical ools We recall several useful facs from probabiliy heory ad marix aalysis ha our argumes rely o. Fac 1. Le f : R R be a covex fucio. The A r fa is covex o he se of self-adjoi marices. I paricular, for ay self-adjoi marices A, B, A + B r f 1 r fa + 1 r fb. Proof. This is a cosequece of Peierls iequaliy, see Theorem.9 i 8] ad he commes followig i. Fac. Le F : R R be a coiuously differeiable fucio, ad S C d d be a self-adjoi marix. The he gradie of GS := r F S is GS = F S, where F is he derivaive of F ad F S : C d d C d d is he marix fucio i he sese of he defiiio.1. Proof. See Lemma A.1 i 33]. Fac 3. Fucio ψx defied i 3.1 saisfies log1 x + x ψx log1 + x + x 5.1 for all x R. Moreover, as a fucio of H d -valued argume see defiiio.1, ψ is Lipschiz coiuous i he Frobeius ad operaor orms wih Lipschiz cosa 1, meaig ha for all A 1, A H d, ψa 1 ψa F A 1 A F, ψa 1 ψa A 1 A. Proof. To show 5.1, i is eough o chec ha x x / log1 x + x for x 0, 1] ad ha x x / log1 + x + x, x 0, 1]. Oher iequaliies follow afer he chage of variable y = x. To chec ha fx := x x / log1 x + x := gx for x 0, 1], oe ha f0 = g0 = 0 ad ha f x = 1 x 1 x1+x 1 x+x = g x for x 0, 1]. Iequaliy x x / log1 + x + x, x 0, 1] ca be esablished similarly. Noe ha he fucio ψ : R R is Lipshiz coiuous wih Lipschiz cosa 1 as a fucio of real variable. Lemma 5.5 Chaper 7 i 6] immediaely implies ha i is also Lipshiz coiuous i he Frobeius orm, sill wih Lipschiz cosa 1. Lipshiz propery of ψ i he operaor orm follows from Corollary 1.1. i 1] which saes ha if g C 1 R ad g is posiive defiie, he he Lipschiz cosa of g as a fucio o H d is equal o g 0. I is easy o chec ha { ψ 1 x, x 1, x = 0, oherwise, which is he Fourier rasform of he posiive iegrable fucio sicy = siπy, πy hece ψ is posiive defiie ad he operaor Lipschiz cosa of ψ is equal o 1. Fac 4. Le T 1,..., T L be arbirary H d -valued radom variables, ad p 1,..., p L be o-egaive weighs such ha L p j = 1. Moreover, le T = L p jt j be covex combiaio of T 1,..., T L. The ] Pr λ max T max if,...,l θ>0 e θ Er e θtj.

13 S. Miser ad X. Wei/Robus U-saisics 13 Proof. This fac is a corollary of he well-ow Hoeffdig s iequaliy see Secio 5 i 1]. Ideed, for ay θ > 0, L L Pr λ max p j T j Pr exp θλ max p j T j e θ where he las iequaliy follows from Fac 1. L e θ Er exp θ p j T j e θ L p j Er exp θt j, Fac 5 Cheroff boud. Le ξ 1,..., ξ be a sequece of i.i.d. copies of ξ such ha Prξ = 1 = 1 Prξ = 0 = p 0, 1, ad defie S := ξ j. The Proof. See Proposiio.4 i 3]. ] PrS / 1 + τp if e θp1+τ Ee θs θ>0 e τ p +τ, τ > 1, e τ p 3, 0 < τ 1. Le π be he collecio of all permuaios i : {1,..., } {1,..., }. For iegers m /, le = /m. Give a permuaio i 1,..., i π ad a U-saisic U defied i., le W i1,...,i := 1 H Xi1,..., X im + H X im+1,..., X im Fac 6. The followig equaliy holds: Proof. See Secio 5 i 1]. U = 1 W i1,...,i!. i 1,...,i π H Xi 1m+1,..., X i m Le Z 1,..., Z be a sequece of idepede copies of Z H d such ha EZ <.. 5. Fac 7 Marix Bersei Iequaliy. Assume ha Z EZ M almos surely. The for ay EZ EZ, Z j EZ 4M 3 wih probabiliy 1 de. Proof. See Theorem 1.4 i 37]. Assume ha H X i1,..., X im M almos surely. Togeher wih Facs 6 ad 4, Bersei s iequaliy ca be used o show ha U EH EH EH 1/ 4M 3 wih probabiliy 1 de. This corollary will be useful i he sequel. Fac 8. Le ψ be defied by 3.1. The he followig iequaliies hold for all θ > 0: Er exp ψθz j θez r exp θ EZ, Er exp θez ψθz j r exp θ EZ. 5.3

14 S. Miser ad X. Wei/Robus U-saisics 14 Proof. These iequaliies follow from 5.1 ad Lemma 3.1 i 33]. Noe ha we did o assume boudedess of Z EZ M above. Fially, we will eed he followig saeme relaed o he self-adjoi dilaio.1. Fac 9. Le S C d1 d1, T C d d be self-adjoi marices, ad A C d1 d. The S A A 0 A T A. 0 Proof. See Lemma.1 i 33]. 5.. Proof of Lemma Covexiy follows from Fac 1 sice he sum of covex fucios is a covex fucio. The expressio for he gradie follows from Fac. To show ha F θ U is Lipschiz coiuous, oe ha 1 θ ψ θ H i 1,...,i m U 1 1 θ ψ θ H i 1,...,i m U 1 θ θ H i 1,...,i m U 1 θ H i1,...,i m U = U 1 U, 1 θ ψ θ H i 1,...,i m U 1 1 θ ψ θ H i 1,...,i m U F 1 θ θ H i 1,...,i m U 1 θ H i1,...,i m U = U 1 U F F by Fac 3. Sice he covex combiaio of Lipschiz coiuous fucios is sill Lipschiz coiuous, he claim follows. 3 Sice Û is he soluio of he problem 3.3, he direcioal derivaive df θ Û ; F θ Û + B F θ Û B := lim = r F θ Û 0 B is equal o 0 for ay B H d. Resul follows by aig cosecuively B i,j = e i e T j + e je T i, i j ad B i,i = e i e T i, i = 1,..., d, where {e 1,..., e d } is he sadard Euclidea basis Proof of Theorem 3.1 The proof is based o he aalysis of he gradie desce ieraio for he problem 3.3. Le GU := r F θ U = r 1 m! θ Ψ θ HX i1,..., X im U,! ad defie i 1,...,i m I m U 0 : = EH = EHX 1,..., X m, : = U j 1 G U j 1 = U j m! θ! U j i 1,...,i m I m ψ θ H i1...i m U j 1, j 1, which is he gradie desce for 3.3 wih he sep size equal o 1. We will show ha wih high probabiliy ad for a appropriae choice of θ, U j does o escapes a small eighborhood of EHX 1,..., X m. The claim of he heorem he easily follows from his fac.

15 S. Miser ad X. Wei/Robus U-saisics 15 Give a permuaio i 1,..., i π ad U H d, le = /m ad Fac 6 implies ha Y i1...i m U; θ := ψ θ H i1...i m U, W i1...i U; θ := 1 Yi1...i m U; θ + Y im+1...i U; θ Y m i 1m+1...i U; θ m. G U = m!! i 1...i m I m 1 θ ψ θ H i1...i m U = 1 1! θ W i 1...i U; θ, 5.4 i 1...i π where π rages over all permuaios of 1,...,. Nex, for j 1 we have U j 1 m! EH = ψ θ H i1...i θ! m U j 1 EH U j 1 i 1,...,i m I m 1 = W i1...i θ! U j 1 ; θ EH U j i 1...i π 1 W i1...i θ! U j 1 ; θ W i1,...,i EH; θ EH U j 1 i 1...i π W i1,...,i θ! EH; θ. π The followig wo lemmas provide he bouds ha allows o corol he size of U j EH. For a give EH EH ad θ = 1, cosider he radom variable 1 1 L δ = sup W i1,...,i θ! U; θ W i1,...,i EH; θ EH U. U EH δ Lemma 5.1. Wih probabiliy 1 d + 1e, for all δ 1 L δ The proof of his lemma is give i Secio 5.4. π 1 θ simulaeously, 6 r H + 1 δ Lemma 5.. Wih probabiliy 1 de, 1 1 W i1,...,i θ! EH; θ 3 π. The proof is give i Secio 5.5. Nex, defie he sequece δ 0 = 0, 6 δ j = r H + 1 δ j If r H 1 4, he 104, hece ad θ δ j 3 4 δ j θ θ

16 S. Miser ad X. Wei/Robus U-saisics 16 for all j 0. Le E 0 be he eve of probabiliy 1 4d + 1e o which he iequaliies of Lemmas 5.1 ad 5. hold. I follows from 5.5, Lemma 5.1 ad Lemma 5. ha o he eve E 0, for all j 1 U j U j EH L EH + W i1,...,i θ! EH; θ π 6 r H + 1 δ j δ j 6 give ha r H ; we have also used he umerical boud Fially, i is easy o see ha for all j 1 ad γ = r H , j 1 δ j = δ 0 γ j + γ l /4 l l=0 l 0 Sice U j Û poiwise as j, he resul follows Proof of Lemma 5.1 Recall ha EHi1,...,i m EH, θ := 1 ψθ x =, ad {θ x sigx θ x, x 1/θ, 1/θ ], 1/, x > 1/θ. The idea of he proof is o exploi he fac ha ψθ x is almos liear wheever x 1/θ, 1/θ ], ad is oliear par is acive oly for a small umber of muli-idices i 1,..., i m I m. Le { χ i1,...,i m = I H i1,...,i m EH 1 }. θ Noe ha by Chebyshev s iequaliy, ad aig io accou he fac ha H i1,...,i m EH H i1,...,i m EH F, Defie he eve E = Prχ i1,...,i m i 1,...,i m I m = 0 4θE H i1,...,i m EH F 8 r EH i1,...,i m EH EH i1,...,i m EH = r 8 H χ i1,...,i m r H 8! m! r H. We will apply a versio of Cheroff boud o he R-valued U-saisic m!! i 1 χ 1,...,i m I m i 1,...,i m. A combiaio of Fac 6, Fac 4 applied i he scalar case d = 1, ad Fac 5 implies ha Pr m! 8 1 χ i1,...,i! m r H 1 + τ e τ 8 r H /3 i 1,...,i m I m 3 for 0 < τ < 1. Hece, choosig τ = 8r H implies ha PrE 1 e. By riagle iequaliy, wheever χ i1,...,i m = 1 ad δ 1 1 θ, i holds ha H i1,...,i m U 1 θ for ay U such ha U EH δ, ad cosequely 1 θ ψθ H i1,...,i m U = H i1,...,i m U θ sig H i 1,...,i m U H i1,...,i m U.

17 Deoig for breviy, we deduce ha 1 1 θ! π S. Miser ad X. Wei/Robus U-saisics 17 S i1,...,i m U := sig H i1,...,i m U H i1,...,i m U W i1,...,i U; θ W i1,...,i EH]; θ EH U = m!! + 1 m! θ! i 1,...,i m I m i 1,...,i m I m θ S i 1,...,i m EH θ S i 1,...,i m U χ i1,...,i m 1 χ i1,...,i m Y i1,...,i m U; θ Y i1,...,i m EH]; θ m!! i 1,...,i m I m 1 χ i1,...,i m EH U. We will separaely corol he erms o he righ had side of he equaliy above. Firs, oe ha o eve E, m! 1 χ i1,...,i! m EH U r 8 3 H δ r H 8r H δ 5.8 i 1,...,i m I m sice EH U δ. Nex, recallig ha ψ is operaor Lipschiz by Fac 3, wee see ha for ay i 1,..., i m I m 1 Yi1,...,i θ m U; θ Y i1,...,i m EH; θ EH U δ, hece o eve E, 1 m! θ! 1 χ i1,...,i m Y i1,...,i m U; θ Y i1,...,i m EH; θ i 1,...,i m I m 8 3 r H δ r H δ r H Fially, i remais o corol he erm Qδ := sup m! U EH δ! i 1,...,i m I m Lemma 5.3. Wih probabiliy 1 de, Qδ δ. Proof. Observe ha for all U H d ad i 1,..., i m I m, θ S i 1,...,i m EH θ S i 1,...,i m U χ i1,...,i m H i1,...,i m U sig H i1,...,i m U H i1,...,i m U H i1,...,i m U,. hece m!! i 1,...,i m I m θ S i 1,...,i m EH θ S i 1,...,i m U χ i1,...,i m m! θ! H i 1,...,i m U χ i1,...,i m i 1,...,i m I m + m!! i 1,...,i m I m θ H i 1,...,i m EH χ i1,...,i m.

18 S. Miser ad X. Wei/Robus U-saisics 18 Moreover, H i1,...,i m U H i1,...,i m EH + U EH, implyig ha m!! i 1,...,i m I m θ H i 1,...,i m U χ i1,...,i m m!! i 1,...,i m I m θ H i 1,...,i m EH χ i1,...,i m + θ U EH. Hece, we have show ha Qδ 3 m!! i 1,...,i m I m θ H i 1,...,i m EH χ i1,...,i m + θ δ Sice δ 1 θ, Nex, we will esimae he firs erm i 5.10 as follows: 3 m!! Clearly, 3 i 1,...,i m I m m!! i 1,...,i m I m θ H i 1,...,i m EH χ i1,...,i m ] E H i1,...,i m EH χ i1,...,i m, hece 3θ θ E θ δ δ ] ] H i1,...,i m EH χ i1,...,i m E H i1,...,i m EH χ i1,...,i m + 3θ E H i1,...,i m EH χ i1,...,i m ]. ] H i1,...,i m EH 3 χ i1,...,i m. 5.1 The remaiig par will be esimaed usig he Marix Bersei s iequaliy Fac 7. To his ed, oe ha by he defiiio of χ i1,...,i m, almos surely. Moreover, ] H i1,...,i m EH χ i1,...,i m E H i1,...,i m EH 1 χ i1,...,i m θ ] E H i1,...,i m EH χ i1,...,i m E H i1,...,i m EH χ i1,...,i m E H i1,...,i m EH 1 χ i1,...,i m E Hi1,...,im θ EH, where we used he fac ha H i1,...,i m EH 1 χ i1,...,i m H θ i1,...,im EH.

19 S. Miser ad X. Wei/Robus U-saisics 19 Applyig he Marix Bersei iequaliy Fac 7, we ge ha wih probabiliy 1 de m! θ ] 3 H! i1,...,i m EH χ i1,...,i m E H i1,...,i m EH χ i1,...,i m i 1,...,i m I m 3θ ] EH i1,...,i θ m EH 1/ θ The boud of Lemma 5.3 ow follows from he combiaio of bouds 5.11, 5.1, 5.13 ad Combiig he boud of Lemma 5.3 wih 5.8 ad 5.9, we ge he desired resul of Lemma Proof of Lemma 5. Fac 4 implies ha for all s > 0, 1 1 Pr λ max W i1,...,i θ! EH; θ s π if e θs θ/θ Er e W1,...,EH,θ] θ>0 e θs Er e W1,...,EH,θ Sice W 1,..., EH, θ = 1 ψ θ H 1,...,m EH ψ θ H 1m+1,...,m EH is a sum of idepede radom marices, we ca apply he firs iequaliy of Fac 8 o deduce ha Er e W1,...,EH,θ r exp θ EH EH d exp θ, where we used he fac ha r A d A for H d d A 0. Fially, seig s = from 5.14 ha 1 1 Pr λ max W i1,...,i θ! EH; θ s de. π 3, we obai Similarly, sice λ mi A = λ max A for A H d d, i follows from he secod iequaliy of Fac 8 ha 1 1 Pr λ mi W i1,...,i θ! EH; θ s π = Pr λ max 1 1 W i1,...,i θ! EH; θ s π for s = 3, ad resul follows Proof of Lemma 3. e θs Er exp W 1,..., EH, θ de θs exp θ de Par a follows from a well-ow resul e.g., 5] which saes ha, give a covex, differeiable fucio G : R D R such ha is gradie saisfies GU 1 GU L U 1 U, he j-h ieraio U j of he gradie desce algorihm ru wih sep size α 1 L saisfies G U j U 0 U GU, αj where U = argmi GU. The proof of par b follows he lies of he proof of Theorem 3.1: more specifically, he claim follows from equaio 5.6.

20 S. Miser ad X. Wei/Robus U-saisics Proof of Corollary 3.1 Proof. Noe ha E DHi1...i m = max EHi1...i m H i 1...i m, EH i1...i m H i1...i m. We apply Theorem 3.1 applied o self-adjoi radom marices DH i1...i m C d1+d d1+d, i 1,..., i m I m, ad obai ha Ū DEH 15 wih probabiliy 1 d 1 + d + 1 e. I remais o apply Fac 9: ad he claim follows. Ū DEH = 5.8. Proof of Lemma 4.1 Recall ha µ = EY. a Observe ha E Y µy µ T = Nex, for j = 1,..., d, hece ad he resul follows. b Noe ha r Û11 Û1 EH Û 1 EH Û 0 Û1 EH Û 1 EH 0 sup v =1 = sup v =1 = Û 1 EH, E v, Y µ Y µ d v, Y µ Y j µ j. E v, Y µ Y j µ j E 1/ v, Y µ 4 E 1/ Y j µ j 4 E Y µy µ T K E Y µy µ T ] = = KE v, Y µ EY j µ j, sup v =1 E v, Y µ d EY j µ j Y µ d d EY j µ j, EY j µ j 4 + i j d E 1/ Y i µ i 4 E 1/ Y j µ i 4 EY j µ j 4 + i j d = E 1/ Y j µ j 4 = K r Σ. c The iequaliy follows from Corollary 5.1 i 34]. E Y i µ i Y j µ j ] d K EY j µ j

21 S. Miser ad X. Wei/Robus U-saisics Proof of Corollary 4. I is easy o see e.g., see he proof of Theorem 1 i 31] ha Σ τ ca be equivalely represeed as S ] Σ τ = argmi Σ + τ S S R d d,s=s T F The remaiig proof is based o he followig lemma: { } Lemma 5.4. Iequaliy 4.4 holds o he eve E = τ Σ τ Σ. To verify his saeme, i is eough o repea he seps of he proof of Theorem 1 i 31], replacig each occurrece of he sample covariace Ŝ by is robus couerpar Σ τ. Resul of Corollary 4. he follows from he combiaio of Theorem 3. ad Lemma 4.1 which imply ha PrE 1 4d + 1e wheever τ γ 138 K Σ rσ+ξ /. Acowledgemes Auhors graefully acowledge suppor by he Naioal Sciece Foudaio gra DMS Refereces 1] Alesadrov, A. B. ad Peller, V. V Operaor Lipschiz fucios. Russia Mahemaical Surveys ] Alo, N., Maias, Y. ad Szegedy, M The space complexiy of approximaig he frequecy momes. I Proceedigs of he wey-eighh aual ACM symposium o Theory of compuig 0 9. ACM. 3] Aglui, D. ad Valia, L. G Fas probabilisic algorihms for Hamiloia circuis ad machigs. Joural of Compuer ad sysem Scieces ] Arcoes, M. A. ad Gie, E Limi heorems for U-processes. The Aals of Probabiliy ] Berseas, D. P Covex opimizaio heory. Ahea Scieific Belmo. 6] Bhaia, R Marix aalysis 169. Spriger Sciece & Busiess Media. 7] Cadès, E. J., Li, X., Ma, Y. ad Wrigh, J Robus pricipal compoe aalysis? Joural of he ACM JACM ] Carle, E Trace iequaliies ad quaum eropy: a iroducory course. Eropy ad he quaum ] Caoi, O. 01. Challegig he empirical mea ad empirical variace: a deviaio sudy. I Aales de l Isiu Heri Poicaré, Probabiliés e Saisiques Isiu Heri Poicaré. 10] Caoi, O PAC-Bayesia bouds for he Gram marix ad leas squares regressio wih a radom desig. arxiv prepri arxiv: ] Caoi, O. ad Giulii, I Dimesio-free PAC-Bayesia bouds for marices, vecors, ad liear leas squares regressio. arxiv prepri arxiv: ] Che, R. Y., Gies, A. ad Tropp, J. A. 01. The mased sample covariace esimaor: a aalysis usig marix coceraio iequaliies. Iformaio ad Iferece ias ] de la Pea, V. ad Gie, E Decouplig: From depedece o idepedece. Spriger- Verlag, New Yor. 14] Devroye, L., Lerasle, M., Lugosi, G. ad Oliveira, R. I Sub-Gaussia mea esimaors. The Aals of Saisics ] Fa, J., Wag, W. ad Zhu, Z Robus Low-Ra Marix Recovery. arxiv prepri arxiv:

22 S. Miser ad X. Wei/Robus U-saisics 16] Fa, J., Ke, Y., Su, Q. ad Zhou, W.-X FARM-Tes: Facor-Adjused Robus Muliple Tesig wih False Discovery Corol. arxiv prepri arxiv: ] Gie, E., Laala, R. ad Zi, J Expoeial ad mome iequaliies for U-saisics. High Dimesioal Probabiliy II ] Giulii, I Robus Pricipal Compoe Aalysis i Hilber spaces. arxiv prepri arxiv: ] Ha, F. ad Liu, H Saisical aalysis of lae geeralized correlaio marix esimaio i rasellipical disribuio. Beroulli: official joural of he Beroulli Sociey for Mahemaical Saisics ad Probabiliy ] Hoeffdig, W A class of saisics wih asympoically ormal disribuio. The Aals of Mahemaical Saisics ] Hoeffdig, W Probabiliy iequaliies for sums of bouded radom variables. Joural of he America saisical associaio ] Huber, P. J Robus esimaio of a locaio parameer. The Aals of Mahemaical Saisics ] Huber, P. J Robus saisics. I Ieraioal Ecyclopedia of Saisical Sciece Spriger. 4] Huber, M., Rousseeuw, P. J. ad Va Aels, S High-breadow robus mulivariae mehods. Saisical Sciece ] Joly, E. ad Lugosi, G Robus esimaio of U-saisics. Sochasic Processes ad heir Applicaios ] Kabaava, M. ad Rauhu, H Mased Toepliz covariace esimaio. arxiv prepri arxiv: ] Kolchisii, V. ad Louici, K Coceraio iequaliies ad mome bouds for sample covariace operaors. Beroulli ] Lepsi, O Asympoically miimax adapive esimaio. I: Upper bouds. Opimally adapive esimaes. Theory of Probabiliy & Is Applicaios ] Lerasle, M. ad Oliveira, R. I Robus empirical mea esimaors. arxiv prepri arxiv: ] Levia, E. ad Vershyi, R. 01. Parial esimaio of covariace marices. Probabiliy heory ad relaed fields ] Louici, K High-dimesioal covariace marix esimaio wih missig observaios. Beroulli ] Maroa, R. A Robus M-Esimaors of Mulivariae Locaio ad Scaer. A. Sais ] Miser, S Sub-Gaussia esimaors of he mea of a radom marix wih heavy-ailed eries. To appear i he Aals of Mahemaical Saisics. 34] Miser, S. ad Wei, X. Esimaio of he covariace srucure of heavy-ailed disribuios. I NIPS ] Nemirovsi, A. ad Yudi, D Problem complexiy ad mehod efficiecy i opimizaio. Joh Wiley & Sos Ic. 36] Polya, B. T. ad Khlebiov, M. V Priciple compoe aalysis: robus versios. Auomaio ad Remoe Corol ] Tropp, J. A. 01. User-friedly ail bouds for sums of radom marices. Foudaios of compuaioal mahemaics ] Tyler, D. E A disribuio-free M-esimaor of mulivariae scaer. The Aals of Saisics ] Vershyi, R Iroducio o he o-asympoic aalysis of radom marices. arxiv prepri arxiv: ] Wegamp, M. ad Zhao, Y Adapive esimaio of he copula correlaio marix for semiparameric ellipical copulas. Beroulli ] Zhag, T., Cheg, X. ad Siger, A Marčeo-Pasur law for Tylers M-esimaor. Joural of Mulivariae Aalysis

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form,

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form, Lecure 6. Adapive Corol i he Presece of Bouded Disurbaces Cosider MIMO sysems i he form, x Aref xbu x Bref ycmd (.) y Cref x operaig i he presece of a bouded ime-depede disurbace R. All he assumpios ad

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Absrac For d l

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables Available olie a wwwsciecedireccom ScieceDirec Procedia - Social ad Behavioral Scieces 30 ( 016 ) 35 39 3 rd Ieraioal Coferece o New Challeges i Maageme ad Orgaizaio: Orgaizaio ad Leadership, May 016,

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

On the Validity of the Pairs Bootstrap for Lasso Estimators

On the Validity of the Pairs Bootstrap for Lasso Estimators O he Validiy of he Pairs Boosrap for Lasso Esimaors Lorezo Campoovo Uiversiy of S.Galle Ocober 2014 Absrac We sudy he validiy of he pairs boosrap for Lasso esimaors i liear regressio models wih radom covariaes

More information

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix 4h Ieraioal Coferece o Sesors, Mecharoics ad Auomaio (ICSMA 06) A Complex Neural Newor Algorihm for Compuig he Larges eal Par Eigevalue ad he correspodig Eigevecor of a eal Marix HANG AN, a, XUESONG LIANG,

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Yugoslav Joural of Operaios Research 8 (2008, Number, 53-6 DOI: 02298/YUJOR080053W NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Jeff Kuo-Jug WU, Hsui-Li

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

CSE 202: Design and Analysis of Algorithms Lecture 16

CSE 202: Design and Analysis of Algorithms Lecture 16 CSE 202: Desig ad Aalysis of Algorihms Lecure 16 Isrucor: Kamalia Chaudhuri Iequaliy 1: Marov s Iequaliy Pr(X=x) Pr(X >= a) 0 x a If X is a radom variable which aes o-egaive values, ad a > 0, he Pr[X a]

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods joural of mulivariae aalysis 57, 175190 (1996) aricle o. 0028 Order Deermiaio for Mulivariae Auoregressive Processes Usig Resamplig Mehods Chaghua Che ad Richard A. Davis* Colorado Sae Uiversiy ad Peer

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA Proceedigs of he 202 Ieraioal Coferece o Idusrial Egieerig ad Operaios Maageme Isabul, urey, July 3 6, 202 A eeralized Cos Malmquis Ide o he Produciviies of Uis wih Negaive Daa i DEA Shabam Razavya Deparme

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

State and Parameter Estimation of The Lorenz System In Existence of Colored Noise

State and Parameter Estimation of The Lorenz System In Existence of Colored Noise Sae ad Parameer Esimaio of he Lorez Sysem I Eisece of Colored Noise Mozhga Mombeii a Hamid Khaloozadeh b a Elecrical Corol ad Sysem Egieerig Researcher of Isiue for Research i Fudameal Scieces (IPM ehra

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

φ ( t ) = φ ( t ). The notation denotes a norm that is usually

φ ( t ) = φ ( t ). The notation denotes a norm that is usually 7h Europea Sigal Processig Coferece (EUSIPCO 9) Glasgo, Scolad, Augus -8, 9 DESIG OF DIGITAL IIR ITEGRATOR USIG RADIAL BASIS FUCTIO ITERPOLATIO METOD Chie-Cheg Tseg ad Su-Lig Lee Depar of Compuer ad Commuicaio

More information

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials Absrac ad Applied Aalysis Volume 04, Aricle ID 696454, 0 pages hp://dx.doi.org/0.55/04/696454 Research Aricle O a Class of -Beroulli, -Euler, ad -Geocchi Polyomials N. I. Mahmudov ad M. Momezadeh Easer

More information

On Stability of Quintic Functional Equations in Random Normed Spaces

On Stability of Quintic Functional Equations in Random Normed Spaces J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 3, NO.4, 07, COPYRIGHT 07 EUDOXUS PRESS, LLC O Sabiliy of Quiic Fucioal Equaios i Radom Normed Spaces Afrah A.N. Abdou, Y. J. Cho,,, Liaqa A. Kha ad S.

More information

Local Influence Diagnostics of Replicated Data with Measurement Errors

Local Influence Diagnostics of Replicated Data with Measurement Errors ISSN 76-7659 Eglad UK Joural of Iformaio ad Compuig Sciece Vol. No. 8 pp.7-8 Local Ifluece Diagosics of Replicaed Daa wih Measureme Errors Jigig Lu Hairog Li Chuzheg Cao School of Mahemaics ad Saisics

More information

On the distribution of the ψ 2 -norm of linear functionals on isotropic convex bodies

On the distribution of the ψ 2 -norm of linear functionals on isotropic convex bodies O he disribuio of he ψ 2 -orm of liear fucioals o isoropic covex bodies A. Giaopoulos, G. Paouris ad P. Valeas Absrac I is ow ha every isoropic covex body K i R has a subgaussia direcio wih cosa r = O(

More information

Asymptotic statistics for multilayer perceptron with ReLu hidden units

Asymptotic statistics for multilayer perceptron with ReLu hidden units ESANN 8 proceedigs, Europea Symposium o Arificial Neural Neworks, Compuaioal Ielligece ad Machie Learig. Bruges (Belgium), 5-7 April 8, i6doc.com publ., ISBN 978-8758747-6. Available from hp://www.i6doc.com/e/.

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations. Richard A. Hinrichsen. March 3, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations. Richard A. Hinrichsen. March 3, 2010 Page Before-Afer Corol-Impac BACI Power Aalysis For Several Relaed Populaios Richard A. Hirichse March 3, Cavea: This eperimeal desig ool is for a idealized power aalysis buil upo several simplifyig assumpios

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Toward Learning Gaussian Mixtures with Arbitrary Separation

Toward Learning Gaussian Mixtures with Arbitrary Separation Toward Learig Gaussia Mixures wih Arbirary Separaio Mikhail Belki Ohio Sae Uiversiy Columbus, Ohio mbelki@cse.ohio-sae.edu Kaushik Siha Ohio Sae Uiversiy Columbus, Ohio sihak@cse.ohio-sae.edu Absrac I

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme America Joural of Compuaioal ad Applied Maemaics, (6): 77-8 DOI:.59/.acam.6. Numerical Soluio of Parabolic Volerra Iegro-Differeial Equaios via Bacward-Euler Sceme Ali Filiz Deparme of Maemaics, Ada Mederes

More information

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity e Scieific World Joural, Aricle ID 807324, 4 pages hp://dx.doi.org/10.1155/2014/807324 Research Aricle Geeralized Equilibrium Problem wih Mixed Relaxed Moooiciy Haider Abbas Rizvi, 1 Adem KJlJçma, 2 ad

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

A Bayesian Approach for Detecting Outliers in ARMA Time Series

A Bayesian Approach for Detecting Outliers in ARMA Time Series WSEAS RASACS o MAEMAICS Guochao Zhag Qigmig Gui A Bayesia Approach for Deecig Ouliers i ARMA ime Series GUOC ZAG Isiue of Sciece Iformaio Egieerig Uiversiy 45 Zhegzhou CIA 94587@qqcom QIGMIG GUI Isiue

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Affine term structure models

Affine term structure models /5/07 Affie erm srucure models A. Iro o Gaussia affie erm srucure models B. Esimaio by miimum chi square (Hamilo ad Wu) C. Esimaio by OLS (Adria, Moech, ad Crump) D. Dyamic Nelso-Siegel model (Chrisese,

More information

A Robust H Filter Design for Uncertain Nonlinear Singular Systems

A Robust H Filter Design for Uncertain Nonlinear Singular Systems A Robus H Filer Desig for Ucerai Noliear Sigular Sysems Qi Si, Hai Qua Deparme of Maageme Ier Mogolia He ao College Lihe, Chia College of Mahemaics Sciece Ier Mogolia Normal Uiversiy Huhho, Chia Absrac

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information