Kinetic Transport Models and Minimum Detection Limits of Atmospheric Particulate Resuspension

Size: px
Start display at page:

Download "Kinetic Transport Models and Minimum Detection Limits of Atmospheric Particulate Resuspension"

Transcription

1 Kinetic Transport Models and Minimum Detection Limits of Atmospheric Particulate Resuspension Shaun Marshall 1, Charles Potter 2, David Medich 1 1 Worcester Polytechnic Institute, Worcester, MA Sandia National Laboratories, Albuquerque, NM NECHPS Annual Symposium Westford Regency Inn and Conference Center Westford, MA Wednesday, June 6, 2018 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy s National Nuclear Security Administration under contract DE-NA haun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 1 / 16

2 Overview Inhalation dosimetry, resuspension factor observations and reassessment Particulate transport mechanisms, kinetic models, and rates of transfer Neutron activation analysis, detection limits, and experimental results Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 2 / 16

3 Inhalation dosimetry resuspension Many environmental pathways are available to radioactive particulates in accidental or continuous releases. Inhalation of resuspended radionuclides from contamination delivers a dose of radiation. Figure 1: Potential exposure pathways in a radionuclide release (NRC, 2016) Prediction of internal dose depends upon site-specific parameters and exposure time period. Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 3 / 16

4 Inhalation dosimetry - Resuspension factor Dose due to inhalation of some resuspended radionuclide : D inh = C D,inh f B KP, (1) C D,inh is the inhalation committed dose coefficient (Sv Bq 1 ), f B is the activity-averaged human breathing rate ( 0.92 m 3 h 1 ), KP is the resuspension parameter (Bq s m 3 ), which considers airborne concentration during time phase TP following deposition: KP = Dp e λt S f (t) dt, (2) TP Dp is the initial areal deposition (Bq m 2 ) λ is the radionuclide decay constant (s 1 ) S f (t) is the empirical resuspension factor (m 1 ) (FRMAC, 2015); simplified Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 4 / 16

5 Resuspension factor observations Airborne activity concentration measurements are taken periodically following known surface dispersal events: S f (t) = 1 t+ts t s t 1 A C air (x, y, z; r, t) dt A C surface(x, y, d; r, t) da [ Bq m 3 = m 1 Bq m 2 S f (t) is dependent upon particle radius r (generally taken as 1 µm). ] (3) Latest evaluation of historic dataset of observations produced exponential regression fit: S f (t) = ( )e ( )t +( )e ( )t (4) (Maxwell and Anspaugh, 2011) haun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 5 / 16

6 Resuspension factor model reassessment Figure 2: Averaged resuspension factor observations, overlaid with recent resuspension factor models including author s previous work as indicated. (Marshall et al, 2018) haun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 6 / 16

7 Particulate transport mechanisms Transfer between air (A), surface layer (S) and underground (G): k A k A S A k A S S k S G G k G (5) k S G Table 1: Kinetic rate constants for transport mechanisms (s 1, depends on particle size) Term k A k A S k A S k S G k S G k G Description Weathering rate; local removal via dispersion and sampling Settling rate v terminal enhanced by wet deposition Resuspension rate; upward drift by wind and other forces Infiltration rate; based on ground porosity and colloidal properties Bioturbation rate; mixing by decontamination or biota activity Migration rate; local removal via infiltration enhanced by wet deposition Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 7 / 16

8 Particulate transport kinetic models (Air sampling) Indoor resuspension catenary model: ( ) ka A k A S S (6) k A S (Wet) Outdoor resuspension catenary model: A k A S k A S S k S G k S G G ( ) kg (7) (Wet) Outdoor resuspension catenary model with weathering: k A k A S A k A S S k S G k S G G ( ) kg (8) Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 8 / 16

9 Particulate transport rates of transfer Average air sampling rate constant proportional to sampling flow rate : dm A dt = f ɛ f C air (t) = k A M air (t), k A f (9) t Gravitational settling proportional to terminal velocity: dm A S dt = v t AC air (t) = k A S M air (t), k A S v t (10) t Resuspension proportional to average upward velocity from forces dm A S dt = v u AC surface (t) = k A S M surface (t), k A S v u (11) t (NRC, 2012) haun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NMWednesday, NECHPS June 6, Annual 2018 Symposium 9 / 16

10 Particulate transport compartment equations In general for early timeframes post deposition, dx surface dt Closed two-compartment model: 0 so S f (t) = X A (t) Open two-compartment model: X A (t) = X 0 + X 1e ω1t (12) X A (t) = X 0e ω 0t + X 1e ω 1t (13) Closed three-compartment model: X A (t) = X 0 + X 1e ω1t + X 2e ω2t (14) Open two-compartment model: X A (t) = X 0e ω0t + X 1e ω1t + X 2e ω2t (15) Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 10 / 16

11 Neutron activation analysis (NAA) Air sampling took place over hourly, daily, and weekly time intervals. Used filters were activated with neutrons for mass analysis. I Samples are barricaded with solid water to increase scatter and incident flux. sampler head 47mm glass fiber filter target chamber beam portal polypropylene magnetron solid water acrylic chamber aluminum shielding Figure 3: Resuspension chamber with vacuum pump head. Figure 4: DD110M neutron generator beam-line at WPI , Albuquerque, Shaun Marshall, Charles Potter, David Medich ( Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection Sandia Limits National of Atmospheric Laboratories Particulate Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 11 / 16

12 Neutron activation detection limits Minimum detectable activity (MDA) from gamma spectroscopic analysis: MDA = L D ɛ t = k2 + 2k 2µb ɛ t (16) Detector efficiency ɛ and background rate µb Minimum detectable mass (MDM) from neutron activation analysis MDM = L D ɛyp(σ)s(λ, τ)t (λ, t d, t) P(σ) = Nσφ m, S(λ, τ) = 1 e λτ, T (λ, t d, t) = where (17) ( e λt d ) (1 e λ t ) λ Decay gamma yield Y, neutron flux φ, absorbtion cross-section σ, and irradiation and delay times τ, t d (Currie, 1968) Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 12 / 16

13 Neutron activation detection limits (continued) Minimum detectable resuspension factor (MDS f ) from neutron activation mass analysis of air sampled filters: MDS f = C air (volume) C surface (area) MDM ɛ f V m0χ A = MDM A ɛ f m 0 χft s (18) Mass fraction of radionuclide of interest relative to sample material χ Sf obtained by replacing MDM with m Specifically, replacing detection limit L D with count C Error propagation of S f σ Sf in first order: σc 2 = S f C 2 + σ2 m 0 m0 2 + σ2 t s ts 2 + λ 2 σt 2 d + λσ2 τ e λτ 1 + λσ2 t e λ t 1 (19) Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 13 / 16

14 Neutron activation experimental results Figure 5: Preliminary resuspension factor (S f ) results from NAA of resuspension chamber filters, including null data minimum detectable resuspension factor (MDS f ). Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 14 / 16

15 Model kinetic parameters results Table 2: Best-fit linear regression parameters in log-space of averaged experimental observations. Term Value X X ω ω Table 3: Initial fractional quantities and kinetic rate constants for open two-compartment catenary model as determined by experimental observations. Fractional quantity X A (0) X S (0) 1 X S (0) Rate constants (d 1 ) k A k S S k A S haun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 15 / 16

16 Conclusions / Future work Compartmental kinetic models reproduce widely used multi-exponential functional form of resuspension factor. Constant term not appropriate without accounting for weathering removal. Models predict wide initial variance depending on compartment initializatons. Background resuspension behavior observed under calm, indoor lab conditions after two weeks of sampling from ideal surface release. Additional data needed to verify steady increase from zero air concentration. Thank you! Shaun Marshall 1, Charles Potter 2, David Medich 1 ( 1 Worcester Polytechnic Kinetic Transport Institute, Models Worcester, and Minimum MA Detection 2 SandiaLimits National of Atmospheric Laboratories Particulate, Albuquerque, Resuspension NM Wednesday, NECHPS June 6, 2018 Annual Symposium 16 / 16

Quantifying Electrostatic Resuspension of Radionuclides from Surface Contamination

Quantifying Electrostatic Resuspension of Radionuclides from Surface Contamination Quantifying Electrostatic Resuspension of Radionuclides from Surface Contamination Shaun Marshall 1, Charles Potter 2, David Medich 1 1 Worcester Polytechnic Institute, Worcester, MA 01609 2 Sandia National

More information

Adjunct Lecturer of Physics and Doctoral Candidate, Worcester Polytechnic Institute Adjunct Professor of Physics, Becker College

Adjunct Lecturer of Physics and Doctoral Candidate, Worcester Polytechnic Institute Adjunct Professor of Physics, Becker College Shaun Marshall, M.Sc. Adjunct Lecturer of Physics and Doctoral Candidate, Adjunct Professor of Physics, Becker College Curriculum Vitae Contact Information Department of Physics shaun@wpi.edu http://www.wpi.edu/

More information

Radiological risk assessment to workers of a dicalciumphosphate industry

Radiological risk assessment to workers of a dicalciumphosphate industry Radiological risk assessment to workers of a dicalciumphosphate industry 1 A. HIERRO 1,D. MULAS 1, G.TREZZI 1, N. CASACUBERTA 2, V. MORENO 1, P. MASQUÉ 1, J. GARCIA- ORELLANA 1 1 D E P A R T A M E N T

More information

INTERNAL RADIATION DOSIMETRY

INTERNAL RADIATION DOSIMETRY INTERNAL RADIATION DOSIMETRY Introduction to Internal Dosimetry Importance of External and Internal Exposures by Radiation Type Charged particle radiation (α, p, β) Generally important only for internal

More information

Dose Calculations in ARGOS

Dose Calculations in ARGOS Dose Calculations in ARGOS Table of Contents Introduction... 2 Dose Pathways... 2 Dose Types... 2 Sheltering... 3 Age Groups... 3 Integration Time... 4 Database Tables used by ARGOS Dose Calculations...

More information

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

RADON EQUILIBRIUM MEASUREMENT IN THE AIR * RADON EQUILIBRIUM MEASUREMENT IN THE AIR * SOFIJA FORKAPIĆ, DUŠAN MRĐA, MIROSLAV VESKOVIĆ, NATAŠA TODOROVIĆ, KRISTINA BIKIT, JOVANA NIKOLOV, JAN HANSMAN University of Novi Sad, Faculty of Sciences, Department

More information

Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model

Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model Iran. J. Radiat. Res., 2006; 4 (3): 155-159 Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air: their variation and statistical prediction model F.Arkian 1*, M.

More information

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables ELENA SIMION 1,2 *, ION MIHALCEA 2, FLORIN SIMION 1,3, CRISTIAN PACURARU 4 1 National Environmental Protection

More information

Meteorological Data Collection, X/Q and D/Q, Critical Receptors

Meteorological Data Collection, X/Q and D/Q, Critical Receptors Meteorological Data Collection, X/Q and D/Q, Critical Receptors Ken Sejkora Entergy Nuclear Northeast Pilgrim Station Presented at the 23rd Annual RETS-REMP Workshop Training Session Westminster, CO /

More information

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION I. People usually receive radiation mainly from natural sources. About one-third of the natural radiation is related

More information

Lab #13: MEASUREMENT OF RADIATION DOSES

Lab #13: MEASUREMENT OF RADIATION DOSES Lab #13: MEASUREMENT OF RADIATION DOSES THEORETICAL BACKGROUND In order to estimate the radiation exposure it is essential to determine the quantity of radiation. If we identify the dose of radiation to

More information

Measurement of induced radioactivity in air and water for medical accelerators

Measurement of induced radioactivity in air and water for medical accelerators Measurement of induced radioactivity in air and water for medical accelerators K. Masumoto 1, K. Takahashi 1, H. Nakamura 1, A. Toyoda 1, K. Iijima 1, K. Kosako 2, K. Oishi 2, F. Nobuhara 1 High Energy

More information

j465 Appendix B Production Equations in Health Physics

j465 Appendix B Production Equations in Health Physics j465 Appendix B Production Equations in Health Physics B.1 Introduction The assumption that radioactive material enters a system at a constant rate leads to a set of production equations that describe

More information

Neutron activation analysis. Contents. Introduction

Neutron activation analysis. Contents. Introduction Neutron activation analysis Contents Neutron activation analysis... 1 Introduction... 1 Principle of method... 2 Detection of radionuclides... 3 Kinetics of activation... 4 Choosing the appropriate procedure...

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

HALF LIFE. NJSP HMRU June 10, Student Handout CBRNE AWARENESS Module 4 1. Objectives. Student will

HALF LIFE. NJSP HMRU June 10, Student Handout CBRNE AWARENESS Module 4 1. Objectives. Student will June 10, 2004 Radiological/Nuclear Overview 1 Student will demonstrate a knowledge of self protection techniques identify types of radiation and their associated hazards demonstrate a knowledge of terminology

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations. Absorbed Dose Dose is a measure of the amount of energy from an ionizing radiation deposited in a mass of some material. SI unit used to measure absorbed dose is the gray (Gy). 1J 1 Gy kg Gy can be used

More information

Department of Energy Office of Worker Protection Programs and Hazards Management Radiological Control Technical Position RCTP 99-02

Department of Energy Office of Worker Protection Programs and Hazards Management Radiological Control Technical Position RCTP 99-02 Issue: Title 10 Code of Federal Regulations, Part 835 (10 CFR 835), Occupational Radiation Protection, specifies occupational radiation protection requirements for Department of Energy (DOE) activities

More information

Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials

Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials Modeling the Physical Processes that Impact the Fate and Fallout of Radioactive Materials J.V. Ramsdell, Jr. Radiological Science and Engineering Group Pacific Northwest National Laboratory Richland, Washington

More information

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity CHAPTER 4 RADIATION UNITS RADIATION AND DOSE MEASUREMENTS 1 Units of Radioactivity 2 1 Radiation Units There are specific units for the amount of radiation you receive in a given time and for the total

More information

Characterizing the Fluence of WPI s New Deuterium-Deuterium Neutron Generator. A Major Qualifying Project Report. submitted to the Faculty.

Characterizing the Fluence of WPI s New Deuterium-Deuterium Neutron Generator. A Major Qualifying Project Report. submitted to the Faculty. Characterizing the Fluence of WPI s New Deuterium-Deuterium Neutron Generator A Major Qualifying Project Report submitted to the Faculty of the Worcester Polytechnic Institute in partial fulfillment of

More information

Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC

Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC SLAC-PUB-15365 Evaluation and Measurements of Radioactive Air Emission and Off-Site Doses at SLAC I.Chan, J.Liu, H.Tran SLAC National Accelerator Laboratory, M.S. 48, 2575 Sand Hill Road, Menlo Park, CA,

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

2015 Ph.D. Comprehensive Examination III. Radiological Sciences - Medical Physics

2015 Ph.D. Comprehensive Examination III. Radiological Sciences - Medical Physics January 2015 2015 Ph.D. Comprehensive Examination III Radiological Sciences - Medical Physics In this three-hour exam, you are required to answer all of the questions in Part A and any two (2) out of the

More information

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N: 2.5. Isotope analysis and neutron activation techniques The previously discussed techniques of material analysis are mainly based on the characteristic atomic structure of the elements and the associated

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry V. V. Bastrikov 1, M. V. Zhukovsky 2 1 Experimental Physics Department, Ural State Technical University, Mira St., 19/5, 620002, Ekaterinburg,

More information

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer Michael G. Stabin Radiation Protection and Dosimetry An Introduction to Health Physics 4) Springer Table of Contents Preface Acknowledgments Chapter 1. Introduction to Health Physics 1 1.1 Definition of

More information

Question. 1. Which natural source of background radiation do you consider as dominant?

Question. 1. Which natural source of background radiation do you consider as dominant? Question 1. Which natural source of background radiation do you consider as dominant? 2. Is the radiation background constant or does it change with time and location? 3. What is the level of anthropogenic

More information

Particle Size of Radioactive Aerosols Generated During Machine Operation in High-energy Proton Accelerators

Particle Size of Radioactive Aerosols Generated During Machine Operation in High-energy Proton Accelerators Particle Size of Radioactive Aerosols Generated During Machine Operation in High-energy Proton Accelerators Yuichi Oki, Akira Endo 2, Yukio Kanda and Kenjiro Kondo Radiation Science Center, High Energy

More information

SECTION 8 Part I Typical Questions

SECTION 8 Part I Typical Questions SECTION 8 Part I Typical Questions 1. For a narrow beam of photons, the relaxation length is that thickness of absorber that will result in a reduction of in the initial beam intensity. 1. 1/10. 2. 1/2.

More information

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation.

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation. 1 The physics department in a college has a number of radioactive sources which are used to demonstrate the properties of ionising radiations. The sources include Am-241 which emits alpha radiation, Sr-90

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

MODULE 4.3 Atmospheric analysis of particulates

MODULE 4.3 Atmospheric analysis of particulates MODULE 4.3 Atmospheric analysis of particulates Measurement And Characterisation Of The Particulate Content 1 Total particulate concentration 1 Composition of the particulate 1 Determination of particle

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

S. Harb Physics Department, Faculty of science, South Valley university, Qena, Egypt

S. Harb Physics Department, Faculty of science, South Valley university, Qena, Egypt IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 8, Issue 5 Ver. II (Sep - Oct. 2016), PP 117-125 www.iosrjournals.org Estimation of annual external exposure and internal exposure dose

More information

A Simple Measurement Technique of the Equilibrium. Equivalent Thoron Concentration with a CR-39 Detector

A Simple Measurement Technique of the Equilibrium. Equivalent Thoron Concentration with a CR-39 Detector Jpn. J. Health Phys., 37 (1), 59-63 (2002) Technical Paper A Simple Measurement Technique of the Equilibrium Equivalent Thoron Concentration with a CR-39 Detector Shinji TOKONAMI*1, Quanfu SUN*1, Hidenori

More information

CFD calculations of the test 2-4 experiments. Author: G. de With

CFD calculations of the test 2-4 experiments. Author: G. de With CFD calculations of the test 2-4 experiments Author: G. de With 34. Model setup and boundary conditions Dimensions CFD model: x=1000m / y=100m / z=2000m. CFD Model: Transient simulation, with steady-state

More information

THE ANNUAL EFFECTIVE DOSE FROM NATURAL RADIONUCLIDES SOIL SURFACES OF UZHGOROD AREA

THE ANNUAL EFFECTIVE DOSE FROM NATURAL RADIONUCLIDES SOIL SURFACES OF UZHGOROD AREA THE ANNUAL EFFECTIVE DOSE FROM NATURAL RADIONUCLIDES SOIL SURFACES OF UZHGOROD AREA I. Pataki, O. Parlag, V. Maslyuk, A. Lengyel, Z. Torich Institute of Electron Physics Ukrainian National Academy of Sciences,

More information

UNCORRECTED PROOF. Table of Contents

UNCORRECTED PROOF. Table of Contents 00-Stabin-Prelims SNY001-Stabin (Typeset by spi publisher services, Delhi) vii of xvi June 1, 2007 17:15 Preface xiii Acknowledgments xv Chapter 1. Introduction to Health Physics 1 1.1 Definition of Health

More information

Experimental Techniques in

Experimental Techniques in Experimental Techniques in uclear Physics 50503744 Course web http://nuclear.bau.edu.jo/experimental or http://nuclear.dababneh.com/experimental Grading Mid-term Exam 30% HW s 0% Projects 0% Final Exam

More information

Committed Effective Dose from Thoron Daughters Inhalation

Committed Effective Dose from Thoron Daughters Inhalation Committed Effective Dose from Thoron Daughters Inhalation M.P. Campos and B.R.S. Pecequilo Instituto de Pesquisas Energéticas e Nucleares - Departamento de Radioproteção Ambiental Travessa R, 400 Cidade

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

Neutron Activation Cross Sections for Fusion

Neutron Activation Cross Sections for Fusion Neutron Activation Cross Sections for Fusion Adelle Hay The University of York/Culham Centre for Fusion Energy March 30, 2015 Adelle Hay (UoY/CCFE) Neutron activation cross sections March 30, 2015 1 /

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Interaction of Ionizing Radiation with Matter Interaction of neutrons with matter Neutral particles, no repulsion with the positively charged nucleus: important projectile Origin of the neutrons: Nuclear

More information

Validation Metrics. Kathryn Maupin. Laura Swiler. June 28, 2017

Validation Metrics. Kathryn Maupin. Laura Swiler. June 28, 2017 Validation Metrics Kathryn Maupin Laura Swiler June 28, 2017 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC,

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3 GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 5: Approved specimen question paper Version 1.3 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams A German Approach

Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams A German Approach Dose Reconstruction Methods and Source Term Assessment using Data from Monitoring Networks and Mobile Teams A German Approach M. Bleher, U. Stöhlker, F. Gering Federal Office for Radiation Protection (BfS),

More information

Quantifying exposure from radionuclides for environmental receptors

Quantifying exposure from radionuclides for environmental receptors Quantifying exposure from radionuclides for environmental receptors Justin Brown IUR Consensus Symposium 2015, Miami Beach, 17th November 2015 Talk Contents Will focus on environmental exposure estimation

More information

STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA

STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA A. STOCHIOIU 1, F. MIHAI 1, C. STOCHIOIU 2 1 Horia Hulubei National Institute for Physics and Nuclear Engineering,

More information

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we will study the decay of a radioactive nucleus, Cesium. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive source,

More information

Shielding of Ionising Radiation with the Dosimetry & Shielding Module

Shielding of Ionising Radiation with the Dosimetry & Shielding Module Shielding of Ionising Radiation with the Dosimetry & Shielding Module J. Magill Overview Biological Effects of Ionising Radiation - Absorber dose, Quality or Weighting Factor, Equivalent Dose Attenuation

More information

SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE

SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE SYSTEM OF MONITORING THE ATMOSPHERICAL RADON WITH AN IONIZATION CHAMBER DETECTOR TYPE IN PULSE MODE Marian Romeo Călin, Adrian Cantemir Călin Horia Hulubei National Institute of Physics and Nuclear Engineering

More information

Measurement of Radioxenon and Argon-37 Released into a Nuclear Explosion Cavity for Development and Evaluation of OSI Field Sampling Methods

Measurement of Radioxenon and Argon-37 Released into a Nuclear Explosion Cavity for Development and Evaluation of OSI Field Sampling Methods Measurement of Radioxenon and Argon-37 Released into a Nuclear Explosion Cavity for Development and Evaluation of OSI Field Sampling Methods Khris B. Olsen, Brian D. Milbrath, James C. Hayes, Derek A.

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions

Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions Comparison of Direct Electron and Photon Activation Measurements with FLUKA Predictions P. Degtiarenko, G. Kharashvili, V. Vylet Jefferson Lab 2 nd FLUKA Advanced Course and Workshop Sept 2012, Vancouver

More information

24th Seismic Research Review Nuclear Explosion Monitoring: Innovation and Integration

24th Seismic Research Review Nuclear Explosion Monitoring: Innovation and Integration BE-7 CROSS-TALK IN RASA CONTINUOUS AIR SAMPLERS Richard J. Arthur, Harry S. Miley, and Lindsay C. Todd Pacific Northwest National Laboratory Sponsored by National Nuclear Security Administration Office

More information

Industrial Hygiene: Assessment and Control of the Occupational Environment

Industrial Hygiene: Assessment and Control of the Occupational Environment Industrial Hygiene: Assessment and Control of the Occupational Environment Main Topics Air Pollution Control Analytical Methods Ergonomics Gas and Vapour Sampling General Practice Heat and Cold Stress

More information

FRMAC ASSESSMENT MANUAL VOLUME 1 OVERVIEW AND METHODS

FRMAC ASSESSMENT MANUAL VOLUME 1 OVERVIEW AND METHODS FEDERAL RADIOLOGICAL MONITORING AND ASSESSMENT CENTER SAND2010 1405P Supersedes SAND2003 1071P Unlimited Release FRMAC ASSESSMENT MANUAL VOLUME 1 OVERVIEW AND METHODS The Federal Manual for Assessing Environmental

More information

SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP

SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP SAFETY ASSESSMENT CODES FOR THE NEAR-SURFACE DISPOSAL OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE WITH THE COMPARTMENT MODEL: SAGE AND VR-KHNP J. B. Park, J. W. Park, C. L. Kim, M. J. Song Korea Hydro

More information

PhD Qualifying Exam Nuclear Engineering Program. Part 1 Core Courses

PhD Qualifying Exam Nuclear Engineering Program. Part 1 Core Courses PhD Qualifying Exam Nuclear Engineering Program Part 1 Core Courses 9:00 am 12:00 noon, November 19, 2016 (1) Nuclear Reactor Analysis During the startup of a one-region, homogeneous slab reactor of size

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions Introduction Neutron Effects Displacement Damage NSEU Total Ionizing Dose Neutron Testing Basics User Requirements Conclusions 1 Neutron Effects: Displacement Damage Neutrons lose their energy in semiconducting

More information

Portal Monitor Characterization for Internally and Externally Deposited Radionuclides

Portal Monitor Characterization for Internally and Externally Deposited Radionuclides Operational Topic Detection efficiencies for internally and externally deposited radionuclides have been evaluated using a pass-through and static mode portal monitor. Portal Monitor Characterization for

More information

The Neutron/WIMP Acceptance In XENON100

The Neutron/WIMP Acceptance In XENON100 The Neutron/WIMP Acceptance In XENON100 Symmetries and Fundamental Interactions 01 05 September 2014 Chiemsee Fraueninsel Boris Bauermeister on behalf of the XENON collaboration Boris.Bauermeister@uni-mainz.de

More information

Sample Examination Questions

Sample Examination Questions Sample Examination Questions Contents NB. Material covered by the AS papers may also appear in A2 papers. Question Question type Question focus number (section A or B) 1 A Ideal transformer 2 A Induced

More information

4.4 Atomic structure Notes

4.4 Atomic structure Notes 4.4 Atomic structure Notes Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand

More information

O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE

O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE ON THE APPROVAL OF NUCLEAR SAFETY REQUIREMENTS BSR-1.9.1-2011 STANDARDS OF RELEASE OF RADIONUCLIDES FROM NUCLEAR INSTALLATIONS AND REQUIREMENTS

More information

Scientific Highlight February 2011

Scientific Highlight February 2011 Scientific Highlight February 2011 co-ordinated with the Director of the Institute / Research Unit Institute/ Research Unit / Clinical Co-operation Group / Junior Research Group: Institute of Radiation

More information

RADIATION PROTECTION

RADIATION PROTECTION DEPARTMENT OF NUCLEAR TECHNOLOGY, FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY PHAYATHAI ROAD, BANGKOK 10330, THAILAND TEL: (662) 218-6772, (662) 218-6784. FAX: (662) 218-6770 E-mail: fnegbr@eng.chula.ac.th

More information

THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR*

THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR* SLAC-PUB-5122 Rev March 1991 w THE ACTIVE PERSONNEL DOSIMETER - APFEL ENTERPRISES SUPERHEATED DROP DETECTOR* N. E. Ipe, R. J. Donahue, and D. D. Busick Stanford Linear Accelerator Center Stanford University,

More information

Chapter 3: Neutron Activation and Isotope Analysis

Chapter 3: Neutron Activation and Isotope Analysis Chapter 3: Neutron Activation and Isotope Analysis 3.1. Neutron Activation Techniques 3.2. Neutron Activation of Paintings 3.3. From Qumran to Napoleon 3.4. Neutron Activation with Accelerators 3.5. Isotope

More information

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I University of Minnesota School of Physics and Astronomy GRADUATE WRITTEN EXAMINATION Fall 2018 PART I Monday, August 20 th, 2018 9:00 am to 1:00 pm Part 1 of this exam consists of 10 problems of equal

More information

Journal of American Science 2013;9(12)

Journal of American Science 2013;9(12) Journal of American Science 213;9(12) http://www.jofamericanscience.org Estimation of the Radiation Dose for Some Individuals Working With Naturally Occurring Radioactive Materials Tarek Mahmoud Morsi,

More information

Environmental Monitoring Presented on behalf Lutz Moritz (TRIUMF) by

Environmental Monitoring Presented on behalf Lutz Moritz (TRIUMF) by Environmental Monitoring Presented on behalf Lutz Moritz (TRIUMF) by Kamran Vaziri Ph.D. Radiation Physicist III Fermi National Accelerator Laboratory 1 2 ! "# $ %!!! &!'$ 3 ! (!!$ )!*!'! "#!!!!!''!!!&!'$

More information

Kinetics of the High Temperature Oxygen Exchange Reaction on 238 PuO 2 Powder

Kinetics of the High Temperature Oxygen Exchange Reaction on 238 PuO 2 Powder Kinetics of the High Temperature Oxygen Exchange Reaction on 238 PuO 2 Powder C. E. Whiting, M. Du, L. K. Felker, R. M. Wham, C. D. Barklay, and D. P. Kramer University of Dayton Research Institute (937)

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Quantities, Units and Definitions

Quantities, Units and Definitions Quantities, Units and Definitions ICRU 51 - Quantities and Units in Radiation Protection Dosimetry (1993) A. FLUENCE dν Φ da a. dn number of particles incident on a sphere of cross sectional area da b.

More information

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay Radioactivity INTRODUCTION The most common form of radiation is the electromagnetic wave. These waves include low energy radio waves, microwaves, visible light, x-rays, and high-energy gamma rays. Electromagnetic

More information

A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC

A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC Purdue University Purdue e-pubs School of Aeronautics and Astronautics Faculty Publications School of Aeronautics and Astronautics 2012 A comparative study of no-time-counter and majorant collision frequency

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction.

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction. 6.6 The theory of radioactive Decay constant and carbon dating Specification reference 3.8.1.3 MS 0.1, 0., 0.3, 0.5,.,.3,.4 Introduction You have already studied half-life, the definition and various means

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool 13461 Victor Potapov, Alexey Safronov, Oleg Ivanov, Sergey Smirnov, Vyacheslav Stepanov National Research

More information

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Rationale of proton therapy Dose deposition versus depth in

More information

APPLIED RADIATION PHYSICS

APPLIED RADIATION PHYSICS A PRIMER IN APPLIED RADIATION PHYSICS F A SMITH Queen Mary & Westfield College, London fe World Scientific m Singapore * New Jersey London Hong Kong CONTENTS CHAPTER 1 : SOURCES of RADIATION 1.1 Introduction

More information

Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron

Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron Analysis of air discharges from a radiopharmaceutical production center based on a cyclotron Elio Tomarchio * Palermo University, Energy Department, Nuclear Engineering Section, Viale delle Scienze, Building

More information

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1 Unit 08 Nuclear Structure Unit 08 Nuclear Structure Slide 1 The Plan Nuclear Structure Nuclear Decays Measuring Radiation Nuclear Power Plants Major Nuclear Power Accidents New Possibilities for Nuclear

More information

Nuclear Fusion and Radiation

Nuclear Fusion and Radiation Nuclear Fusion and Radiation Lecture 9 (Meetings 23 & 24) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/42 Radiation Interactions

More information

Activation Products in Proton Therapy

Activation Products in Proton Therapy Activation Products in Proton Therapy Syed M. Qaim Institut für Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany Lecture delivered during the Workshop on Nuclear Data for Medical Applications,

More information

Preparation of Distribution Map of Radiation Doses, etc. (Maps of. Concentration of Tellurium 129m and Silver 110m in Soil) by MEXT

Preparation of Distribution Map of Radiation Doses, etc. (Maps of. Concentration of Tellurium 129m and Silver 110m in Soil) by MEXT October 31, 2011 Preparation of Distribution Map of Radiation Doses, etc. (Maps of Concentration of Tellurium 129m and Silver 110m in Soil) by MEXT A map of Te-129m concentration in soil and a map of Ag-110m

More information

Monte Carlo Simulation concerning Particle Therapy

Monte Carlo Simulation concerning Particle Therapy Monte Carlo Simulation concerning Particle Therapy Masaaki Takashina Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan INTRODUCTION It is well known that the particle therapy has some

More information