Equatorially trapped waves. Shayne McGregor ARC Postdoctoral Fellow CCRC & ARC CSS, UNSW. Climate Change. Research Centre

Size: px
Start display at page:

Download "Equatorially trapped waves. Shayne McGregor ARC Postdoctoral Fellow CCRC & ARC CSS, UNSW. Climate Change. Research Centre"

Transcription

1 Equatorially trapped waves Shayne McGregor ARC Postdoctoral Fellow CCRC & ARC CSS, UNSW Climate Change Research Centre

2 Equatorially trapped waves The linear SWM Equatorial Kelvin waves Other equatorially trapped waves Mixed gravity- Rossby waves Interio- gravity waves Rossby waves Wave refleckon at the boundaries El Niño- Southern OscillaKon

3 The linear SWM (first baroclinic mode)

4 The linear SWM (first baroclinic mode) VerKcal mode example

5 The linear SWM (first baroclinic mode) East (x)!u!t "!yv = "g'!"!x North (y)!v!t "!yu = "g'!"!y ρ 1 H g'!!!t c"2 +!u!x +!v!y = 0 ρ 2 η

6 The linear SWM (first baroclinic mode) Reduced gravity Gravity wave speed g' =! 2!! 1! 1 g c = g'h g = 9.8 m s - 2 ρ diff 0.02 VerKcal mode example c generally gets smaller as mode increases

7 Beta plane Coriolis parameter: f = 2!sin(!) Eq β- plane approximakon: f =!y β = 2Ω/a (2.3 x m - 1 s - 1 ) Ω = rotakon rate of the earth (7.29 x 10-5 s - 1 ) a = radius of the earth (6371km) y = distance from the equator 1.5 x Normal B plane Latitude

8 The linear SWM (first baroclinic mode) East (x)!u!t "!yv = "g'!"!x North (y)!v!t "!yu = "g'!"!y ρ 1 H g'!!!t c"2 +!u!x +!v!y = 0 ρ 2 η Lord Kelvin (William Thompson) v=0

9 The Equatorial Kelvin wave v=0 SWM eqns reduce to!u!t = "g'!!!x!yu =!g' "" "y Wave solukon u = cg(x! ct)exp(!y 2 / 2R 2 eq )! = G(x! ct)exp(!y 2 / 2R 2 eq ) g'!!!t + c2!u!x = 0

10 The Equatorial Kelvin wave R(y) = c f (y) R eq = R y = R eq u = cg(x! ct)exp(!y 2 / 2R 2 eq ) 1 Meridional decay Equatorially trapped 0.8 R eq = c /! decay scale = (2c/B) 1/

11 The equatorial Kelvin wave Coriolis PGF!yu =!g' "" "y Eastward flow direckon PGF SSH perturbakon Coriolis Geostrophic balance Coriolis PGF!yu =!g' "" "y Geostrophic balance Westward flow direckon SSH perturbakon PGF Coriolis

12 The equatorial Kelvin wave 1 PropagaKon 0.5 Convergence Divergence u du/dx Longitude

13 The equatorial Kelvin wave A feature of a Kelvin wave is that it is non- dispersive, i.e., the phase speed of the wave crests is equal to the group speed of the wave energy for all frequencies. c=v*/k* Dispersion occurs when pure plane waves of different wavelengths have different propagakon velocikes, so that a wave packet of mixed wavelengths tends to spread out in space.

14 The equatorial Kelvin wave What do we know about equatorial Kelvin waves? They: 1. No flow normal to the boundary (equator) [v=0]. 2. Have maximum amplitude on the equator and their decay away from the equator follows the equatorial radius of deformakon [(2c/β) 1/2 ]. 3. The flow along the boundary is in geostrophic balance with the pressure gradient perpendicular to the wall [!yu =!g' "" ]. "y 4. Propagate from west to east (boundary on the lep [right) in the SH (NH)] EffecKvely act to transfers info from the west side of an ocean basin to the east. 5. Have a speed, c = sqrt(g H) roughly 2-3 m s - 1 for the first ocean baroclinic mode (H=150m, g =5e - 2 m s - 2 ). [roughly 200 m s - 1 for the oceanic barotropic waves (H=5000m, g=9.8 m s - 2 )] [roughly 50 m s - 1 for the atmospheric baroclinic waves] So they allow the west Pacific to communicate with the east Pacific relakvely fast (~70 days) 6. Upwelling (downwelling) Kelvin waves are associated with eastward (westward) currents. 7. They are non- dispersive

15 Kelvin wave (modeled)

16 Kelvin wave (Obs)

17 Kelvin wave (Obs)

18 Irregular grid problems Course resolukon version of the MPI- ESM (along with many others) uses a curvlinear grid which shiped the north pole over Greenland. The south pole remains centrally located. a) b) 2 N 1 N EQ 1 S 2 S 80 N 2N 1N 0 1S 2S LaKtude where f 0 50E 150E 110W 10W 50 E 150 E 110 W 10 W 40 N EQ 40 S 80 S 50 E 150 E 110 W 10 W

19 Irregular grid problems

20 Irregular grid problems 30 Merdional velocity (m/s) on day Latitude Longitude 0.02

21 Irregular grid problems

22 Other equatorially trapped waves!u!t!v!t SWM equakons "!yv = "g'!"!x "!yu = "g'!"!y Zonally propagakng solukons of the form u =U(y)cos(kx!!t) v = V(y)sin(kx!!t) g'!!!t c"2 +!u!x +!v!y = 0 h = A(y)cos(kx!!t)

23 Other equatorially trapped waves SubsKtuKng the solukons funckons back into the SWM equakons yields:! 2 V!y + #! 2 " " 2 y 2 % " "k 2 c 2! " k 2 $ & (V = 0 ' Physics Schrödinger equakon Which can be shown to have solukons of the form: V(y) = H n! # " y R eq $ & % R eq = c /! & e'y 2 2 /2 R eq

24 Other equatorially trapped waves V(y) = H n! # " y R eq $ & % & e'y 2 2 /2 R eq H n are the Hermite polynomials of degree n, that take the form: H 0 =1, H 1 (ε)=2ε, H 2 (ε)=4ε 2-2, H 3 (ε)=8ε 3-12ε And the solukons only decay as y gets large when: Dispersion relakon "! 2 % $ # c 2! "k!! k 2 ' = & 2n +1 2 R eq

25 Other equatorially trapped waves The dispersion relakon provides frequencies, ω, as a funckon of wavenumber, k, for each mode. " $ #! 2 c 2! "k!! k 2 % ' = & 2n +1 2 R eq Westward Mixed Rossby- gravity Rossby InterKa- gravity Kelvin Eastward Eastward InterKa- gravity Westward

26 Mixed Rossby gravity waves " $ #! 2 c 2! "k!! k 2 % ' = & Set n=0 2n +1 2 R eq T eq = 1!c " (! + ck)!t eq! 1 % $! kr eq #!T ' = 0 eq &! 2 Convergence V!y + #! 2 " " 2 y 2 % " "k 2 c 2! " k 2 $ & (V = 0 ' Divergence

27 Dispersion InterKa- gravity Westward Mixed Rossby- gravity Kelvin Eastward Eastward Westward Source: Cushman- Roisen and Beckman 2009

28 Source: Wheeler 2002 " $ # Small at high frequencies! 2 % c 2! "k!! k 2 ' = & 2n +1 2 R eq!! ± InerKal gravity waves 2n +1 T eq 2 + g'hk 2, n "1 Divergence R eq Convergence

29 Source: Wheeler 2002 " $ # Small at high frequencies! 2 % c 2! "k!! k 2 InerKal gravity waves ' = & 2n +1 2 R eq!! ± 2n +1 + g'hk 2, n "1 2 R eq Convergence Divergence

30 Dispersion InterKa- gravity Westward Mixed Rossby- gravity Kelvin Eastward Eastward Westward Source: Cushman- Roisen and Beckman 2009

31 Source: Wheeler 2002 Equatorial Rossby waves " $ # Small at low frequencies! 2 % c 2! "k!! k 2 ' = & 2n +1 2 R eq!! " "R 2 eq (2n +1), n #1 Convergence Divergence

32 Source: Wheeler 2002 Equatorial Rossby waves Equatorial Rossby wave speed: For long waves largely non- dispersive: Phase velocity= ω/k = - c/(2n+1) So: n=1 0.9m/s n=2 0.55m/s n=3 0.4m/s

33 Dispersion InterKa- gravity Westward Mixed Rossby- gravity Kelvin Eastward Eastward Westward Source: Cushman- Roisen and Beckman 2009

34 Other Equatorially trapped waves What do we know about equatorially trapped waves? They: 1. They are how the tropical ocean/atmosphere adjusts when perturbed. 2. Waves of an even (odd) order are asymmetric (symmetric) about the equator. 3. For long periods (>=T eq, 2- days), InerKal gravity waves are not produced, leaving Kelvin, Rossby and mixed gravity- Rossby waves to do the adjustment. 4. If the perturbakon is quasi- symmetric about the equator, the mixed wave and even order Rossby waves are ruled out as solukons. 5. The Kelvin wave and short wave- length Rossby wave carry energy eastward. Rossby waves only propagate westward, meaning Rossby waves are dispersive for short wave lengths 6. Long wave length Rossby waves are largely non- dispersive as both energy and the wave propagate westward. 7. Kelvin waves travel roughly 3 Kmes faster (eastward) than the n=1 equatorially trapped Rossby waves do westward.

35 Equatorial Rossby wave (modeled)

36 Western boundary refleckons U r = " +$y #$y " 0 H u r!z!y U r! 2"y /!(y 0 2 # "y 2 ) Decreases as approx 1/y 0 2

37 Western boundary refleckons Kelvin wave h k = Aexp(!y 2 / 2R 2 eq ) u k = (g'/ c)h k Eq Kelvin wave zonal transport U k = +$ 0 " " u k!z!y = A[2c 3! / "] 1/2 #$ H

38 Western boundary refleckons Upper layer thickness ResulKng Eq Upper layer thickness Zonal current anomalies Eq Kelvin wave zonal transport U k = +$ 0 " " u k!z!y = A[2c 3! / "] 1/2 #$ H Kessler 1991

39 Eastern boundary refleckons Westward Rossby wave Westward InerKa- gravity wave Clark 1983

40 El Niño- Southern OscillaKon PC2 (dashed red)

41 El Niño- Southern OscillaKon Triggers

42 El Niño- Southern OscillaKon

43 El Niño- Southern OscillaKon

44 El Niño- Southern OscillaKon Why do the events end?

45 References Clarke, Allan J., 1983: The ReflecKon of Equatorial Waves from Oceanic Boundaries. J. Phys. Oceanogr., 13, Cushman- Roisen, B. and M. Beckers, 2009: IntroducKon to Geophysical Fluid Dynamics. Kessler, W. S., 1991: Can reflected extra- equatorial Rossby waves drive ENSO? Journal of Physical Oceanography, 21, Moore, D. W., 1968: Planetary- gravity waves in an equatorial Ocean, PhD thesis. Wheeler, M.C., 2002: Tropical meteorology: Equatorial waves. In: J. Holton, J. Curry, and J. Pyle (eds), Encyclopedia of Atmospheric Sciences. Academic Press, pages

46 Rossby wave speed

Wave mo(on in the tropics. Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS)

Wave mo(on in the tropics. Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS) Wave mo(on in the tropics Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS) Equatorially trapped waves The linear SWM Equatorial Kelvin waves Other equatorially trapped waves

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves A few examples Shallow water equation derivation and solutions Goal: Develop the mathematical foundation of tropical waves Previously: MCS Hovmoller Propagating w/ wave velocity From Chen et al (1996)

More information

El Niño: How it works, how we observe it. William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory

El Niño: How it works, how we observe it. William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory El Niño: How it works, how we observe it William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory The normal situation in the tropical Pacific: a coupled ocean-atmosphere system

More information

Baroclinic Rossby waves in the ocean: normal modes, phase speeds and instability

Baroclinic Rossby waves in the ocean: normal modes, phase speeds and instability Baroclinic Rossby waves in the ocean: normal modes, phase speeds and instability J. H. LaCasce, University of Oslo J. Pedlosky, Woods Hole Oceanographic Institution P. E. Isachsen, Norwegian Meteorological

More information

lecture 11 El Niño/Southern Oscillation (ENSO) Part II

lecture 11 El Niño/Southern Oscillation (ENSO) Part II lecture 11 El Niño/Southern Oscillation (ENSO) Part II SYSTEM MEMORY: OCEANIC WAVE PROPAGATION ASYMMETRY BETWEEN THE ATMOSPHERE AND OCEAN The atmosphere and ocean are not symmetrical in their responses

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

2/15/2012. Earth System Science II EES 717 Spring 2012

2/15/2012. Earth System Science II EES 717 Spring 2012 Earth System Science II EES 717 Spring 2012 1. The Earth Interior Mantle Convection & Plate Tectonics 2. The Atmosphere - Climate Models, Climate Change and Feedback Processes 3. The Oceans Circulation;

More information

Lecture 2 ENSO toy models

Lecture 2 ENSO toy models Lecture 2 ENSO toy models Eli Tziperman 2.3 A heuristic derivation of a delayed oscillator equation Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East

More information

SIO 210: Dynamics VI: Potential vorticity

SIO 210: Dynamics VI: Potential vorticity SIO 210: Dynamics VI: Potential vorticity Variation of Coriolis with latitude: β Vorticity Potential vorticity Rossby waves READING: Review Section 7.2.3 Section 7.7.1 through 7.7.4 or Supplement S7.7

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly

ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly ATSR SST Observations of the Tropical Pacific Compared with TOPEX/Poseidon Sea Level Anomaly J.P.Angell and S.P.Lawrence Earth Observation Science Group, Dept. Physics and Astronomy, Space Research Centre,

More information

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves Reference: An Introduction to Dynamic Meteorology (4 rd edition), J.R. Holton Atmosphere-Ocean Dynamics, A.E. Gill Fundamentals of Atmospheric

More information

Jet Formation in the Equatorial Oceans Through Barotropic and Inertial Instabilities. Mark Fruman

Jet Formation in the Equatorial Oceans Through Barotropic and Inertial Instabilities. Mark Fruman p. 1/24 Jet Formation in the Equatorial Oceans Through Barotropic and Inertial Instabilities Mark Fruman Bach Lien Hua, Richard Schopp, Marc d Orgeville, Claire Ménesguen LPO IFREMER, Brest, France IAU

More information

Equatorially Trapped Waves in Shallow Water

Equatorially Trapped Waves in Shallow Water ! Revised November 20, 2012 6:08 PM! 1 Equatorially Trapped Waves in Shallow Water David Randall Introduction Matsuno (1966; Fig. 1) studied the linearized shallow water equations applied to an equatorial

More information

Introduction to Geophysical Fluid Dynamics

Introduction to Geophysical Fluid Dynamics Introduction to Geophysical Fluid Dynamics BENOIT CUSHMAN-ROISIN Dartmouth College Prentice Hall Prentice Hall, Upper Saddle River, New Jersey 07458 Contents Preface xiii PART I FUNDAMENTALS I Introduction

More information

Dynamics of the Extratropical Response to Tropical Heating

Dynamics of the Extratropical Response to Tropical Heating Regional and Local Climate Modeling and Analysis Research Group R e L o C l i m Dynamics of the Extratropical Response to Tropical Heating (1) Wegener Center for Climate and Global Change (WegCenter) and

More information

CHAPTER 5. WAVES AT LOW LATITUDES 73 Figure 5.1: Configuration of a one-layer fluid model with a + fu

CHAPTER 5. WAVES AT LOW LATITUDES 73 Figure 5.1: Configuration of a one-layer fluid model with a  + fu Chapter 5 WAVES AT LOW LATITUDES Acharacteristic of the atmosphere is its shallow depth; 99% of the mass lies below a height of 30 km whereas the mean earth radius is 6,380 km. Over this 30 km which extends

More information

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves?

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Cheryl L. Lacotta 1 Introduction Most tropical storms in the Atlantic, and even many in the eastern Pacific, are due to disturbances

More information

10 Shallow Water Models

10 Shallow Water Models 10 Shallow Water Models So far, we have studied the effects due to rotation and stratification in isolation. We then looked at the effects of rotation in a barotropic model, but what about if we add stratification

More information

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix)

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix) A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix) Nan Chen and Andrew J. Majda Department of Mathematics, and Center for Atmosphere Ocean

More information

Introduction of products for Climate System Monitoring

Introduction of products for Climate System Monitoring Introduction of products for Climate System Monitoring 1 Typical flow of making one month forecast Textbook P.66 Observed data Atmospheric and Oceanic conditions Analysis Numerical model Ensemble forecast

More information

Introduction of climate monitoring and analysis products for one-month forecast

Introduction of climate monitoring and analysis products for one-month forecast Introduction of climate monitoring and analysis products for one-month forecast TCC Training Seminar on One-month Forecast on 13 November 2018 10:30 11:00 1 Typical flow of making one-month forecast Observed

More information

Chapter 4: Ocean waves

Chapter 4: Ocean waves Chapter 4: Ocean waves 4.1 Wave concepts When we think about waves usually we have a picture of undulations on the surface of the sea or lakes. They usually progress from a region of formation to a coast

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

Different region of the globe. Lecture 3, 2009, Tropics & thunderstorms. Tropics. Tropics. Streamline 16/04/06. Rossby number

Different region of the globe. Lecture 3, 2009, Tropics & thunderstorms. Tropics. Tropics. Streamline 16/04/06. Rossby number Different region of the globe Lecture 3, 2009, Tropics & thunderstorms. Angular momentum of earth is larger at the equator than the pole => move south W ly momentum increases, moves north E ly momentum

More information

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

Lecture 8: Natural Climate Variability

Lecture 8: Natural Climate Variability Lecture 8: Natural Climate Variability Extratropics: PNA, NAO, AM (aka. AO), SAM Tropics: MJO Coupled A-O Variability: ENSO Decadal Variability: PDO, AMO Unforced vs. Forced Variability We often distinguish

More information

Understanding the local and global impacts of model physics changes

Understanding the local and global impacts of model physics changes ECMWF Annual Seminar 2008 MJR 1 Understanding the local and global impacts of model physics changes Mark Rodwell Work with Thomas Jung 4 September 2008 Thanks to: MJR 2 Motivation The real world and GCMs

More information

Tropical Pacific Ocean model error covariances from Monte Carlo simulations

Tropical Pacific Ocean model error covariances from Monte Carlo simulations Q. J. R. Meteorol. Soc. (2005), 131, pp. 3643 3658 doi: 10.1256/qj.05.113 Tropical Pacific Ocean model error covariances from Monte Carlo simulations By O. ALVES 1 and C. ROBERT 2 1 BMRC, Melbourne, Australia

More information

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q. 1 Q. 9 carry one mark each & Q. 10 Q. 22 carry two marks each. Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q.2 The pair of variables that

More information

Symmetric Instability and Rossby Waves

Symmetric Instability and Rossby Waves Chapter 8 Symmetric Instability and Rossby Waves We are now in a position to begin investigating more complex disturbances in a rotating, stratified environment. Most of the disturbances of interest are

More information

Islands in Zonal Flow*

Islands in Zonal Flow* 689 Islands in Zonal Flow* MICHAEL A. SPALL Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 1 April 003, in final form 9 June 003)

More information

) 2 ψ +β ψ. x = 0. (71) ν = uk βk/k 2, (74) c x u = β/k 2. (75)

) 2 ψ +β ψ. x = 0. (71) ν = uk βk/k 2, (74) c x u = β/k 2. (75) 3 Rossby Waves 3.1 Free Barotropic Rossby Waves The dispersion relation for free barotropic Rossby waves can be derived by linearizing the barotropic vortiticy equation in the form (21). This equation

More information

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño Southern Oscillation (ENSO)

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño Southern Oscillation (ENSO) Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño Southern Oscillation (ENSO) Lecture 5: A Simple Stochastic Model for El Niño with Westerly Wind Bursts Andrew

More information

Tropical Indian Ocean Observing System - Present Status and Highlights of 2006 IOD -

Tropical Indian Ocean Observing System - Present Status and Highlights of 2006 IOD - Tropical Indian Ocean Observing System - Present Status and Highlights of 2006 IOD - Takanori Horii, Hideaki Hase, Iwao Ueki, Kentarou Ando, Yosifumi Kuroda,Kunio Yoneyama, Keisuke Mizuno Institute of

More information

Extratropical planetary wave propagation characteristics from the ATSR global Sea Surface Temperature record.

Extratropical planetary wave propagation characteristics from the ATSR global Sea Surface Temperature record. Extratropical planetary wave propagation characteristics from the ATSR global Sea Surface Temperature record. Katherine L. Hill, Ian S. Robinson, Paolo Cipollini Southampton Oceanography Centre European

More information

Identifying the MJO Skeleton in Observational Data

Identifying the MJO Skeleton in Observational Data . Identifying the MJO Skeleton in Observational Data Sam Stechmann, Wisconsin Andrew Majda, NYU World Weather Open Science Conference August 20, 2014 Montreal, Canada Theoretical prediction of MJO structure

More information

Rossby Wave Coastal Kelvin Wave Interaction in the Extratropics. Part I: Low-Frequency Adjustment in a Closed Basin

Rossby Wave Coastal Kelvin Wave Interaction in the Extratropics. Part I: Low-Frequency Adjustment in a Closed Basin 2382 JOURNAL OF PHYSICAL OCEANOGRAPHY Rossby Wave Coastal Kelvin Wave Interaction in the Extratropics. Part I: Low-Frequency Adjustment in a Closed Basin ZHENGYU LIU, LIXIN WU, AND ERIC BAYLER Department

More information

UC Irvine Faculty Publications

UC Irvine Faculty Publications UC Irvine Faculty Publications Title A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean Permalink https://escholarship.org/uc/item/5w9602dn

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #2 Planetary Wave Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Observational motivation 2. Forced planetary waves in the stratosphere 3. Traveling planetary

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

the 2 past three decades

the 2 past three decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2840 Atlantic-induced 1 pan-tropical climate change over the 2 past three decades 3 4 5 6 7 8 9 10 POP simulation forced by the Atlantic-induced atmospheric

More information

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter.

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. SIO 210 Problem Set 3 November 16, 2015 1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. (a) What is the name of this type of data display?_hovmöller

More information

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño-Southern Oscillation

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño-Southern Oscillation Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño-Southern Oscillation Lectures 2 and 3: Background and simple ENSO models 14 september 2014, Courant Institute

More information

Lecture 12: Angular Momentum and the Hadley Circulation

Lecture 12: Angular Momentum and the Hadley Circulation Lecture 12: Angular Momentum and the Hadley Circulation September 30, 2003 We learnt last time that there is a planetary radiative drive net warming in the tropics, cooling over the pole which induces

More information

[1]{Izaña Atmospheric Research Centre (AEMET), Santa Cruz de Tenerife, Spain}

[1]{Izaña Atmospheric Research Centre (AEMET), Santa Cruz de Tenerife, Spain} Supplement of Pivotal role of the North African Dipole Intensity (NAFDI) on alternate Saharan dust export over the North Atlantic and the Mediterranean, and relationship with the Saharan Heat Low and mid-latitude

More information

AFRICAN EASTERLY WAVES IN CURRENT AND FUTURE CLIMATES

AFRICAN EASTERLY WAVES IN CURRENT AND FUTURE CLIMATES AFRICAN EASTERLY WAVES IN CURRENT AND FUTURE CLIMATES Victoria Dollar RTG Seminar Research - Spring 2018 April 16, 2018 Victoria Dollar ASU April 16, 2018 1 / 26 Overview Introduction Rossby waves and

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Instability of a coastal jet in a two-layer model ; application to the Ushant front

Instability of a coastal jet in a two-layer model ; application to the Ushant front Instability of a coastal jet in a two-layer model ; application to the Ushant front Marc Pavec (1,2), Xavier Carton (1), Steven Herbette (1), Guillaume Roullet (1), Vincent Mariette (2) (1) UBO/LPO, 6

More information

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States See CalTech 2005 paper on course web site Free troposphere assumed to have moist adiabatic lapse rate (s* does

More information

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5)

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5) 9 Rossby Waves (Holton Chapter 7, Vallis Chapter 5) 9.1 Non-divergent barotropic vorticity equation We are now at a point that we can discuss our first fundamental application of the equations of motion:

More information

Radiating Instability of a Meridional Boundary Current

Radiating Instability of a Meridional Boundary Current 2294 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38 Radiating Instability of a Meridional Boundary Current HRISTINA G. HRISTOVA MIT WHOI Joint Program in Oceanography, Woods Hole,

More information

Evolution of Subduction Planetary Waves with Application to North Pacific Decadal Thermocline Variability

Evolution of Subduction Planetary Waves with Application to North Pacific Decadal Thermocline Variability JULY 001 STEPHENS ET AL. 1733 Evolution of Subduction Planetary Waves with Application to North Pacific Decadal Thermocline Variability M. STEPHENS, ZHENGYU LIU, AND HAIJUN YANG Department of Atmospheric

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

6 Two-layer shallow water theory.

6 Two-layer shallow water theory. 6 Two-layer shallow water theory. Wewillnowgoontolookatashallowwatersystemthathastwolayersofdifferent density. This is the next level of complexity and a simple starting point for understanding the behaviour

More information

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #3: Gravity Waves in GCMs Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Role of GWs in the middle atmosphere 2. Background theory 3. Resolved GWs in GCMs 4. Parameterized

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

weak mean flow R. M. Samelson

weak mean flow R. M. Samelson An effective-β vector for linear planetary waves on a weak mean flow R. M. Samelson College of Oceanic and Atmospheric Sciences 14 COAS Admin Bldg Oregon State University Corvallis, OR 97331-553 USA rsamelson@coas.oregonstate.edu

More information

Lab 12: El Nino Southern Oscillation

Lab 12: El Nino Southern Oscillation Name: Date: OCN 104: Our Dynamic Ocean Lab 12: El Nino Southern Oscillation Part 1: Observations of the tropical Pacific Ocean during a normal year The National Oceanographic and Atmospheric Administration

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

The modeling of the ENSO events with the help of a simple model. Abstract

The modeling of the ENSO events with the help of a simple model. Abstract The modeling of the ENSO events with the help of a simple model Vladimir N. Stepanov Proudman Oceanographic Laboratory, Merseyside, England February 20, 2007 Abstract The El Niño Southern Oscillation (ENSO)

More information

Oceanography Quiz 2. Multiple Choice Identify the choice that best completes the statement or answers the question.

Oceanography Quiz 2. Multiple Choice Identify the choice that best completes the statement or answers the question. Oceanography Quiz 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The highest and lowest tides are known as the spring tides. When do these occur? a.

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

Supporting Information for A Simple Stochastic Dynamical Model Capturing the Statistical Diversity of El Niño Southern Oscillation

Supporting Information for A Simple Stochastic Dynamical Model Capturing the Statistical Diversity of El Niño Southern Oscillation GEOPHYSICAL RESEARCH LETTERS Supporting Information for A Simple Stochastic Dynamical Model Capturing the Statistical Diversity of El Niño Southern Oscillation Nan Chen 1 and Andrew J. Majda 1,2 Corresponding

More information

Exam Questions & Problems

Exam Questions & Problems 1 Exam Questions & Problems Summer School on Dynamics of the North Indian Ocean National Institute of Oceanography, Dona Paula, Goa General topics that have been considered during this course are indicated

More information

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): Laure Zanna 10/17/05 Introduction to Physical Oceanography Homework 3 - Solutions 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): (a) Looking on the web you can find a lot

More information

8/21/08. Modeling the General Circulation of the Atmosphere. Topic 4: Equatorial Wave Dynamics. Moisture and Equatorial Waves

8/21/08. Modeling the General Circulation of the Atmosphere. Topic 4: Equatorial Wave Dynamics. Moisture and Equatorial Waves Modeling the General Circulation of the Atmosphere. Topic 4: Equatorial Wave Dynamics D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P

More information

Diagnosing El Niño - La Niña Transitions

Diagnosing El Niño - La Niña Transitions Diagnosing El Niño - La Niña Transitions Matthew S. Spydell 1 Introduction Climate variability on interannual time scales is exemplified by the El Niño -Southern Oscillation (ENSO). An El Niño event is

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

Kelvin Fronts on the Equatorial Thermocline

Kelvin Fronts on the Equatorial Thermocline 169 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 30 Kelvin Fronts on the Equatorial Thermocline ALEXEY V. FEDOROV Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey W. KENDALL MELVILLE

More information

Wind-Driven Oceanic Rossby Waves in the Tropical South Indian Ocean with and without an Active ENSO

Wind-Driven Oceanic Rossby Waves in the Tropical South Indian Ocean with and without an Active ENSO MAY 2005 B A Q U E R O-B E R N A L A N D L A T I F 729 Wind-Driven Oceanic Rossby Waves in the Tropical South Indian Ocean with and without an Active ENSO ASTRID BAQUERO-BERNAL Max-Planck Institut für

More information

Modification of Long Equatorial Rossby Wave. Phase Speeds by Zonal Currents

Modification of Long Equatorial Rossby Wave. Phase Speeds by Zonal Currents Modification of Long Equatorial Rossby Wave Phase Speeds by Zonal Currents Theodore S. Durland Dudley B. Chelton Roland A. de Szoeke Roger M. Samelson College of Oceanic and Atmospheric Sciences Oregon

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Please be ready for today by:

Please be ready for today by: Please be ready for today by: 1. HW out for a stamp 2. Paper and pencil/pen for notes 3. Be ready to discuss what you know about El Nino after you view the video clip What is El Nino? El Nino Basics El

More information

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling.

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling. Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

Introduction to tropical meteorology and deep convection

Introduction to tropical meteorology and deep convection Introduction to tropical meteorology and deep convection Roger K. Smith University of Munich A satpix tour of the tropics The zonal mean circulation (Hadley circulation), Inter- Tropical Convergence Zone

More information

2. Conservation laws and basic equations

2. Conservation laws and basic equations 2. Conservation laws and basic equations Equatorial region is mapped well by cylindrical (Mercator) projection: eastward, northward, upward (local Cartesian) coordinates:,, velocity vector:,,,, material

More information

Understanding inertial instability on the f-plane with complete Coriolis force

Understanding inertial instability on the f-plane with complete Coriolis force Understanding inertial instability on the f-plane with complete Coriolis force Abstract Vladimir Zeitlin Laboratory of Dynamical Meteorology, University P. and M. Curie and Ecole Normale Supérieure, Paris,

More information

Lecture 10a: The Hadley Cell

Lecture 10a: The Hadley Cell Lecture 10a: The Hadley Cell Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley June 27 In this short lecture we take a look at the general circulation of the atmosphere, and in particular the Hadley

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 24 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations Chapter 9 Barotropic Instability The ossby wave is the building block of low ossby number geophysical fluid dynamics. In this chapter we learn how ossby waves can interact with each other to produce a

More information

Ventilation of the Tropical Atlantic by Equatorial Deep Jets

Ventilation of the Tropical Atlantic by Equatorial Deep Jets Ventilation of the Tropical Atlantic by Equatorial Deep Jets P. Brandt, R. J. Greatbatch, S.-H. Didwischus, M. Claus, A. Funk, V. Hormann, J. Hahn, Y. Fu, M. Dengler, J. M. Toole 1 Mean Circulation and

More information

The Equatorial Response to Higher-Latitude Forcing

The Equatorial Response to Higher-Latitude Forcing VOL. 57, NO. 9 JOURNAL OF THE ATMOSPHERIC SCIENCES 1MAY 2000 The Equatorial Response to Higher-Latitude Forcing BRIAN J. HOSKINS AND GUI-YING YANG Department of Meteorology, University of Reading, Reading,

More information

Chapter 13 Instability on non-parallel flow Introduction and formulation

Chapter 13 Instability on non-parallel flow Introduction and formulation Chapter 13 Instability on non-parallel flow. 13.1 Introduction and formulation We have concentrated our discussion on the instabilities of parallel, zonal flows. There is the largest amount of literature

More information

JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN

JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN Soon-Il An 1, Fei-Fei Jin 1, Jong-Seong Kug 2, In-Sik Kang 2 1 School of Ocean and Earth Science and Technology, University

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information