The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

Size: px
Start display at page:

Download "The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from"

Transcription

1 The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa, Institut für Theoretische Physik, Goethe Universität, Frankfurt Kharzeev, McLerran & HJW, Nucl. Phys. A803, 7 (008) HJW, J.Phys.G35, (008) Fukushima, Kharzeev & HJW, Phys.Rev.D78, (008)

2 The vacuum of the gluon sector of QCD In the classical vacuum: H YM = 0... the gauge fields are a pure gauge. i Ai x,t = U x i U x g U x SU 3 Pure gauge (and hence the vacuum) have winding number = complicated formula Ai = 0, ±1, ±... Winding number = Topological invariant. Smooth deformations cannot change winding number. Need to go out of pure gauge=energy to change winding number. mathworld.org

3 So then, how does the vacuum of the gluon sector of QCD look like? energy = Callan, Dashen, Gross ('76)

4 Transitions between vacua: g Q= d topological charge 3 a x F F a Sphaleron Q= 1 energy = N CS = Instanton Q=1 1 3 Instantons: Configuration with finite action. Tunneling through barrier Suppression of rate at finite temperature 't Hooft ('76), Pisarski and Yaffe ('80) =lim V, t 1 8 Q ~exp Vt g T =0 180 MeV 4 Sphaleron: Configuration with finite energy. Real time. Go over barrier. Only possible at finite temperature, rate not suppressed! Manton ('83), Manton and Klinkhamer ('84), McLerran, Mottola and Shaposhnikov ('88) ~385 5S T 4 Bödeker, Moore and Rummukainen ('00), several transitions per fm-3 per fm/c

5 QCD: Gluon fields can have g Q = d topological charge 3 4 a x F F a Belavin, Polyakov, Schwartz and Tyupkin ('75) Non-perturbative physics D. Leinweber, Topological charge flucutations Average over time and space vanishes Q = 0 But fluctuations not How does topological charge deal with quarks? Q 0

6 The Axial Anomaly (= quantum mech. sym. breaking) Steinberger ('49) Schwinger ('51) Bell, Jackiw ('69) Adler ('69) 5 j 5 x = x x Axial current in the chiral limit is not conserved QED e j = F F 8 5 Pion decay to two photons 0 QCD g a j 5 = F F a 16 Note: these relations are exact in chiral limit Axial U(1) symmetry breaking m ' m, m K

7 Topological charge induces chirality Chirality: difference between number of quarks + antiquarks with right- and left-handed helicity spin qr + # qr ql # # # N 5= ql momentum Integrating Axial Ward volume and time gives g a Identity = F F a 16 5 over N 5 [ N R N L ]t = [ N R N L ]t= = Q Axial Anomaly: Topological charge induces chirality m=0, N 5 =4 Q 1. Fluctuations in topological charge implies fluctuations in chirality.. No topological charge = no difference between number left- and right. 3. Fluctuations: number left- and right-handed fermions differ in each event. Event-by-event P- and CP-violation.

8 The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from Q 0 N 5 0 And back!

9 What does a magnetic field do to quarks A magnetic field will align the spins, depending on their electric charge No Magnetic Field: No polarization ul dl Magnetic field: Polarization ul dl ul dl B The momenta of the quarks align along the magnetic field A quark with right-handed helicity will have momentum opposite to a left-handed one In this way the magnetic field can distinguish between right and left

10 What does a magnetic field do with chirality (generated by topological charge) A magnetic field will align the spins, depending on their electric charge No Magnetic Field: No polarization Magnetic field: Polarization Positively charged particles move parallel the magnetic field Negatively charged particles move to antiparallel to magnetic field An electromagnetic current is created along the magnetic field B

11 The Chiral Magnetic Effect 1. Topological charge induces Chirality. In presence of Magnetic field this induces an Electromagnetic Current along Magnetic Field. 3. In finite volume this causes separation of positive from negative charge Kharzeev, McLerran & HJW ('07) B Q = -1 time Current as a function of magnetic field (B), temperature (T), quark chemical potential ( ) and topological charge (Q) at high temperature, small field. 3e Q 3 3 J 3 = d x B q f f T / Fukushima, Kharzeev & HJW ('08)

12 The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from Q 0 5 N 0 And back! J z 0 B

13 The Chiral Magnetic Effect in Heavy Ion Collisions Event by event P- and CP-violation Kharzeev ('06) EDM of QGP Magnetic field + - Charge conserved in hadronization: Excess of Positive Charge on one side of Reaction Plane around = / Caused by top. charge in quark-gluon plasma In combination with Magnetic Field heavy ions = QCD + EM Excess of Negative Charge on other side of Reaction Plane around =3 / More positively charged quarks implies more positively charged hadrons Kharzeev ('06), Kharzeev & Zhitnitsky ('07), Kharzeev, McLerran & HJW ('07)

14 Magnetic Field in Heavy Ion Collisions B Computed numerically at origin in pancake approximation RHIC@BNL e B =0. fm =10 ~10 MeV ~10 G 100 GeV per Nucleon Kharzeev, McLerran & HJW ('07) Low energy quarks which are produced in early stages will be polarized in the direction perpendicular to reaction plane to some degree. Magnetic field falls off rapidly: early time dynamics

15 The Chiral Magnetic Effect in Heavy Ion Collisions reaction plane B Topological charge Q fluctuates anywhere in the QGP - Q Measure: variances -> nonzero Event-by-Event P- & CP-violation Q + The Chiral Magnetic Effect is a near the surface effect - Medium causes screening Variance of charge difference between upper and lower side reaction plane: tf = t d t V d x [ x x ] f q e B ± i Time & Volume integral Overlap region 3 Rate of creation Topological charge Screening Functions f Square of Change Charge difference Estimate magnitude asymmetry for large impact parameter 10-4 with 1- orders of magnitude uncertainty.

16 Chiral Magnetic Effect prediction: Correlators vs. Centrality Preferential emission of positively charged particles around = / or = / N + Most Central % Centrality Most peripheral A possible result of the Chiral Magnetic Effect in Gold-Gold collisions at 130 GeV per nucleon

17 Preliminary data Au & Cu 00 GeV minimum bias Red points: + Blue points: STAR detector Most Central % Centrality + +- Most peripheral Sergei Voloshin (STAR Collaboration) Quark Matter 008. more on this at Quark Matter 009. See also talk by Helen Caines at this meeting. Possible BACKGROUNDS? 1 d N± 1 = a± sin RP v cos[ RP ]... N± d

18 Features of the Chiral Magnetic Effect Order parameter for Confinement / Deconfinement Confined quarks cannot be separated. Order parameter for Chiral Symmetry Breaking / Restoration A nonzero chirality will be quickly removed by the chiral condensate. Friction term in anomaly. Hence no QGP implies: no Chiral Magnetic Effect Test: Energy scan The correlators are proportional to Z Chiral magnetic effect: QCD + EM Test: use nuclei with same A and different Z, isobars Work to do. More accurate beam energy dependence (what happens at LHC?), A dependence, correlations between different charged particles,... Kharzeev, McLerran & HJW ('07)

19 Conclusions The Chiral Magnetic Effect Or from Q 0 If QGP 5 B N 0 J z 0? + +± ±, cos i j RP 0 And back! ± 0, 0

20 Backup slides

21 Topological Susceptibility in Euclidean space-time 1 1 = lim V, t [ N CS t N CS t=0 ] = Q Vt V4 g 4 a Q= d x F F a = Q = d x q x q 0 V4 8 ~exp[ S ]~exp[ Q ] g Large suppression at large temperatures.. N f f = m ' m mk Del Debbio, Panagopolous & Vicari ('0) T =0 180 MeV 4

22 Topological susceptibiliy in Minkowski space-time Sphaleron energy N CS = Instanton 1 3 Callan, Dashen, Gross ('76) Sphaleron: Configuration with finite energy. Go over barrier. Only possible at finite temperature, rate not suppressed, look for it in QGP! Manton ('83), Manton and Klinkhamer ('84), McLerran, Mottola and Shaposhnikov ('88) ~385 5S T 4 Bödeker, Moore and Rummukainen ('00), several transitions per fm-3 per fm/c Winding in real-time is very different from winding in Euclidean space-time. See Arnold and McLerran ('88). The sphaleron strikes back for a nice discussion.

23 Chirality and Helicity ul 1 Left-handed chirality: L = 1 5 Left-handed helicity: p = 1 p 1 Right-handed chirality: R = 1 5 p =1 Right-handed helicity: p In the chiral limit Particle (P) with Left/Right-handed chirality has Left/Right-handed helicity Antiparticle (AP) with Left/Right-handed chirality has Right/Left-handed helicity N 5= d x = d x [ R R L L ] N 5= N R N L = 3 # (P - AP) with RH chirality - # (P - AP) with LH chirality # (P + AP) with RH helicity - # (P + AP) with LH helicity [ N R N L ]t= [ N R N L ]t= = N f Q

24 Relation between current and topological charge e B L3 J 3= 5 n5 = N 5= Q 5 =? 1 = log Z V 5 At large temperatures and small magnetic fields, We can take a free noninteracting gas of fermions. This can be improved. 5= 3n5 T / 3e Q J 3 B q f f T / Fluctuations in topological charge lead to fluctuations in the current 3e 1 J [ B q ] Q f f T / 3 Kharzeev, Fukushima & HJW ('08)

25 The chiral chemical potential Energy R= 5 L = 5 Lefthanded Righthanded If a system has Chirality, Fermi-surfaces Right- and Left-handed fermions differ. This can be described by a chiral chemical potential 5 Study equilibrium response to Magnetic Field

26 Computing the induced current Introduce Chiral Chemical Potential 5 to obtain nonzero Chirality Study equilibrium response to Magnetic Field J = d 3 x 1. Consider Parallel Electric and Magnetic Fields d N R N L e 3 = d xe B. Chirality is generated by the EM anomaly with rate dt d N R N L 3. Moving particles from one to other Fermi Surface e 3 = d xe B 5 5 costs energy per unit time dt e d x j E = 5 d 3 x E B 4. Energy has to be delivered by current, energy conservation gives 3 Nielsen and Ninomiya ('83) 5. Take limit Electric field -> 0 e B L3 J 3= 5 The Chiral Magnetic Effect: Kharzeev, Fukushima & HJW ('08) QCD anomaly provides chirality EM anomaly provides current See paper this and 4 other methods to arrive at this result

27 Current as a function of Chirality e B L3 J= 5 Express 5 in terms of N 5 (neglecting gluonic corrections) Fermions in a magnetic field without gluons.. Also large magnetic fields here. High temperature and small magnetic field approx. (dashed line) valid for QCD 5= 3n5 T / 3 e N 5 1 J= B q f f N T / f Relation between chirality and topological charge N = N 5 Current as a function of magnetic field zero temp (red) and T / n1/3 5 = (blue) f Q Kharzeev, Fukushima & HJW ('08)

28 Suppression of +/- correlations Suppression of correlations between positively charged particles on one side and negatively charged particles on other side of reaction plane due to screening. A possible result of the Chiral Magnetic Effect reaction plane

29 Chiral Magnetic Effect on the Lattice? The Chiral Chemical Potential 5 has no sign problem! Since 0 5 is anti-hermitian Dirac operator: D has purely imaginary eigenvalues which come in pairs det D m 0, real! Suggestion: Extract relation between chirality and chiral chemical potential from the lattice. With or withouth magnetic field. Need good chiral behavior of fermions. Kharzeev, Fukushima & HJW ('08)

30 Preliminary data Au & Cu 6 GeV Red points: + Blue points: + +Most Central % Centrality Most peripheral Voloshin (STAR Collaboration) Quark Matter 008

31 Measurements suggest Preferential emission of charged particles in one direction perpendicular to reaction plane. Correlations between positively charged particles and negatively charged particles on opposite sides. Existence of screening effect. About 1-3 % asymmetry Sergei Voloshin (STAR Collaboration) Quark Matter 008 Asymmetry increases for more peripheral collisions Magnitude asymmetry Cu-Cu and Au-Au very similar both at 6 GeV and 00 GeV for all centralities. Is it due to the Chiral Magnetic Effect or due to something else, and how to find out?

32 Features of the Chiral Magnetic Effect - Magnitude of asymmetry estimate: gold-gold at 130 GeV 4 at large impact parameter a ~10 with large uncertainty - Atomic Number (A) dependence is determined by initial time. A better computation (no pancake approximation) could give us this more accurately. For now it seems that for intermediate energies we have (Z/A) dependence, not completely certain: depends on dynamics - The correlators are proportional to Z Test: use nuclei with same A and different Z, isobars - Particle species dependence - Beam energy dependence is determined by initial time. A better computation (no pancake approximation) could give us this. At LHC smaller asymmetries. Magnetic field decays faster.

P- and CP-odd effects in hot quark matter

P- and CP-odd effects in hot quark matter P- and CP-odd effects in hot quark matter Goethe Denkmal, Opernring, Wien Harmen Warringa, Goethe Universität, Frankfurt Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran. Kharzeev, McLerran

More information

Chiral Magnetic Effect

Chiral Magnetic Effect Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) 1 Strong q Angle, Strong CP Problem and Heavy-Ion Collisions P and CP Violation in the YM Theory Gauge Actions P- and CP-

More information

Topologically induced local P and CP violation in hot QCD

Topologically induced local P and CP violation in hot QCD Proc. 25th Winter Workshop on Nuclear Dynamics (2009) 000 000 25th Winter Workshop on Nuclear Dynamics Big Sky, Montana, USA February 1 8, 2009 Topologically induced local P and CP violation in hot QCD

More information

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Xu-Guang Huang Fudan University, Shanghai November 03, 2016 Outline Introduction Electromagnetic (EM) fields and

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Chirality: from QCD to condensed matter

Chirality: from QCD to condensed matter High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 Intersections between QCD and condensed matter, Schladming, Styria, Austria, March 1-6, 2015 Chirality: from QCD to condensed matter D. Kharzeev

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov Strong magnetic fields in lattice gluodynamics P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov arxiv:1011.3001, arxiv:1011.3795, arxiv:1003.180,

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

Introduction to Heavy Ion Physics at the LHC

Introduction to Heavy Ion Physics at the LHC Introduction to Heavy Ion Physics at the LHC F. Noferini (noferini@bo.infn.it) INFN Bologna/CNAF E. Fermi Centre, Rome ALICE Review http://en.sif.it/journals/ncr/econtents/2016/039/10 24/10/2016 1 Hadrons

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

An Introduction to Chiral Magnetic Effect

An Introduction to Chiral Magnetic Effect An Introduction to Chiral Magnetic Effect Qun Wang Department of Modern Physics University of Science and Technology of China QCD Study Group April 2-4, 2016, Shanghai JiaoTong Univ A game of collective

More information

Transport Properties in Magnetic Field

Transport Properties in Magnetic Field University of Illinois at Chicago/ RIKEN-BNL Research Center The Phases of Dense Matter, July 11-Aug 12 INT, July 28, 2016 The magnetic field in heavy-ion collisions In heavy-ion collisions, two magnetic

More information

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at and S Hadrons Quark Anselm Vossen 1 CP-Violation in quark Fragmentation 2 Transitions in the QCD vacuum carry net chirality

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Catalytic effects of monopole in QCD

Catalytic effects of monopole in QCD Catalytic effects of monopole in QCD Masayasu Hasegawa Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research Lattice and Functional Techniques for Exploration of Phase Structure

More information

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY) Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY) Symposium on Advances in Semi-Classical Methods in Mathematics and Physics Groningen, NL, 19-21 October 2016 Topological Theta Term and Strong

More information

QGP event at STAR. Patrick Scott

QGP event at STAR. Patrick Scott QGP event at STAR Patrick Scott Overview What is quark-gluon plasma? Why do we want to study quark-gluon plasma? How do we create quark-gluon plasma? The past and present SPS and RHIC The future LHC and

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. NOV 23, 2015 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209] Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. November 23, 2015 Magnetic

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Marco Ruggieri [ 魔流虎ルジエーリ ]) 京都大学基礎物理学研究所 QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Bari, 2011 年 09 月 23 日 Outline Axial Chemical Potential: motivations The Model Phase Diagram with an Axial Chemical

More information

Transport Coefficients of Hadron Matter at Finite Temperature

Transport Coefficients of Hadron Matter at Finite Temperature Transport Coefficients of Hadron Matter at Finite Temperature Andres Ortiz University of Texas at El Paso Department of Physics Dr. Ralf Rapp Texas A&M University Cyclotron Institute Objectives To obtain

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY Mahnaz Q. Haseeb Physics Department COMSATS Institute of Information Technology Islamabad Outline Relevance Finite Temperature Effects One Loop Corrections

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

Chiral magnetic effect in 2+1 flavor QCD+QED

Chiral magnetic effect in 2+1 flavor QCD+QED M. Abramczyk E-mail: mabramc@gmail.com E-mail: tblum@phys.uconn.edu G. Petropoulos E-mail: gregpetrop@gmail.com R. Zhou, E-mail: zhouran13@gmail.com Physics Department, University of Connecticut, 15 Hillside

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Nonequilibrium photon production by classical color fields

Nonequilibrium photon production by classical color fields Nonequilibrium photon production by classical color fields Naoto Tanji Heidelberg University arxiv:1506.08442 ECT* Workshop Dec. 04 th 2015 Photons in heavy-ion collisions 1/30 hadron decays thermal hadron

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

Classical-statistical simulations and the Chiral Magnetic Effect

Classical-statistical simulations and the Chiral Magnetic Effect Classical-statistical simulations and the Chiral Magnetic Effect Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji, R. Venugopalan

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Baryon Number Non-Conservation and the Topology of Gauge Fields

Baryon Number Non-Conservation and the Topology of Gauge Fields FERMILAB-Conf-96/266-A hep-ph/9608456 Baryon Number Non-Conservation and the Topology of Gauge Fields arxiv:hep-ph/9608456v1 27 Aug 1996 Minos Axenides 1,, Andrei Johansen 2,, Holger B. Nielsen 3, and

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

From confinement to new states of dense QCD matter

From confinement to new states of dense QCD matter From confinement to new states of dense QCD matter From Quarks and Gluons to Hadrons and Nuclei, Erice, Sicily, 17 Sept2011 Kurt Langfeld School of Comp. and Mathematics and The HPCC, Univ. of Plymouth,

More information

Outline: Introduction

Outline: Introduction Electromagnetic radiation in hadronic interactions: from pp to AA collisions Outline: Introduction Lijuan Ruan (Brookhaven National Laboratory) Recent results on dileptons (dielectrons) Recent results

More information

Fundamental Particles

Fundamental Particles Fundamental Particles Standard Model of Particle Physics There are three different kinds of particles. Leptons - there are charged leptons (e -, μ -, τ - ) and uncharged leptons (νe, νμ, ντ) and their

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma

Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Heavy-Ion Physics Lecture 1: QCD and the Quark-Gluon Plasma Professor David Evans The University of Birmingham Nuclear Physics Summer School Queen s University, Belfast XX th August 2017 Outline of Lectures

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

The Electro-Strong Interaction

The Electro-Strong Interaction The Electro-Strong Interaction Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Instability in an expanding non-abelian system

Instability in an expanding non-abelian system Instability in an expanding non-abelian system Kenji Fukushima (Department of Physics, Keio University) 1 Why expanding? 2 Relativistic Heavy-Ion Collision RHIC LHC Heavy-ions collide A new state of matter

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information

Quarkonia Production and Dissociation in a Langevin Approach

Quarkonia Production and Dissociation in a Langevin Approach proceedings Proceedings Quarkonia Production and Dissociation in a Langevin Approach Nadja Krenz 1, Hendrik van Hees 1 and Carsten Greiner 1, * Institut für Theoretische Physik, Goethe-Universität Frankfurt,

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 14: CP and CP Violation

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 14: CP and CP Violation Particle Physics Dr Victoria Martin, Spring Semester 01 Lecture 14: CP and CP Violation!Parity Violation in Weak Decay!CP and CPT!Neutral meson mixing!mixing and decays of kaons!cp violation in K 0 and

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

arxiv: v1 [nucl-th] 7 Dec 2016

arxiv: v1 [nucl-th] 7 Dec 2016 Study of chiral vortical and magnetic effects in the anomalous transport model Yifeng Sun 1, and Che Ming Ko 1, 1 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV M. M. Islam 1, J. Kašpar 2,3, R. J. Luddy 1 1 Department of Physics, University of Connecticut, Storrs, CT 06269

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Photons in the Chiral Magnetic Effect

Photons in the Chiral Magnetic Effect Photons in the Chiral Magnetic Effect Kenji Fukushima Department of Physics, Keio University June 25, 2012 @ CPODD 1 Current from the Quantum Anomaly Anomaly Relation j = N c i=flavor Q i 2 e 2 μ 5 2π

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Magnetic field in heavy-ion collision and anisotropy of photon production

Magnetic field in heavy-ion collision and anisotropy of photon production Magnetic field in heavy-ion collision and anisotropy of photon production Vladimir Skokov Strong Magnetic Field and QCD; 12 November 2012 G. Basar, D. Kharzeev, V.S., arxiv:1206.1334; PRL A. Bzdak, V.S.,

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

The Quark-Gluon Plasma in Equilibrium

The Quark-Gluon Plasma in Equilibrium The Quark-Gluon Plasma in Equilibrium Dirk H. Rischke arxiv:nucl-th/0305030v2 13 Aug 2003 Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main Germany February 4, 2008

More information

Probing QCD Matter with QED Fields

Probing QCD Matter with QED Fields XQCD2014, Stony Brook, June 21, 2014 Probing QCD Matter with QED Fields Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center Research Supported by NSF Outline * Brief Introduction

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

condensates and topology fixing action

condensates and topology fixing action condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. hep-lat/0403024 Collaboration with T.Onogi (YITP) 1. Introduction Why topology fixing action? An action proposed by Luscher provide

More information

Mass of Higgs Boson and Branching Ratios

Mass of Higgs Boson and Branching Ratios Copyright 2015 by Sylwester Kornowski All rights reserved Mass of Higgs Boson and Branching Ratios Sylwester Kornowski Abstract: Within the Scale-Symmetric Theory we described mass spectrum of the composite

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

How nucleon gets its mass

How nucleon gets its mass Fiz-Tech, Dec 05, 2006 How nucleon gets its mass Dmitri Diakonov Petersburg Nuclear Physics Institute 1. Quantum Chromodynamics: the theory of strong interactions 2. Chiral symmetry of strong interactions

More information

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE Fabian Rennecke Brookhaven National Laboratory [Fu, Pawlowski, FR, hep-ph/1808.00410] [Fu, Pawlowski, FR, hep-ph/1809.01594] NUCLEAR PHYSICS COLLOQUIUM

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Chiral Symmetry Breaking. Schwinger-Dyson Equations Critical End Point of QCD Phase-Diagram: A Schwinger-Dyson Equation Perspective Adnan Bashir Michoacán University, Mexico Collaborators: E. Guadalupe Gutiérrez, A Ahmad, A. Ayala, A. Raya, J.R. Quintero

More information

Higgs Physics and Cosmology

Higgs Physics and Cosmology Higgs Physics and Cosmology Koichi Funakubo Department of Physics, Saga University 1 This year will be the year of Higgs particle. The discovery of Higgs-like boson will be reported with higher statistics

More information

129 Lecture Notes More on Dirac Equation

129 Lecture Notes More on Dirac Equation 19 Lecture Notes More on Dirac Equation 1 Ultra-relativistic Limit We have solved the Diraction in the Lecture Notes on Relativistic Quantum Mechanics, and saw that the upper lower two components are large

More information

1/31. arxiv:

1/31. arxiv: 1/31 D z 2/31 D 3/31 D - Quark Gluon Plasma - Chiral restored phase (RHIC, LHC) - Quarks are confined - Chiral broken phase (J- PARC, and so on) T 4/31 µ - Color superconducovity (?) - Chiral restored

More information

Quark-Gluon Plasma and Relativistic Heavy Ion Collisions

Quark-Gluon Plasma and Relativistic Heavy Ion Collisions June 23-25, Bautzen, Quark-Gluon Plasma and Relativistic Heavy Ion Collisions G.Zinovjev Bogolyubov Institute for Theoretical Physics, Kiev, UKRAINE High energy density physics E.Teller, Ya.Zeldovich 4

More information

The Secret of Mass. Can we Evaporate the Vacuum at RHIC?

The Secret of Mass. Can we Evaporate the Vacuum at RHIC? : Can we Evaporate the Vacuum at RHIC? Texas A&M University February 24, 2007 Outline The Beauty of Nature: Symmetries The Beauty of Nature: Symmetries What is a symmetry? Geometry: Certain operations

More information