2. page 13*, righthand column, last line of text, change 3 to 2,... negative slope of 2 for 1 < t 2: Now... REFLECTOR MITTER. (0, d t ) (d r, d t )

Size: px
Start display at page:

Download "2. page 13*, righthand column, last line of text, change 3 to 2,... negative slope of 2 for 1 < t 2: Now... REFLECTOR MITTER. (0, d t ) (d r, d t )"

Transcription

1 SP First ERRATA. These are mostly typos, but there are a few crucial mistakes in formulas. Underline is not used in the book, so I ve used it to denote changes. JHMcClellan, February 3, 00. page 0*, Figure -4, last line of text in figure: H) x D r cos./. page 3*, righthand column, last line of text, change 3 to,... negative slope of for < t : Now page 34*, Figure -, The diagram of the original figure does not correspond to the equations given p in the problem. The general formula for the distance off the reflector, d, is d D d r C.x d r / C dt. The figure should be replaced with the one below: y TRANS- REFLECTOR MITTER (0, d t ) (d r, d t ) Velocity = c 0 VEHICLE x 4. page 4, (bottom left), The CDROM citation should read: LAB: #3 AM and FM Sinusoidal Signals 5. page 44*, nd line, left hand column, change the sentence to read: Since T 0 D =f 0 is the smallest possible period, it is also the fundamental period. 6. page 49, equation (3.5) Orthogonality Property 7. page 53, (nd line of equations for a k ), denominator should be: j.=t 0 /k, so we would have D T 0 e j.=t0/k. T 0/ j.=t 0 /k e j.=t 0/k.0/ 8. page 56, nd line of equation(3.37), exponent in exponential needs changing, should be: e j.=t0/kt. The entire line should read: C T 0 Z T 0 T 0..T 0 t/=t 0 /e j.=t 0/kt dt 9. page 63, righthand column, line 8, (insert a space)...signals, such as a Touch-Tone phone.

2 0. page 78, righthand column, 7 lines below equation (4.) should read:...arbitrary, but the ideal D-to-C converter always selects.... page 83, The CDROM citation should read: LAB: #3 Chirp Synthesis from Chapter 3. page 9, The CDROM citation should read: DEMO: Reconstruction Movies 3. page, The CDROM citation should read: LAB: #6 Digital Images: A/D and D/A 4. page 3*, The convolution table has a notation problem. h Œn and h Œn are swapped and we should have written h Œk h Œn k. Also, in the equation above the table, we should write: yœn D h Œn h Œn. n n < n > 6 h Œn h Œn 0 0 h Œ0 h Œn h Œ h Œn h Œ h Œn h Œ3 h Œn page 6, The CDROM citation should read: LAB: #7 Sampling, Convolution, and FIR Filtering hœn page 3, 3rd line of Example 6-, Missing =3 which should be colored.... and H.e j=3 / D =3: 7. page 33, righthand column, nd line, algebraic steps in (6.6) show that yœn can finally be expressed as a cosine signal. 8. page 53, righthand column, middle, dsty in the middle of the equation should be deleted. H.e j.50/=000 / D sin..50/./=000/ sin..50/=000/ D 0:0909e j= e j.50/.5/= page 56, (bottom right), The CDROM citation should read: LAB: #9 Encoding and Decoding Touch-Tones 0. page 74, Exercise 7.6, equation for wœn should have minus sign instead of plus: wœn D xœn xœn

3 . page 76, The CDROM citation should read: DEMO: Three Domains - FIR. page 8, first paragraph of Section 7-7 should read: Now we can exploit our new knowledge to design filters with desirable characteristics. In this section, we will look at a special class of bandpass filters (BPFs) that are all close relatives of the running-sum filter. 3. page 9, Figure P-7.6(b), output (above the arrow on the far right) should be wœn, not yœn. 4. page 95, in Problem P-7.7, part (a). The exponent has two extra parentheses that should be deleted; the exponent should be: H.e j O! j= j O! / D Œb 0 sin. O!/ C b sin. O!/ e 5. page 9*, Example 8- (caption), Example 8-: Long Division 6. page 4*, in Problems P-8.3 and P-8.4, S 6 is wrong. The upper limit on the summation needs to be 3, not ; otherwise, no match is possible. S 6 W yœn D 3X kd0 xœn k 7. page 4, Problem P-8.7,...five possible impulse responses (J N). 8. page 50*, Figure 9-5 (caption), Scaled unit-impulse signal is symbolized page 64, Figure 9-3(a), Label on y-axis contains a gamma, should be: x./ 30. page 64, Figure 9-3(b), Label on y-axis appears to have a light gray vertical bar after the equals sign. This is only visible in the PDF file. Should be: g./ D x. / 3. page 95, The CDROM citation should read: LAB: #3 Numerical Evaluation of Fourier Series 3. page 96, line beneath Fig. 0-6 should read: which we can rewrite as y.t/ D page 30, The CDROM citation should read: LAB: #5 Fourier Series (Ch. ) 34. page 3*, The following derivation should be written on two lines instead of three; otherwise, the equals sign is ambiguous. jx.j!/j D Z Z x.t/e j!t dt x.t/e j!t dt D Z jx.t/jdt

4 35. page 39*, line 8, righthand column, (insert comma) necessary condition, for having a Fourier transform. 36. page 36, line, righthand column,...we showed in (0.3) page 39*, equation in righthand column is missing T, y.t/ D x.t/ h.t/ D Z T sin.!t =/.!T =/ e j!t d! or T could be removed from the denominator and it could be written as: y.t/ D x.t/ h.t/ D Z sin.!t =/.!=/! e j!t d! 38. page 349*, Figure P-.4(b), input signal to first block should be x.t/, instead of xœn 39. page 35, line, righthand column, remove the words filtersfrequency selective so that it reads:... frequency selective filters. In this section, page 354*, Figure -9, nd line of caption, (subscript not italic)...to give the output signal y lp.t/. 4. page 355, The CDROM citation should read: LAB: #4 Design with Fourier Series 4. page 364, Figure -0, misspelled word inside the first block: Half-Wave Rectifier 43. page 368*, equation (.40), second line is missing n; it should be: D x.t/ X nd.t nt s / 44. page 369*, Example -5, first equation is missing a k inside the function: X P.j!/ D.! k! s / T s kd 45. page 379, Figure -35(d), the rightmost label contains an extraneous ; should be 46. page 38*, Problem P-. has! co and! co switched, because the natural assumption is that! co is the lower passband cutoff frequency, while! co is the upper one. Thus, the natural assumption is that! co <! co. To correct this equation (.76) should be changed to: h bp.t/ D sin.! cot/ t sin.! co t/ t

5 47. page 383*, Problem P-.7 part (c), change minus sign to plus sign: w.t/ D x.t/œ C cos.! c t/ ::: 48. page 383, Figure P-.8, inside block (bad spacing) LTI System 49. page 384, Figure P-.9, inside block (bad spacing) LTI System 50. page 385, Figure P-.(a), change summation index to k in the definition of p.t/: p.t/ D X kd a k e jk! pt 5. page 386, Problem P-.3, change to =T s in the definition of H r.j!/: ( T H r.j!/ D s j!j =T s 0 j!j > =T s 5. page 387, Figure P-.5(b), change 4 to in the definition of the passband of H.e j O! /. 53. page 39, before equation (3.8), lefthand column, (insert space)...equation (.6) on p. 376, that the DTFT of page 40, top, lefthand column, section title should be: 3-8. Spectrograms in MATLAB 55. page 43*, Figure 3-0, Label on x-axis should be (sec) not (msec): Time (sec) 56. page 44*, Figure 3-, Label on x-axis should be (sec) not (msec): Time (sec) 57. page 44*, Figure 3-3, Label on x-axis should be (sec) not (msec): Time (sec) 58. page 438*, Figure A-3 (caption), For the vectors shown, jz j > and jz 3 j <. 59. page 449, lefthand column, line 6, in MATLAB code for for function foo: Missing a comment sign (%) sign before the x = input vector statement. % x = input vector 60. page 460, top line, lefthand column, Use the built-in MATLAB editor, or an external one... Optional:

6 . page 6, The suggested change in wording was not made: Change LAB: #, Adding Sinusoids and Complex Amplitudes to LAB: # Introduction to Complex Exponentials. Note: this change was made correctly on page 3.. page 46, The CDROM citation should read: DEMO: Spectrograms: Simple Sounds: Square Wave 3. page 68, Problem P-3.5 (b), top of the right hand column. It would make a better problem to define y.t/ as x.t T 0 =4/ because then the shifted square wave has its jumps at t D 0 and t D T 0 = like the example worked out in Section page 38, in Problems P-. and P-.3 it should be stated that! co <! co. 5. page 46, The CDROM citation should read: DEMO: Ch 3, Spectrograms CD-ROM Errata:. Exercise., p. 4 in the text: Derive the equations for the shifted signal x.t/ D s.t C /. seems to point to a similar but different shifted triangular-signal on the SPFirst CD and also on the website. Fig. -8(c) in the book shows the correct signal for s.t C /, but the answer to Exercise., on CD and website, points to a.pdf file showing a different signal (base of 3-units instead of ) with different slopes (m D and m D = instead of m D and m D =3) and having a different final equation when solving for s.t C /.. Exercise 3.8 solution is wrong because the k D 3 term was evaluated incorrectly. The last two lines should be: x N.t/ D D ej 50t e j 50t 3 ej50t 3 e j50t 4 cos.50t/ 4 9 cos.50t/ 3. Exercise 7.6 solution was not consistent with the printed version (st and nd printing) of the text. However, the error is with the text, so the solution is not changed.

FINAL EXAM. Problem Value Score No/Wrong Rec 3

FINAL EXAM. Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 1-May-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

FINAL EXAM. Problem Value Score

FINAL EXAM. Problem Value Score GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 27-Apr-09 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Transform analysis of LTI systems Oppenheim and Schafer, Second edition pp For LTI systems we can write

Transform analysis of LTI systems Oppenheim and Schafer, Second edition pp For LTI systems we can write Transform analysis of LTI systems Oppenheim and Schafer, Second edition pp. 4 9. For LTI systems we can write yœn D xœn hœn D X kd xœkhœn Alternatively, this relationship can be expressed in the z-transform

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Mar-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 i Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 Errata, Version 1.02, August 8, 2006 This errata applies to the first printing

More information

2 Background: Fourier Series Analysis and Synthesis

2 Background: Fourier Series Analysis and Synthesis Signal Processing First Lab 15: Fourier Series Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before

More information

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet NAME: December Digital Signal Processing I Final Exam Fall Cover Sheet Test Duration: minutes. Open Book but Closed Notes. Three 8.5 x crib sheets allowed Calculators NOT allowed. This test contains four

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased)

Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased) Corrections and Minor Revisions of Mathematical Methods in the Physical Sciences, third edition, by Mary L. Boas (deceased) Updated December 6, 2017 by Harold P. Boas This list includes all errors known

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Department of Electrical Engineering University of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Introduction Fourier Transform Properties of Fourier

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

1 Introduction & Objective

1 Introduction & Objective Signal Processing First Lab 13: Numerical Evaluation of Fourier Series Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition

Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition With the help of students and teachers, we have found a few typos in the first printing of the second edition. STUDENT TEXT

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Discrete Wavelet Transformations: An Elementary Approach with Applications

Discrete Wavelet Transformations: An Elementary Approach with Applications Discrete Wavelet Transformations: An Elementary Approach with Applications Errata Sheet March 6, 009 Please report any errors you find in the text to Patrick J. Van Fleet at pjvanfleet@stthomas.edu. The

More information

Continuous-Time Fourier Transform

Continuous-Time Fourier Transform Signals and Systems Continuous-Time Fourier Transform Chang-Su Kim continuous time discrete time periodic (series) CTFS DTFS aperiodic (transform) CTFT DTFT Lowpass Filtering Blurring or Smoothing Original

More information

Errata for Bioelectricity: A Quantitative Approach, 3rd edition by Robert Plonsey and Roger C. Barr (Springer 2007)

Errata for Bioelectricity: A Quantitative Approach, 3rd edition by Robert Plonsey and Roger C. Barr (Springer 2007) Errata for Bioelectricity: A Quantitative Approach, 3rd edition by Robert Plonsey and Roger C. Barr (Springer 2007) Frederick J. Vetter Department of Electrical, Computer and Biomedical Engineering University

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

Student s Printed Name: _Key_& Grading Guidelines CUID:

Student s Printed Name: _Key_& Grading Guidelines CUID: Student s Printed Name: _Key_& Grading Guidelines CUID: Instructor: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 065-3 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 6 October - 0 November, 009 Digital Signal Processing The z-transform Massimiliano Nolich DEEI Facolta' di Ingegneria

More information

3 Fourier Series Representation of Periodic Signals

3 Fourier Series Representation of Periodic Signals 65 66 3 Fourier Series Representation of Periodic Signals Fourier (or frequency domain) analysis constitutes a tool of great usefulness Accomplishes decomposition of broad classes of signals using complex

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

Calculus Volume 1 Release Notes 2018

Calculus Volume 1 Release Notes 2018 Calculus Volume 1 Release Notes 2018 Publish Date: March 16, 2018 Revision Number: C1-2016-003(03/18)-MJ Page Count Difference: In the latest edition of Calculus Volume 1, there are 873 pages compared

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

Chapter 2 The text above the third display should say Three other examples.

Chapter 2 The text above the third display should say Three other examples. ERRATA Organic Chemistry, 6th Edition, by Marc Loudon Date of this release: October 10, 2018 (Items marked with (*) were corrected in the second printing.) (Items marked with ( ) were corrected in the

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Pattern Recognition and Machine Learning Errata and Additional Comments. Markus Svensén and Christopher M. Bishop

Pattern Recognition and Machine Learning Errata and Additional Comments. Markus Svensén and Christopher M. Bishop Pattern Recognition and Machine Learning Errata and Additional Comments Markus Svensén and Christopher M. Bishop September 21, 2011 2 Preface This document lists corrections and clarifications for the

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

Chapter-2 2.1)Page-28, Eq (2-9): should read (add parentheses around the terms involving the x-end-points):

Chapter-2 2.1)Page-28, Eq (2-9): should read (add parentheses around the terms involving the x-end-points): The following is an errata for the text Quantum mechanics and Path Integrals by R. Feynman edited by A. Hibbs (1965) Mc Graw Hill, New York. For the latest version of this document visit: http://mathematicuslabs.com/pi

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

Problem Value Score No/Wrong Rec

Problem Value Score No/Wrong Rec GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Oct-11 COURSE: ECE-225 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, Cover Sheet

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, Cover Sheet NAME: NAME EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, 2017 Cover Sheet Test Duration: 75 minutes. Coverage: Chaps. 5,7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet

More information

DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA. Page 10, Table 1.1: The upper limit of the summation should be K.

DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA. Page 10, Table 1.1: The upper limit of the summation should be K. DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA Printing #1 Page vii, line 4 : Replace Geophysicists by Geoscientists. Page 1, Table 1.1: The upper limit of the summation should

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

I. Signals & Sinusoids

I. Signals & Sinusoids I. Signals & Sinusoids [p. 3] Signal definition Sinusoidal signal Plotting a sinusoid [p. 12] Signal operations Time shifting Time scaling Time reversal Combining time shifting & scaling [p. 17] Trigonometric

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

2nd. The TI-30XIIS Calculator and Fractions, Mixed Numbers and Decimals These are the buttons we will be using to calculate fractions.

2nd. The TI-30XIIS Calculator and Fractions, Mixed Numbers and Decimals These are the buttons we will be using to calculate fractions. The TI-30XIIS Calculator and Fractions, Mixed Numbers and Decimals These are the buttons we will be using to calculate fractions. FRACTION A!! ON Let s start with the basic arithmetic operations: Ø ADDITION:!!

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform C H A P T E R 7 Discrete-Time Fourier Transform In Chapter 3 and Appendix C, we showed that interesting continuous-time waveforms x(t) can be synthesized by summing sinusoids, or complex exponential signals,

More information

Elementary Statistics for Geographers, 3 rd Edition

Elementary Statistics for Geographers, 3 rd Edition Errata Elementary Statistics for Geographers, 3 rd Edition Chapter 1 p. 31: 1 st paragraph: 1 st line: 20 should be 22 Chapter 2 p. 41: Example 2-1: 1 st paragraph: last line: Chapters 2, 3, and 4 and

More information

3) sin 265 cos 25 - cos 265 sin 25 C) Find the exact value by using a sum or difference identity. 4) sin 165 C) - 627

3) sin 265 cos 25 - cos 265 sin 25 C) Find the exact value by using a sum or difference identity. 4) sin 165 C) - 627 Bonus Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the given information to find the exact value of the expression. 1) sin

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 08 Final Exam July 7, 08 NAME: Important Notes: Do not unstaple the test. Closed book and notes, except for three

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing Quantum Mechanics: A Paradigms Approach David H. McIntyre 7 July 6 Corrections to the st printing page xxi, last paragraph before "The End", nd line: Change "become" to "became". page, first line after

More information

Errata Page, 1 st Edition: Printing 1 and 2

Errata Page, 1 st Edition: Printing 1 and 2 Errata Page, 1 st Edition: Printing 1 and 2 Thanks to Leeland Hendrix, Barbara Mann, John Van Sickle, Virginia Lesser, David Heid, Bruce Schaalje, Peter Ehlers, Robin Lock, and Ralph Frankowski.. Chapter

More information

Errata for the book A First Course in Numerical Methods, by Uri Ascher and Chen Greif

Errata for the book A First Course in Numerical Methods, by Uri Ascher and Chen Greif Errata for the book A First Course in Numerical Methods, Uri Ascher and Chen Greif February 8, 016 In this file we have collected various changes to be made to the first edition of our book. Several have

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

CH.4 Continuous-Time Fourier Series

CH.4 Continuous-Time Fourier Series CH.4 Continuous-Time Fourier Series First step to Fourier analysis. My mathematical model is killing me! The difference between mathematicians and engineers is mathematicians develop mathematical tools

More information

Evaluate algebraic expressions and use exponents. Translate verbal phrases into expressions.

Evaluate algebraic expressions and use exponents. Translate verbal phrases into expressions. Algebra 1 Notes Section 1.1: Evaluate Expressions Section 1.3: Write Expressions Name: Hour: Objectives: Section 1.1: (The "NOW" green box) Section 1.3: Evaluate algebraic expressions and use exponents.

More information

ERRATA for Calculus: The Language of Change

ERRATA for Calculus: The Language of Change 1 ERRATA for Calculus: The Language of Change SECTION 1.1 Derivatives P877 Exercise 9b: The answer should be c (d) = 0.5 cups per day for 9 d 0. SECTION 1.2 Integrals P8 Exercise 9d: change to B (11) P9

More information

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet Name: Final Exam ECE3 Signals and Systems Friday, May 3, 3 Cover Sheet Write your name on this page and every page to be safe. Test Duration: minutes. Coverage: Comprehensive Open Book but Closed Notes.

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

Algebra 2 and Algebra 2 Honors Corrections. Blue Cover

Algebra 2 and Algebra 2 Honors Corrections. Blue Cover Algebra and Algebra Honors Corrections (Blue Cover) Please note: The 005 edition of Algebra includes extra practice sheets. Your Teacher Manual and Student Text should have the same color cover. If you

More information

Student s Printed Name: KEY_&_Grading Guidelines_CUID:

Student s Printed Name: KEY_&_Grading Guidelines_CUID: Student s Printed Name: KEY_&_Grading Guidelines_CUID: Instructor: Section # : You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell

More information

DISCRETE MATHEMATICS: AN INTRODUCTION TO MATHEMATICAL REASONING

DISCRETE MATHEMATICS: AN INTRODUCTION TO MATHEMATICAL REASONING DISCRETE MATHEMATICS: AN INTRODUCTION TO MATHEMATICAL REASONING by Susanna S. Epp Great effort was made to insure as error-free a product as possible. With approximately 3 million characters in the book,

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Student s Printed Name:

Student s Printed Name: Student s Printed Name: Instructor: CUID: Section # : You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, smart

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

L 1 L 2 L 2. Almost rigid Motion

L 1 L 2 L 2. Almost rigid Motion Microsystem Design Stephen D. Senturia Kluwer Academic Publishers Errata The following errors occur in the First Printing This list compiled on March 9, Page 36 Page 4 Page 159 Page 168 Page 179 Page 18

More information

Homework 9 Solutions

Homework 9 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 207 Homework 9 Solutions Part One. (6 points) Compute the convolution of the following continuous-time aperiodic signals. (Hint: Use the

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

Version B QP1-14,18-24, Calc ,App B-D

Version B QP1-14,18-24, Calc ,App B-D MATH 00 Test Fall 06 QP-,8-, Calc.-.,App B-D Student s Printed Name: _Key_& Grading Guidelines CUID: Instructor: Section # : You are not permitted to use a calculator on any portion of this test. You are

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

A (Mostly) Correctly Formatted Sample Lab Report. Brett A. McGuire Lab Partner: Microsoft Windows Section AB2

A (Mostly) Correctly Formatted Sample Lab Report. Brett A. McGuire Lab Partner: Microsoft Windows Section AB2 A (Mostly) Correctly Formatted Sample Lab Report Brett A. McGuire Lab Partner: Microsoft Windows Section AB2 August 26, 2008 Abstract Your abstract should not be indented and be single-spaced. Abstracts

More information

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet EE538 Digital Signal Processing I Session 3 Exam Live: Wed., Sept. 8, 00 Cover Sheet Test Duration: 50 minutes. Coverage: Sessions -0. Open Book but Closed Notes. Calculators not allowed. This test contains

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

EECS 20N: Midterm 2 Solutions

EECS 20N: Midterm 2 Solutions EECS 0N: Midterm Solutions (a) The LTI system is not causal because its impulse response isn t zero for all time less than zero. See Figure. Figure : The system s impulse response in (a). (b) Recall that

More information

Number Representation and Waveform Quantization

Number Representation and Waveform Quantization 1 Number Representation and Waveform Quantization 1 Introduction This lab presents two important concepts for working with digital signals. The first section discusses how numbers are stored in memory.

More information

Ch. 15 Wavelet-Based Compression

Ch. 15 Wavelet-Based Compression Ch. 15 Wavelet-Based Compression 1 Origins and Applications The Wavelet Transform (WT) is a signal processing tool that is replacing the Fourier Transform (FT) in many (but not all!) applications. WT theory

More information

Detailed Solutions to Exercises

Detailed Solutions to Exercises Detailed Solutions to Exercises Digital Signal Processing Mikael Swartling Nedelko Grbic rev. 205 Department of Electrical and Information Technology Lund University Detailed solution to problem E3.4 A

More information

Chapter 3 Convolution Representation

Chapter 3 Convolution Representation Chapter 3 Convolution Representation DT Unit-Impulse Response Consider the DT SISO system: xn [ ] System yn [ ] xn [ ] = δ[ n] If the input signal is and the system has no energy at n = 0, the output yn

More information

EE301 Signals and Systems Spring 2016 Exam 2 Thursday, Mar. 31, Cover Sheet

EE301 Signals and Systems Spring 2016 Exam 2 Thursday, Mar. 31, Cover Sheet EE301 Signals and Systems Spring 2016 Exam 2 Thursday, Mar. 31, 2016 Cover Sheet Test Duration: 75 minutes. Coverage: Chapter 4, Hmwks 6-7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet Calculators

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

Errata for Computational Statistics, 1st Edition, 1st Printing

Errata for Computational Statistics, 1st Edition, 1st Printing Errata for Computational Statistics, 1st Edition, 1st Printing Geof H. Givens and Jennifer A. Hoeting March 25, 2014 Here is a list of corrections and other notes. We appreciate comments from our careful

More information

Circuits and Systems I

Circuits and Systems I Circuits and Systems I LECTURE #2 Phasor Addition lions@epfl Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems License Info for SPFirst Slides This work released under a Creative

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

SOLUTIONS to ECE 2026 Summer 2018 Problem Set #3

SOLUTIONS to ECE 2026 Summer 2018 Problem Set #3 SOLUTIONS to ECE 226 Summer 28 Problem Set #3 PROBLEM 3..* Consider a signal of the form: x( t ) = cos(2t) + cos(2f 2 t), the sum of a 6-Hz sunusoid and a second sinusoid whose frequency f 2 is known to

More information

s=a+jb s=% x(t)=sin(&t)

s=a+jb s=% x(t)=sin(&t) Linearity input Ax (t)+bx (t) Time invariance x(t-$) x(t) Characteristic Functions Linear Time Invariant Systems Linear Time Invariant System scaling & superposition e st complex exponentials y(t) output

More information

2.1 Basic Concepts Basic operations on signals Classication of signals

2.1 Basic Concepts Basic operations on signals Classication of signals Haberle³me Sistemlerine Giri³ (ELE 361) 9 Eylül 2017 TOBB Ekonomi ve Teknoloji Üniversitesi, Güz 2017-18 Dr. A. Melda Yüksel Turgut & Tolga Girici Lecture Notes Chapter 2 Signals and Linear Systems 2.1

More information

Electrical Engineering Written PhD Qualifier Exam Spring 2014

Electrical Engineering Written PhD Qualifier Exam Spring 2014 Electrical Engineering Written PhD Qualifier Exam Spring 2014 Friday, February 7 th 2014 Please do not write your name on this page or any other page you submit with your work. Instead use the student

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

Lab 4: Quantization, Oversampling, and Noise Shaping

Lab 4: Quantization, Oversampling, and Noise Shaping Lab 4: Quantization, Oversampling, and Noise Shaping Due Friday 04/21/17 Overview: This assignment should be completed with your assigned lab partner(s). Each group must turn in a report composed using

More information