Physics 111. Free-Body diagrams - block. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Size: px
Start display at page:

Download "Physics 111. Free-Body diagrams - block. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468."

Transcription

1 ics day, ember 21, 2004 Ch 5: Free-Body Diagrams Newton s Laws Newton s 2nd Law - force & acceleration Newton s 1st Law - Inertia Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Exam 1 Distribution µ = 70.1 σ = Number Don t forget to read over the lab write-up and be ready for the quiz Score Free-body Diagrams provide a useful methodology to understanding physics problems. The physics of a problem is contained in constructing the free-body-diagram. If you can master the construction of free-bodydiagrams, you will be able to solve some very difficult physics problems. Let s start with the very simple of the block on the desk top. 1

2 Identify the system of interest by circling it. Everything else in the picture is in the surrounding environment. The block! Identify points at which the environment comes into contact with the system. The desk top touches the block. Name the force at the points of contact. Normal force of desk on block. Identify any long-range forces acting on the system. The Earth s Gravity on the block (a.k.a. Weight )! Draw a separate picture with ONLY the system. Add arrows for each force indicating the direction of the force and relative magnitude. ical The Free- Body Diagram N desk on block W Earth on block 2

3 Draw a Representation for the following situation: A car is being towed up a hill in San Francisco. Class Worksheet #1a: Pict. Hill Now draw the Free-Body Diagram. A car is being towed up a hill in San Francisco. Class Worksheet #1b: FBD Hill Last time we identified a number of forces. What effects do these forces have? The harder he pulls, the greater the reading on our force meter, the more rapidly the block accelerates. #1 - Pull object - keep force constant (student volunteer) Class Worksheet #2: student W2: Force acceleration - defined We mark on our force meter the readings corresponding to accelerations of 1 m/s 2, 2 m/s 2, 3 m/s 2 If our green block is made to match an international standard object known as one kilogram, then the markings on our force meter are called Newtons. Defining a Newton 3

4 We now replace our green block with a red block. We take data observing the acceleration and the reading on the force meter... Applied Acceleration Acceleration Force of Green Block of Red Block (m/s/s) (m/s/s) Sketch Acceleration versus Force. Class Worksheet #3: Graph We observe: Acceleration is proportional to Force. We also observe that the proportionality constant seems to be a property of the object to which the force is applied. We denote the proportionality constant 1/m where m is the inertial mass, or mass for short, then we have (Newton s Second Law) a = F net m This equation may be one of only two that you remember after this course is over. You may be more familiar with this form: Net (Newton s Second Law) F = m a Last time we identified a number of forces. What effects do these forces have? [Force] = (kg) (m/s 2 ) = 1 Newton ( N for short) #2 - What happens to object after application of force ends? units of force 1st Law via demos 4

5 Law I: Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. What does this really mean? We leave the room and return 10 minutes later. Where will the keys be? We leave again and return 10 minutes later. Where will the keys be? Unless there s SOME outside force that acts upon the keys, they re not going anywhere!! nope, still there Use Representations and Free-Body Diagram to answer the following questions: We re in outer space far away from any planet, or galaxy, or star... Our spaceship is moving with constant velocity toward the distant planet GRADUATION... The engines are off! What happens to our velocity? Class Worksheet #4: up elevator An elevator in the Sears Tower goes up the shaft at a steady speed. 1) Tension > Weight 2) Tension = Weight 3) Tension < Weight Spaceship to graduation W4: Up elevator 5

6 Use Representations and Free-Body Diagram to answer the following questions: Class Worksheet #5: down elevator An elevator in the Empire State Building goes down the shaft at a steady speed. 1) Tension > Weight 2) Tension = Weight 3) Tension < Weight Let s look at a couple of demos involving blocks sliding across the floor. Again, use FBD s to help you understand the motion. Class Worksheet #6: Block Predictions Block across the floor at constant speed. Why is it not accelerating? Block across the floor after push. Why does it stop? Let s go back to a balled tossed vertically upwards. Once I let go, I m not touching it anymore. Why is it moving upwards after I let go? Newton s First Law - Inertia. Although gravity is the only force and it acts downward, the ball had initial velocity upward. 6

Physics 111. Tuesday, September 21, 2004

Physics 111. Tuesday, September 21, 2004 ics Tuesday, ember 21, 2004 Ch 5: Free-Body Diagrams Newton s Laws Newton s 2nd Law - force & acceleration Newton s 1st Law - Inertia Gravitational vs. Inertial Mass Announcements Help this week: Wednesday,

More information

Thurs Sept.23. Thurs Sept. Phys .23. Why is it moving upwards after I let go? Don t forget to read over the lab write-up and be ready for the quiz.

Thurs Sept.23. Thurs Sept. Phys .23. Why is it moving upwards after I let go? Don t forget to read over the lab write-up and be ready for the quiz. ics Announcements day, ember 23, 2004 Ch 5: Newton s 1st and 2nd Laws Example Problems Ch 6: Intro to Friction static kinetic Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR

More information

Physics 111. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. Response rate: 23 out of 33

Physics 111. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. Response rate: 23 out of 33 ics day, ember 30, 2004 Mid-term survey results Ch 5: Newton s 3rd Law Ch 6: Examples Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Response rate: 23 out of 33 Several

More information

Chapter 4. Forces and Newton s Laws of Motion

Chapter 4. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion Exam 1 Scores Mean score was ~ 9.5 What is that in a grade 4.0, 3.5,? < 5 : 1.5 or lower 5 : 2.0 6, 7 : 2.5 8,9,10,11: 3.0 12,13 : 3.5 >13 : 4.0 Solutions are

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

Physics 111. = Δ p. F net. p f. p i. = F net. m v i. = v i. v f. = m v i. + m a(δt) m v f. m v f. Δt = Δ p. I F net. = m a = m Δ v

Physics 111. = Δ p. F net. p f. p i. = F net. m v i. = v i. v f. = m v i. + m a(δt) m v f. m v f. Δt = Δ p. I F net. = m a = m Δ v ics Announcements day, ober 07, 004 Ch 9: Momentum Conservation of Momentum Ch 7: Work Kinetic Energy Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements p = mv

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly acclerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Dynamics Newton s Laws Lecture Notes

Dynamics Newton s Laws Lecture Notes Pre-AP Dynamics Newton s Laws Lecture Notes Name Targeted Skills for Newton s Laws (Lecture ONLY) 1. Identify and apply Newton s Laws of Motion to a variety of qualitative and quantitative problems. 2.

More information

Lecture 6. Newton s laws of motion. Important note: First Exam is on Tuesday, Feb. 6, 8:15-9:45 pm

Lecture 6. Newton s laws of motion. Important note: First Exam is on Tuesday, Feb. 6, 8:15-9:45 pm Lecture 6 Newton s laws of motion Important note: First Exam is on Tuesday, Feb. 6, 8:15-9:45 pm Today s Topics: Newton s Laws of Motion Newton s 1 st Law (Inertial reference frames) Vector nature of forces

More information

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why? AP Physics 1 Lesson 4.a Nature of Forces Outcomes Define force. State and explain Newton s first Law of Motion. Describe inertia and describe its relationship to mass. Draw free-body diagrams to represent

More information

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. This is a closed book exam. You have ninety (90) minutes to complete it.

More information

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing Aim: What is motion? Do Now: Have you ever seen a race? Describe what occurred during it. Homework: Vocabulary Define: Motion Point of reference distance displacement speed velocity force Textbook: Read

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Force Force: push or pull Force is a vector it has magnitude and direction The SI unit of force is the newton. The SI symbol for the newton is N. What is Newton s first law of motion?

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Section 2: Friction, Gravity, and Elastic Forces

Section 2: Friction, Gravity, and Elastic Forces Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Physics 101: Lecture 9 Work and Kinetic Energy

Physics 101: Lecture 9 Work and Kinetic Energy Exam II Physics 101: Lecture 9 Work and Kinetic Energy Today s lecture will be on Textbook Sections 6.1-6.4 Physics 101: Lecture 9, Pg 1 Forms Energy Kinetic Energy Motion (Today) Potential Energy Stored

More information

Forces. Video Demos. Graphing HW: October 03, 2016

Forces. Video Demos. Graphing HW: October 03, 2016 Distance (m or km) : Create a story using the graph. Describe what will be happening at each point during the day (A-D). Example: Trump has a busy day. He is currently at Trump Tower in NY. A- Trump jumps

More information

Physics 111. ? (P1) Inclined plane & newton s. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. ? (P1) Inclined plane & newton s. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements day, ober 05, 2004 Ch 6: Last Example Ch 9: Impulse Momentum Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements Ch 6: Applying Newton s Laws

More information

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle ics Tuesday, ember 9, 2004 Ch 12: Ch 15: Gravity Universal Law Potential Energy Kepler s Laws Fluids density hydrostatic equilibrium Pascal s Principle Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Announcements 24 Sep 2013

Announcements 24 Sep 2013 Announcements 24 Sep 2013 1. If you have questions on exam 1 2. Newton s 2 nd Law Problems: F m a. Inclined planes b. Pulleys c. Ropes d. Friction e. Etc Remember N2 is a blueprint for obtaining a useful

More information

An Introduction to Forces Identifying Forces. An Introduction to Forces Forces-part 1. Forces are Interactions. What Is a Force? Identifying Forces

An Introduction to Forces Identifying Forces. An Introduction to Forces Forces-part 1. Forces are Interactions. What Is a Force? Identifying Forces An Introduction to s s-part 1 Identify s,, and FBDs-KJF An Introduction to s Identifying s s are Interactions A force is an interaction between 2 objects Touching: Some forces require contact At a distance:

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Reminder: Acceleration

Reminder: Acceleration Reminder: Acceleration a = change in velocity during time "t elapsed time interval "t = "v "t Can be specified by giving magnitude a = Δv / Δt and sign. Positive velocity, increasing speed => positive

More information

Last-night s Midterm Test. Last-night s Midterm Test. PHY131H1F - Class 10 Today, Chapter 6: Equilibrium Mass, Weight, Gravity

Last-night s Midterm Test. Last-night s Midterm Test. PHY131H1F - Class 10 Today, Chapter 6: Equilibrium Mass, Weight, Gravity PHY131H1F - Class 10 Today, Chapter 6: Equilibrium Mass, Weight, Gravity Clicker Question 1 Which of the following objects described below is in dynamic equilibrium? A. A 100 kg barbell is held at rest

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

changes acceleration vector

changes acceleration vector Motion The change in position relative to some fixed point. There is no such thing as absolute motion, only motion relative to something else. Examples: Motion of bouncing ball relative to me, my motion

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

An Introduction to Forces Forces-part 1. Forces are Interactions

An Introduction to Forces Forces-part 1. Forces are Interactions An Introduction to Forces Forces-part 1 PHYS& 114: Eyres Forces are Interactions A force is an interaction between 2 objects Touching At a distance See the Fundamental Particle Chart (http://www.cpepphysics.org/images/2014-fund-chart.jpg)

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Chapter 4 Thrills and Chills >600 N If your weight is 600 N (blue vector), then the bathroom scale would have to be providing a force of greater than 600 N (red vector). Another way of looking at the situation

More information

Announcements 23 Sep 2014

Announcements 23 Sep 2014 Announcements 23 Sep 2014 1. After today, just one more lecture of new material before Exam 1!! a. Exam 1: Oct 2 Oct 7 (2 pm) in the Testing Center, late fee after Oct 6 2 pm b. Exam review sessions by

More information

Chapter 4: Newton's Laws of Motion

Chapter 4: Newton's Laws of Motion Chapter 4 Lecture Chapter 4: Newton's Laws of Motion Goals for Chapter 4 To understand force either directly or as the net force of multiple components. To study and apply Newton's first law. To study

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Chapter 4: Newton s Laws of Motion [A Tale of Force, Friction and Tension] 4.1. Newton s Laws of Motion

Chapter 4: Newton s Laws of Motion [A Tale of Force, Friction and Tension] 4.1. Newton s Laws of Motion Chapter 4: Newton s Laws of Motion [A Tale of Force, Friction and Tension] 4.1. Newton s Laws of Motion Force is a push or pull. Force Force is a vector it has magnitude and direction. Newton s First Law

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Unit 8B: Forces Newton s Laws of Motion

Unit 8B: Forces Newton s Laws of Motion Unit 8B: Forces Newton s Laws of Motion Indicator PS-5.7: Explain the motion of objects on the basis of Newton s three laws of motion. Objectives 1. State the meaning of Newton s laws of motion in your

More information

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations Exploring the Meaning of Equations Exploring the meaning of the relevant ideas and equations introduced recently. This week we ll focus mostly on Newton s second and third laws: Kinematics describes the

More information

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration Chapter FOUR: Forces in One Dimension 4.1 Force and Motion force: a push or pull exerted on an object forces cause objects to: speed up slow down change direction = change in velocity therefore, a force

More information

Newton s Laws: Force and Motion

Newton s Laws: Force and Motion Newton s Laws: Force and Motion The First Law: Force and Inertia The Second Law: Force, Mass and Acceleration The Third Law: Action and Reaction The First Law: Force and Inertia Investigation Key Question:

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

PHYSICS 149: Lecture 3

PHYSICS 149: Lecture 3 Chapter 2 PHYSICS 149: Lecture 3 2.1 Forces 2.2 Net Force 2.3 Newton s first law Lecture 3 Purdue University, Physics 149 1 Forces Forces are interactions between objects Different type of forces: Contact

More information

Physics 111. Thursday, October 07, Conservation of Momentum. Kinetic Energy

Physics 111. Thursday, October 07, Conservation of Momentum. Kinetic Energy ics Thursday, ober 07, 2004 Ch 9: Ch 7: Momentum Conservation of Momentum Work Kinetic Energy Announcements Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Objectives: Students will describe inertia and how it is related to Newton s first law of motion. Students will calculate an object s acceleration, mass, or the force applied to

More information

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. Centripetal Acceleration and Newtonian Gravitation Reminders: 15

More information

Unit 5 Forces I- Newton s First & Second Law

Unit 5 Forces I- Newton s First & Second Law Unit 5 Forces I- Newton s First & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, Friction, Applied Force)

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Isaac Newton. What is the acceleration of the car? If I have seen further it is by standing on the shoulders of giants Isaac Newton to Robert Hooke Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

Newton s Second Law of Motion Force and Acceleration

Newton s Second Law of Motion Force and Acceleration Chapter 3 Reading Guide: Newton s Second Law of Motion Force and Acceleration Complete the Explore! Activity (p.37) 1. Compare the rate at which the book and paper fell when they were side-by-side: Name:

More information

Physics 111. Tuesday, October 05, Momentum

Physics 111. Tuesday, October 05, Momentum ics Tuesday, ober 05, 2004 Ch 6: Ch 9: Last Example Impulse Momentum Announcements Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This week s lab will be

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01 Lecture 6 > Forces > Newton's Laws > Normal Force, Weight (Source: Serway; Giancoli) 1 Dynamics > Knowing the initial conditions of moving objects can predict the future motion of the said objects. > In

More information

Chapter 4: Newton s First Law

Chapter 4: Newton s First Law Text: Chapter 4 Think and Explain: 1-12 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,

More information

Forces and motion. Announcements. Force: A push or pull between pairs of objects. Newton s First Law: Inertia

Forces and motion. Announcements. Force: A push or pull between pairs of objects. Newton s First Law: Inertia Announcements 1. Exam 1 still going on a. until Monday night b. My advice: take it sooner rather than later, because we re moving on now Forces and motion Aristotle: 384 322 BC, Greece Four elements, two

More information

Chapter 6 Dynamics I

Chapter 6 Dynamics I Chapter 6 Dynamics I In Chapter 6, we begin to look at actual dynamics problems mostly in 1D, but some in 2D. Everything that we ll do is based on Newton s Second Law (from our last class): Newton s Second

More information

Forces I. Newtons Laws

Forces I. Newtons Laws Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

University of Guelph. Department of Physics

University of Guelph. Department of Physics Surname Given Names Student Number University of Guelph Department of Physics PHYS*1020DE Introductory Physics Instructor: R.L. Brooks Midterm Examination 26 February 2003 90 Minutes INSTRUCTIONS: This

More information

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law Lecture 6 Force and Motion Identifying Forces Free-body Diagram Newton s Second Law We are now moving on from the study of motion to studying what causes motion. Forces are what cause motion. Forces are

More information

Lecture 5. (sections )

Lecture 5. (sections ) Lecture 5 PHYSICS 201 (sections 521-525) Instructor: Hans Schuessler Temporary: Alexandre e Kolomenski o http://sibor.physics.tamu.edu/teaching/phys201/ Projectile Motion The horizontal and vertical parts

More information

A Question about free-body diagrams

A Question about free-body diagrams Free-body Diagrams To help us understand why something moves as it does (or why it remains at rest) it is helpful to draw a free-body diagram. The free-body diagram shows the various forces that act on

More information

Chapter 4: Newton s Laws of Motion

Chapter 4: Newton s Laws of Motion Chapter 4: Newton s Laws of Motion We will study classical motion: No quantum mechanics No relativity We introduce the concept of force and define it in terms of the acceleration of a standard d body Intuitively,

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction)

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Ch. 12 - Forces & Motion Force --> a push or a pull that acts on an object Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Force is measured

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Physics 9 Friday, January 15, 2016

Physics 9 Friday, January 15, 2016 Physics 9 Friday, January 15, 2016 Handing out HW1, due Monday 1/25. Homework help sessions start next week (Thu 1/21 and Sun 1/24). You read Giancoli s chapter 4 for today: it was a review of Newton s

More information