Nonequilibrium photon production by classical color fields

Size: px
Start display at page:

Download "Nonequilibrium photon production by classical color fields"

Transcription

1 Nonequilibrium photon production by classical color fields Naoto Tanji Heidelberg University arxiv: ECT* Workshop Dec. 04 th 2015

2 Photons in heavy-ion collisions 1/30 hadron decays thermal hadron gas pre-equilibrium hadron QGP jet-medium thermal QGP pre-equilibrium production prompt hard scattering

3 Photons in heavy-ion collisions 1/30 hadron decays thermal hadron gas pre-equilibrium hadron QGP jet-medium thermal QGP pre-equilibrium production prompt hard scattering small space-time volume initially almost no quark high energy density non-equilibrium dynamic processes (e.g. coherent acceleration by color fields)

4 Outline Introduction direct photon puzzle geometrical scaling photon production in glasma EM current in uniform color electric fields SU(2) vs. SU(3) color direction dependence Glasma-like color fields thermal-like photon spectrum from nonequilibrium quarks 2/30

5 Direct photon puzzle (I) Large photon yields PHENIX ALICE taken from a slide by K. Reygers taken from a slide by A. Drees The state-of-the-art hydro calculations underestimate the photon yields at low momenta. 3/30

6 Direct photon puzzle (II) 4/30 Large photon v2 taken from a slide by A. Drees taken from a slide by K. Reygers Large anisotropy of the photon spectrum comparable to that of pions are observed. Hydro calculations underestimate the photon v2.

7 Direct photon puzzle 5/30 It is difficult to simultaneously explain the large direct photon excess and the photon flow. (I) large photon yields (II) large photon v2 high temperature early-time emission large flow of QGP, hadrons late-time emission Improvement of current models? Exotic new photon sources? Photon production in pre-equilibrium (Glasma)

8 Geometrical scaling C.K.-Bösing, L.McLerran, Phys.Lett. B734 (2014) The data points of different kinds of collisions and different energies are on the same line. The saturation scale is the only relevant scale. Imply photon production at early times when other scales (system size, particle masses) are not yet important. 6/30

9 Photon production in glasma 7/30 Studied by M. Chiu et al. (2013), L.McLerran, B.Schenke (2014). Based on a simple model for the gluon and quark distribution functions A computation based on a first principle is needed. The glasma is initially a pure gluonic state. Photons do not directly couple to gluons. A real-time description of the quark production in the glasma

10 Quark production in glasma 8/30 Glasma gauge fields produce quarks. Quarks are accelerated or kicked by the gauge fields. Chemical and thermal equilibration? Glasma flux tubes Lappi, McLerran (2006)

11 Quark production in glasma 8/30 Glasma gauge fields produce quarks. Quarks are accelerated or kicked by the gauge fields. Chemical and thermal equilibration? Glasma flux tubes

12 Quark production in glasma 8/30 Glasma gauge fields produce quarks. Quarks are accelerated or kicked by the gauge fields. Chemical and thermal equilibration? Glasma flux tubes

13 Photon production in glasma 9/30 Glasma gauge fields produce quarks. Quarks are accelerated or kicked by the gauge fields. Chemical and thermal equilibration? During these processes, quarks can emit photons. Glasma flux tubes radiation annihilation Can be computed by real-time lattice simulations with the classical(-statistical) approximation for the non-abelian gauge fields.

14 Classical approximation for gauge fields 10/30 In the CGC and glasma, the coupling is weak and the field is strong.

15 Classical approximation for gauge fields 10/30 In the CGC and glasma, the coupling is weak and the field is strong. the same order

16 Classical approximation for gauge fields 10/30 In the CGC and glasma, the coupling is weak and the field is strong. the same order

17 Classical approximation for gauge fields 10/30 In the CGC and glasma, the coupling is weak and the field is strong. the same order The non-abelian gauge field obeys the classical Yang-Mills equation. The quark field does the Dirac equation under the classical gauge field.

18 Photon production formula 11/30 In thermal equilibrium, McLerran and Toimela (85), Weldon (90), Gale and Kapsta(91) Extension to non-equilibrium.

19 Photon production formula 11/30 In thermal equilibrium, McLerran and Toimela (85), Weldon (90), Gale and Kapsta(91) Extension to non-equilibrium. One of characteristic features of a non-equilibrium state is nonzero current expectation. Gives the same order contribution in as the connected one-loop

20 Photon production formula 11/30 In thermal equilibrium, McLerran and Toimela (85), Weldon (90), Gale and Kapsta(91) Extension to non-equilibrium. One of characteristic features of a non-equilibrium state is nonzero current expectation. Gives the same order contribution in as the connected one-loop

21 EM currents in uniform color electric fields 12/30

22 Abelianization of uniform color fields 13/30 Consider a uniform color field at first. Diagonalize constant vector in color space U(1) theory with effective coupling

23 Abelianization of uniform color fields Consider a uniform color field at first. Diagonalize constant vector in color space U(1) theory with effective coupling An important difference between SU(2) and SU(3) SU(2) is rank 1: SU(3) is rank 2: color direction parameter 13/30

24 Abelianization of SU(3) fields Relation between and gauge invariant quantity (Casimir invariant) characterizing the color direction rotated weight diagram The color direction can be parametrized in a gauge-invariant way. Physical observables can depend on it. 14/30

25 Quark production in SU(2) uniform electric fields 15/30 The diagonalized effective couplings are always 1/2 and -1/2. Uniform and constant electric field color 1 color 2 The distribution functions of produced quarks The distributions of anti-quarks are given by

26 Quark production in SU(2) uniform electric fields 15/30 The diagonalized effective couplings are always 1/2 and -1/2. Uniform and constant electric field color 1 color 2 The distribution functions of produced quarks The distributions of anti-quarks are given by

27 Cancellation of EM current in SU(2) fields 16/30 The contributions from color 1 and 2 are cancelled out. In the case of the Schwinger mechanism,

28 Quark production in SU(3) uniform electric fields 17/30 Uniform and constant electric field color 1 color 2 color 3 0 The distribution functions of produced quarks

29 Non-cancellation of EM current in SU(3) fields 18/30 Depending on the color direction, nonzero EM current is induced.

30 Glasma-like color fields 19/30

31 Glasma-like color fields Uniform in the z-direction Fluxtube-like configuration in the transverse plane Non-expanding fixed box Initially there are only electric fields SU(2) SU(3) Glasma random numbers The transverse profile of the initial energy density 20/30

32 Glasma-like color fields Uniform in the z-direction Fluxtube-like configuration in the transverse plane Non-expanding fixed box Initially there are only electric fields Glasma SU(2) SU(3) The time dependence of the gauge field energy density 20/30

33 Induction of the EM current: SU(2) 21/30 Plots of x-component y-component z-component Even in SU(2), nonzero EM current is induced.

34 Induction of the EM current: SU(3) 22/30 Plots of x-component y-component z-component

35 Comparison between SU(2) and SU(3) 23/30 z-component SU(2) SU(3) Several orders different! For the induction of the EM current (and the subsequent photon production), it is important to use SU(3).

36 Photon spectrum 24/30 Compute the spectrum of photons produced by classical processes Solve the Maxwell equation Photon energy spectrum Photon number spectrum

37 Photon energy spectrum 25/30 SU(3) px-distribution with py=0, and py-distribution with px=0 are plotted. The width of the spectrum is characterized by. The low momentum region fluctuates largely depending on the random background.

38 Photon number spectrum SU(3) At At with, the spectrum fluctuates largely run by run., the spectrum can be fitted by, although the system is far away from thermal equilibrium. 26/30

39 Time evolution of the photon number spectrum 27/30

40 Spectra of gluons, quarks and photons 28/30 gluons quarks photons

41 Summary 29/30 Investigated the induction of EM currents and the subsequent photon production by classical color fields as a first step to understand photon production in glasma. For SU(3) color fields, the induced EM current can depend on the color direction of the fields. In the glasma-like color fields, the photon spectrum shows an exponential behavior in pt.

42 Outlook 30/30 Is the exponential spectrum universal? Are there signatures specific to pre-equilibrium photons? More realistic setup polarization? correlations? expanding system, initial condition consistent with CGC Effects of gauge field fluctuations and backreaction Genuine quantum process (ongoing in collaboration with people in Heidelberg)

Photon production in the bottom-up thermalization of heavy-ion collisions

Photon production in the bottom-up thermalization of heavy-ion collisions Photon production in the bottom-up thermalization of heavy-ion collisions Naoto Tanji Institut für Theoretische Physik Heidelberg University arxiv: 1701.05064 collaboration with Jürgen Berges (Heidelberg

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Kyoto, 2015/10/05 Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Dr. Marco Ruggieri Physics and Astronomy Department, Catania University, Catania (Italy) Collaborators: Vincenzo Greco

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Longitudinal thermalization via the chromo-weibel instability

Longitudinal thermalization via the chromo-weibel instability Longitudinal thermalization via the chromo-weibel instability Maximilian Attems Frankfurt Institute of Advanced Studies 1207.5795, 1301.7749 Collaborators: Anton Rebhan, Michael Strickland Schladming,

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

Photon Production in a Hadronic Transport Approach

Photon Production in a Hadronic Transport Approach Photon Production in a Hadronic Transport Approach Niklas Ehlert in collaboration with: Juan Torres-Rincon, Janus Weil and Hannah Petersen Transport Meeting, July 12, 2016 Outline Introduction and motivation

More information

Quark chemical equilibrabon for thermal photon ellipbc flow

Quark chemical equilibrabon for thermal photon ellipbc flow AM, Phys. Rev. C 90, 021901(R) (2014) AM, arxiv:1408.1410 [nucl- th] Quark chemical equilibrabon for thermal photon ellipbc flow Akihiko Monnai RIKEN BNL Research Center Nishina Center for Accelerator-

More information

Direct Photon Results from ALICE and the Direct Photon Puzzle

Direct Photon Results from ALICE and the Direct Photon Puzzle Direct Photon Results from ALICE and the Direct Photon Puzzle Ab initio approaches in many-body QCD confront heavy-ion experiments December 15-17, 2014 Klaus Reygers Physikalisches Institut University

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Classical YM Dynamics and Turbulence Diffusion

Classical YM Dynamics and Turbulence Diffusion Classical YM Dynamics and Turbulence Diffusion Kenji Fukushima Department of Physics, Keio University 1 Transverse Pattern Formation Central Results g 2 μ t=0.1 g 2 μ t=30 g 2 μ t=10 June 18, 2013g@2 μ

More information

arxiv: v1 [nucl-th] 7 Jan 2019

arxiv: v1 [nucl-th] 7 Jan 2019 arxiv:1901.01924v1 [nucl-th] 7 Jan 2019 E-mail: sigtryggur.hauksson@mail.mcgill.ca Sangyong Jeon E-mail: jeon@physics.mcgill.ca Charles Gale E-mail: gale@physics.mcgill.ca Jets are a promising way to probe

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

Equilibration of Scalar Fields in an Expanding System

Equilibration of Scalar Fields in an Expanding System Equilibration of Scalar Fields in an Expanding System Akihiro Nishiyama (Kyoto Sangyo University Collaboration with Yoshitaka Hatta (University of Tsukuba Aug 22nd, 2012. arxiv:1206.4743 Relativistic Heavy

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Anisotropic gluon distributions of a nucleus

Anisotropic gluon distributions of a nucleus Anisotropic gluon distributions of a nucleus Adrian Dumitru Baruch College, CUNY INT Program INT-15-2b Correlations and Fluctuations in p+a and A+A Collisions anisotropy of gluon distribution in CGC formalism

More information

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Bari, 2012 December

More information

Neutral meson and direct photon measurement in pp and Pb Pb collisions at midrapidity with the ALICE experiment at the LHC

Neutral meson and direct photon measurement in pp and Pb Pb collisions at midrapidity with the ALICE experiment at the LHC Neutral meson and direct photon measurement in pp and Pb Pb collisions at midrapidity with the ALICE experiment at the LHC Lucia Leardini Physikalisches Institut Heidelberg on behalf of the ALICE Collaboration

More information

Instability in an expanding non-abelian system

Instability in an expanding non-abelian system Instability in an expanding non-abelian system Kenji Fukushima (Department of Physics, Keio University) 1 Why expanding? 2 Relativistic Heavy-Ion Collision RHIC LHC Heavy-ions collide A new state of matter

More information

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Collaborators: - Vincenzo Greco

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

Classical-statistical simulations and the Chiral Magnetic Effect

Classical-statistical simulations and the Chiral Magnetic Effect Classical-statistical simulations and the Chiral Magnetic Effect Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji, R. Venugopalan

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Studies on transverse spin properties of nucleons at PHENIX

Studies on transverse spin properties of nucleons at PHENIX Studies on transverse spin properties of nucleons at PHENIX Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC) 3D structure of the nucleon Conclusive understanding

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

Long-range angular correlations by strong color fields in hadronic collisions

Long-range angular correlations by strong color fields in hadronic collisions Long-range angular correlations by strong color fields in hadronic collisions Kevin Dusling North Carolina State University Rencontres de Moriond La Thuile, Aosta valley, Italy th March 15, 2013 First

More information

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity,

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity, Future of Nuclear Collisions at High Energies Kielce, Poland, October 14-17 2004 Particle correlations in heavy ion collisions Jan Pluta Warsaw University of Technology Faculty of Physics, Heavy Ion Reactions

More information

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v3 [nucl-th] 11 Jul 2014 Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model Zi-Wei Lin Department of Physics, East Carolina University, C-209 Howell Science Complex,

More information

11th International Workshop on High-pT Physics in the RHIC & LHC Era

11th International Workshop on High-pT Physics in the RHIC & LHC Era 11th International Workshop on High-pT Physics in the RHIC & LHC Era Contents Motivations Theoretical Predictions Results Summary and Outlook 2 Motivation: Parton Energy Loss in QGP q Energy loss: parton

More information

Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions

Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions Hendrik van Hees Justus-Liebig Universität Gießen September 1, 2009 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN

More information

Phenomenology of prompt photon production. in p A and A A collisions

Phenomenology of prompt photon production. in p A and A A collisions Phenomenology of prompt photon production in p A and A A collisions François Arleo LAPTH, Annecy LPT Orsay April 2011 Francois Arleo (LAPTH) Prompt γ in p A and A A collisions LPT Orsay April 2011 1 /

More information

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University Jet Physics at ALICE Oliver Busch University of Tsukuba Heidelberg University 1 2 Outline Introduction Results from pp collisions Identified jet fragmentation in pp Jets in heavy-ion collisions Jet shapes

More information

Heavy Ion Physics Lecture 3: Particle Production

Heavy Ion Physics Lecture 3: Particle Production Heavy Ion Physics Lecture 3: Particle Production HUGS 2015 Bolek Wyslouch echniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons and other

More information

Thermal EM Radiation in Heavy-Ion Collisions

Thermal EM Radiation in Heavy-Ion Collisions Thermal EM Radiation in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA Symposium on Jet and Electromagnetic Tomography of Dense Matter

More information

Kristjan Gulbrandsen NBI ALICE/Discovery group

Kristjan Gulbrandsen NBI ALICE/Discovery group Kristjan Gulbrandsen NBI ALICE/Discovery group The Large Hadron Collider Protons (since late 2009) and lead ions accelerated Delivered to 4 experiments ALICE is interested (mainly) in lead collisions Proton

More information

The Dilepton Probe from SIS to RHIC

The Dilepton Probe from SIS to RHIC The Dilepton Probe from SIS to RHIC Hendrik van Hees Justus-Liebig Universität Gießen April 14, 2010 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) The

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Multiple Scattering with fully coherent scattering in pa and AA collisions

Multiple Scattering with fully coherent scattering in pa and AA collisions Journal of Physics: Conference Series PAPER OPEN ACCESS Multiple Scattering with fully coherent scattering in pa and AA collisions To cite this article: Haitham Zaraket 217 J. Phys.: Conf. Ser. 85 126

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

The Dilepton Probe from SIS to RHIC

The Dilepton Probe from SIS to RHIC The Dilepton Probe from SIS to RHIC Hendrik van Hees Justus-Liebig Universität Gießen May 13, 2011 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) The

More information

Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions

Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions Enrico Speranza Institute for Theoretical Physics, Goethe University, D-6438 Frankfurt am Main, Germany and

More information

Turbulence and Bose-Einstein condensation Far from Equilibrium

Turbulence and Bose-Einstein condensation Far from Equilibrium Turbulence and Bose-Einstein condensation Far from Equilibrium Dénes Sexty Uni Heidelberg Collaborators: Jürgen Berges, Sören Schlichting July 1, 01, Swansea SEWM 01 Non-equilibrium initial state Turbulent

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory Many body QCD, the Glasma and a near side ridge in heavy ion collisions Raju Venugopalan Brookhaven National Laboratory Theory Seminar, U. Va., March 17, 2010 What does a heavy ion collision look like?

More information

Jet Properties in Pb-Pb collisions at ALICE

Jet Properties in Pb-Pb collisions at ALICE Jet Properties in Pb-Pb collisions at ALICE Oliver Busch University of sukuba Heidelberg University for the ALICE collaboration Oliver Busch LHC Seminar 5/216 1 Outline Introduction Jets in heavy-ion collisions

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data and description of the RHIC and LHC A+A femtoscopic data Iu.A. Karpenko Bogolyubov Institute for heoretical Physics, 1-b, Metrolohichna str., Kiev, 080, Ukraine E-mail: karpenko@bitp.kiev.ua Bogolyubov

More information

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron Transverse Energy-Energy Correlation on Hadron Collider Wei Wang ( 王伟 ) Deutsches Elektronen-Synchrotron Work with Ahmed Ali, Fernando Barreiro, Javier Llorente arxiv: 1205.1689, Phys.Rev. D86, 114017(2012)

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions M. Smoluchowski Institute of Physics, Jagiellonian University, ul. S.

More information

1 Economics, Finance, Complex Systems

1 Economics, Finance, Complex Systems List of publications. Theory Andrey Leonidov 1 Economics, Finance, Complex Systems 1. A. Leonidov, Systemic Risks in Financial Markets, Global Markets and Financial Engineering 2 (2015), 2-15 2. A. Leonidov,

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions a The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions Pablo Guerrero Rodríguez with advisors: a Javier L. Albacete and Cyrille Marquet CAFPE and Departamento

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Magnetic field in heavy-ion collision and anisotropy of photon production

Magnetic field in heavy-ion collision and anisotropy of photon production Magnetic field in heavy-ion collision and anisotropy of photon production Vladimir Skokov Strong Magnetic Field and QCD; 12 November 2012 G. Basar, D. Kharzeev, V.S., arxiv:1206.1334; PRL A. Bzdak, V.S.,

More information

Kinematical correlations: from RHIC to LHC

Kinematical correlations: from RHIC to LHC : from RHIC to LHC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and Univeristy of Rzeszów, PL-35-959 Cracow, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Kinematical correlations between outgoing

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

arxiv:hep-ph/ v3 2 Jan 2001

arxiv:hep-ph/ v3 2 Jan 2001 Thermalization temperature in Pb+Pb collisions at SpS energy from hadron yields and midrapidity p t distributions of hadrons and direct photons D. Yu. Peressounko and Yu. E. Pokrovsky Russian Research

More information

Chiral magnetic effect and anomalous transport from real-time lattice simulations

Chiral magnetic effect and anomalous transport from real-time lattice simulations Chiral magnetic effect and anomalous transport from real-time lattice simulations Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

Jet Results in pp and Pb-Pb Collisions at ALICE

Jet Results in pp and Pb-Pb Collisions at ALICE Jet Results in pp and Pb-Pb Collisions at ALICE Oliver Busch for the ALICE Collaboration Motivation Jet reconstruction in ALICE Jets in pp Jets in Pb-Pb Hadron triggered recoil jets Motivation Jets originate

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma T-Matrix approach to heavy quarks in the Quark-Gluon Plasma Hendrik van Hees Justus-Liebig-Universität Gießen June 1, 28 with M. Mannarelli, V. Greco, and R. Rapp Institut für Theoretische Physik JUSTUS-LIEBIG-

More information

Instabilities in the Quark-Gluon Plasma

Instabilities in the Quark-Gluon Plasma in the Quark-Gluon Maximilian Attems Institute for Theoretical Physics, TU Vienna October 5, 2010 Dans la vie, rien n est à craindre, tout est à comprendre. Marie Curie Vienna Theory Lunch Seminar 2010

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS Anisotropie vn nello spazio degli impulsi e fluttuazioni di stato inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche S. Plumari, L. Oliva,

More information

Introduction to Heavy Ion Physics at the LHC

Introduction to Heavy Ion Physics at the LHC Introduction to Heavy Ion Physics at the LHC F. Noferini (noferini@bo.infn.it) INFN Bologna/CNAF E. Fermi Centre, Rome ALICE Review http://en.sif.it/journals/ncr/econtents/2016/039/10 24/10/2016 1 Hadrons

More information

Francesco Barile for the ALICE Collaboration. Università degli Studi di Bari & INFN

Francesco Barile for the ALICE Collaboration. Università degli Studi di Bari & INFN Produzione di deutoni e anti-deutoni nelle collisioni centrali Pb-Pb a snn= 2.76 TeV con il rivelatore Cherenkov HMPID nell'ambito dell'esperimento ALICE ad LHC Francesco Barile for the ALICE Collaboration

More information

Quirks. Z. Chacko University of Maryland, College Park

Quirks. Z. Chacko University of Maryland, College Park Quirks Z. Chacko University of Maryland, College Park Disclaimer Only a small portion of this talk is based on my own work, in collaboration with Burdman, Goh, Harnik and Krenke. In particular, I have

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Entropy production in relativistic heavy ion collisions with use of quantum distribution functions

Entropy production in relativistic heavy ion collisions with use of quantum distribution functions Entropy production in relativistic heavy ion collisions with use of quantum distribution functions Hidekazu Tsukiji Yukawa Institute for Theoretical Physics Kyoto University (Japan) Collaborators Hideaki

More information

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering Hannah Petersen May 11, 2018, ECT*, Trento, Italy Motivation and Outline Hybrid transport+hydrodynamics approaches are successfully

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Dileptons in NN and AA collisions

Dileptons in NN and AA collisions Dileptons in NN and AA collisions Hendrik van Hees Goethe-Universität Frankfurt November 28, 2011 Hendrik van Hees (GU Frankfurt) The Dilepton Probe November 28, 2011 1 / 24 Outline 1 Electromagnetic probes

More information

Transport Coefficients of Hadron Matter at Finite Temperature

Transport Coefficients of Hadron Matter at Finite Temperature Transport Coefficients of Hadron Matter at Finite Temperature Andres Ortiz University of Texas at El Paso Department of Physics Dr. Ralf Rapp Texas A&M University Cyclotron Institute Objectives To obtain

More information

Quark-Gluon Plasma Physics

Quark-Gluon Plasma Physics Quark-Gluon Plasma Physics 7. Hanbury Brown Twiss correlations Prof. Dr. Klaus Reygers Heidelberg University SS 017 Momentum correlation of identical bosons emitted from two point sources ~xi : Single-particle

More information

The Color Glass Condensate: Theory, Experiment and the Future

The Color Glass Condensate: Theory, Experiment and the Future The Color Glass Condensate: Theory, Experiment and the Future Physics Issues: What is the high energy limit of strong interac?ons? How do we compute the gluon and quark distribu?ons relevant for asympto?cally

More information