Physics 111. Tuesday, October 05, Momentum

Size: px
Start display at page:

Download "Physics 111. Tuesday, October 05, Momentum"

Transcription

1 ics Tuesday, ober 05, 2004 Ch 6: Ch 9: Last Example Impulse Momentum

2 Announcements Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468

3 Announcements This week s lab will be a workshop. Bring your Ranking Tasks workbook and your textbook.

4 Ch 6: Applying Newton s Laws Note the following: How does your weight change while you re Ascending at v = const.? Descending at v = const.? Accelerating Down? Accelerating Up?

5 Ch 6: Applying Newton s Laws Two blocks of mass 3.50 kg and 8.00 kg are connected by a massless string passing over a frictionless pulley. The inclines are also frictionless. Find (a) the magnitude of the acceleration of each block and (b) the tension in the string. m 1 =3.50 kg m 2 = 8.00 kg Problem Sheet #1 θ 1 =35 o θ 2 =35 o? (P1) Inclined plane & newton s

6 Ch 6: Applying Newton s Laws Two blocks of mass 3.50 kg and 8.00 kg are connected by a massless string passing over a frictionless pulley. The inclines are also frictionless. Find (a) the magnitude of the acceleration of each block and (b) the tension in the string. FBDs For m 1 For m 2 n 1 T T n 2 W 1 W 2

7 Ch 6: Applying Newton s Laws Pictorial Representation: y 1 x2 y θ 1 =35 o θ 2 =35 o 2 Unknowns: T, a 1,x1 x 1 Knowns: Δx 1 = Δx 2 v 1,x1 = v 2,x2 a 1,x1 = a 2,x2 m 1 = 8.00 kg m 2 = 3.50 kg θ 1 = 35 0 θ 2 = 35 0 g = 9.81 m/s 2 W 1x = m 1 g (sinθ 1 ) W 1y = - m 1 g (cosθ 1 ) W 2x = - m 2 g (sinθ 2 ) W 2y = - m 2 g (cosθ 2 ) a 1,y1 = a 2,y2 = 0

8 Ch 6: Applying Newton s Laws Mathematical Representation: Let s look at Newton s 2 nd Law in the x-direction for both blocks. a 1,x1 = F x1,net m 1 = m 1 g sinθ 1 T m 1 a 2,x 2 = F x2,net m 2 = T m 2 g sinθ 2 m 2 These accelerations must be the same!

9 Ch 6: Applying Newton s Laws Mathematical Representation: m 1 g sinθ 1 T m 1 = T m 2 g sinθ 2 m 2 Rearranging and using the fact that θ 1 = θ 2. T m m 1 2 2g sinθ = 0

10 Ch 6: Applying Newton s Laws Finally, plugging in numbers. T kg kg 2(9.81 m )sin35 0 = 0 s 2 T = 27.4 N Now plugging back into Newton s 2nd Law we find a 1,x1 = (3.50kg)(9.81m s 2 )sin N (3.50kg) = 2.20 m s 2

11 Ch 9: Momentum and Collisions Linear Momentum & Collisions In the study of systems with multiple objects, particularly systems in which these objects interact with one another through collisions, it is useful to take advantage of the concept of momentum. We ll see that this new quantity is conserved in isolated systems, allowing us to analyze some rather complicated interactions.

12 Ch 9: Momentum & Collisions We ve applied Newton s Laws to better understand the behavior of systems - single object - multiple object - remote interactions Now, let s examine interactions between objects through another approach:

13 Ch 9: Momentum & Collisions What constitutes an impulse is probably best illustrated through a simple demonstration. When I drop the ball, the force of gravity exerts an impulse on the falling ball. When the ball hits the floor, a second force also exerts an impulse: the contact force of the floor.

14 Ch 9: Momentum and Collisions For a constant force, as with the falling ball, it s easy! I = FΔt Force (N) t i Time (s) t f Notice graphically that the impulse is the area under the curve of a force vs time graph. (Just like distance was the area under a velocity vs time graph!) Graphical interpretation of

15 Ch 9: Momentum and Collisions I = FΔt [ I ] = [ F][Δt] [ I ] = N s = kg m s

16 Ch 9: Momentum and Collisions So, what about non-constant forces? Force (N) Average Force Time (s) I = ( F f + F i ) 2 Δt = Let s look at a simple case of a force that increases linearly with time. F Δt The answer is still just the area under the curve.

17 Ch 9: Momentum and Collisions So, what about non-constant forces? Force (N) I floor = ( F max + F min ) 2 Average Force Time (s) Δt = F floor Δt Let s assume that during the bounce, the floor exerts a force on the ball as given at left. Note: The force of gravity results in an impulse at the same time.

18 Ch 9: Momentum & Collisions A kg rubber ball is released from a height of 2.00 m above the floor. The ball falls, bounces, and rebounds. How high does the ball make it on the rebound if the force function is given by the graph below? 480 N Problem Sheet #2 F floor (N) 5 ms 10 ms 15 ms Time (s)

19 Ch 9: Momentum & Collisions This problem needs to be separated into 3 parts: 1) the ball falling from 2.00 m to the floor 2) the interaction of the ball with the floor 3) the ball rising to a new, unknown height Motion Diagrams: (1) (2) Close-Up (3) v a v a a v? (P2) bouncing bal - Motion

20 Ch 9: Momentum & Collisions Pictorial Representation (1): Knowns: y i = 2.00 m, y f = 0 v i = 0 t i = 0 a = - g m = kg y i, v yi, t i a +y Unknowns: t f, v f y f, v yf, t f

21 Ch 9: Momentum & Collisions Mathematical Representation (1): Knowns: y i = 2.00 m, y f = 0 v i = 0 t i = 0 a = - g m = kg 0 = 2.00m ( 9.81m s 2 )(Δt) 2 Δt = t f - t i = t f - 0 = t f = s Unknowns: t f, v f v y, f = v i,y + a y (Δt) v y, f = 0 + ( 9.81 m s 2 )(0.639s) = 6.26 m s

22 Ch 9: Momentum & Collisions Free-Body Diagram (2): From the graph of force vs time and our definition of impulse, we can find an average force over the 10 ms of the bounce. We ll base our FBD on this average force. n floor W Mathematical Representation (2): Newton s 2 nd law a y = F y,net m = n W m = n mg m

23 Ch 9: Momentum & Collisions Mathematical Representation (2): To get the normal force, we need to use the graph and our definition of impulse. I = area under curve = (F + F ) max min (Δt) 2 (480N 0) I = (15ms 5ms) = 2.4Ns N F floor (N) 5 ms 10 ms 15 ms Time (s)

24 Ch 9: Momentum & Collisions Mathematical Representation (2): To get the normal force, we need to use the graph and our definition of impulse. F floor = I floor (Δt) = +2.4Ns 10ms = 240N 480 N F floor (N) 5 ms 10 ms 15 ms Time (s)

25 Ch 9: Momentum & Collisions Mathematical Representation (2): n floor Back to Newton s 2 nd law a y = F y,net m = n W m = n mg m a y = (240N) (0.200kg)(9.81m s 2 ) 0.200kg W = 1190 m s 2

26 Ch 9: Momentum & Collisions Pictorial Representation (2): Knowns: y i = 0 m, y f = 0 v i = m/s t i = s t f = s a y = m/s 2 m = kg Unknowns: v f y i, v yi, t i y f, v yf, t f Note: The initial state of this part (2) of the problem was the final state of the previous part (1). a +y

27 Ch 9: Momentum & Collisions Mathematical Representation (2): Knowns: y i = 0 m, y f = 0 v i = m/s t i = s t f = s a y = m/s 2 m = kg Unknowns: v f v y, f = v i,y + a y (Δt) v y, f = 6.26 m s + (1160 m s 2 )(0.649s s) v y, f = 5.64 m s

28 Ch 9: Momentum & Collisions Pictorial Representation (3): Knowns: y i = 2.00 m v i = m/s v f = 0 t i = s a = - g m = kg y f, v yf, t f y i, v yi, t i a +y Unknowns: t f, y f

29 Ch 9: Momentum & Collisions Mathematical Representation (3): Knowns: y i = 2.00 m v i = m/s v f = 0 t i = s a = - g m = kg v y, f = v i,y + a y (Δt) 0 = (5.64 m s) + ( 9.81 m s 2 )(t f 0.649s) t f = s Unknowns: t f, y f y f = 0 + (5.64 m s)(1.224s 0.649s) ( 9.81m s 2 )(1.224s 0.649s) 2 y f = 1.62 m

30 Ch 9: Momentum and Collisions So, what about non-constant forces? We can always find the a constant F such that the impulse delivered is the same as that delivered by a non-constant force. Force (N) Force (N) Time (s) Time (s)

31 Ch 9: Momentum and Collisions So, what about non-constant forces? F net Force (N) = area under curve Δt Force (N) The constant value is always exactly the timeaveraged value of the nonconstant force! Time (s) Time (s)

32 Ch 9: Momentum and Collisions Completely General Having explored this quantity graphically and using results from calculus (not shown), we can say succinctly and generally that: I = F Δt net

33 Ch 9: Momentum and Collisions The linear momentum of an object of mass m moving with velocity v is defined as the product of the mass and the velocity: Notice that momentum is a vector quantity, which means that it must be specified with both a magnitude and direction. p = mv Also notice that the direction of the momentum is necessarily parallel to the velocity.

34 Ch 9: Momentum and Collisions p = mv [ p] = [m][ v] [ p] = kg (m/s) OR [ p] = N s The units suggest a relationship between force and momentum.

35 Ch 9: Momentum and Collisions p = mv It accelerates. What happens when we apply a force to an object? Its velocity changes. Its momentum changes. The force imparts momentum.

36 Ch 9: Momentum and Collisions p = mv In fact, we can relate force to momentum changes directly using Newton s 2nd Law: F = ma = m Δ v net Δt F = Δ p net Δt This form is completely general, as it allows for changes in mass as well as velocity with time.

Physics 111. ? (P1) Inclined plane & newton s. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. ? (P1) Inclined plane & newton s. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements day, ober 05, 2004 Ch 6: Last Example Ch 9: Impulse Momentum Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements Ch 6: Applying Newton s Laws

More information

Physics 111. Thursday, October 07, Conservation of Momentum. Kinetic Energy

Physics 111. Thursday, October 07, Conservation of Momentum. Kinetic Energy ics Thursday, ober 07, 2004 Ch 9: Ch 7: Momentum Conservation of Momentum Work Kinetic Energy Announcements Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements

More information

Thurs Sept.23. Thurs Sept. Phys .23. Why is it moving upwards after I let go? Don t forget to read over the lab write-up and be ready for the quiz.

Thurs Sept.23. Thurs Sept. Phys .23. Why is it moving upwards after I let go? Don t forget to read over the lab write-up and be ready for the quiz. ics Announcements day, ember 23, 2004 Ch 5: Newton s 1st and 2nd Laws Example Problems Ch 6: Intro to Friction static kinetic Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR

More information

Physics 111. = Δ p. F net. p f. p i. = F net. m v i. = v i. v f. = m v i. + m a(δt) m v f. m v f. Δt = Δ p. I F net. = m a = m Δ v

Physics 111. = Δ p. F net. p f. p i. = F net. m v i. = v i. v f. = m v i. + m a(δt) m v f. m v f. Δt = Δ p. I F net. = m a = m Δ v ics Announcements day, ober 07, 004 Ch 9: Momentum Conservation of Momentum Ch 7: Work Kinetic Energy Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements p = mv

More information

Physics 111. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. Response rate: 23 out of 33

Physics 111. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. Response rate: 23 out of 33 ics day, ember 30, 2004 Mid-term survey results Ch 5: Newton s 3rd Law Ch 6: Examples Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Response rate: 23 out of 33 Several

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan PHYS 100 Discussion Session 6 Newton s Second & Third Laws Week 07 The Plan This week we use Newton s Third Law ( F A on B = F B on A ) to relate the forces between two different objects. We can use this

More information

Physics 111. Thursday, October 14, Elastic Perfectly Inelastic Inelastic. We ll finish up energy conservation after the break

Physics 111. Thursday, October 14, Elastic Perfectly Inelastic Inelastic. We ll finish up energy conservation after the break ics Thursday, ober 14, 2004 Ch 9: Collisions Elastic Perfectly Inelastic Inelastic We ll finish up energy conservation after the break Announcements Sunday, 6:30-8 pm in CCLIR 468 Midnight Madness: Monday

More information

Physics 111. Thursday, September 9, Ch 3: Kinematic Equations Structured Approach to Problem Solving. Ch 4: Projectile Motion EXAMPLES!

Physics 111. Thursday, September 9, Ch 3: Kinematic Equations Structured Approach to Problem Solving. Ch 4: Projectile Motion EXAMPLES! ics Thursday, ember 9, 2004 Ch 3: Kinematic Equations Structured Approach to Problem Solving Ch 4: Projectile Motion EXAMPLES! Announcements Help sessions meet Sunday, 6:30-8 pm in CCLIR 468 Wednesday,

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations Exploring the Meaning of Equations Exploring the meaning of the relevant ideas and equations introduced recently. This week we ll focus mostly on Newton s second and third laws: Kinematics describes the

More information

Physics 111. Tuesday, September 21, 2004

Physics 111. Tuesday, September 21, 2004 ics Tuesday, ember 21, 2004 Ch 5: Free-Body Diagrams Newton s Laws Newton s 2nd Law - force & acceleration Newton s 1st Law - Inertia Gravitational vs. Inertial Mass Announcements Help this week: Wednesday,

More information

PHYS 1441 Section 002 Lecture #17

PHYS 1441 Section 002 Lecture #17 PHYS 1441 Section 002 Lecture #17 Dr. Jaehoon Linear Momentum Linear Momentum and Impulse Linear Momentum and Forces Linear Momentum Conservation Collisions Center of Mass Today s homework is homework

More information

PHYS 131 MIDTERM October 31 st, 2008

PHYS 131 MIDTERM October 31 st, 2008 PHYS 131 MIDTERM October 31 st, 2008 The exam comprises two parts: 8 short-answer questions, and 4 problems. Calculators are allowed, as well as a formula sheet (one-side of an 8½ x 11 sheet) of your own

More information

Announcements. There will still be a WebAssign due this Friday, the last before the midterm.

Announcements. There will still be a WebAssign due this Friday, the last before the midterm. Announcements THERE WILL BE NO CLASS THIS FRIDAY, MARCH 5 (We are 1 full lecture ahead of the syllabus, so we will still have review/problem solving on March 7 and 9). There will still be a WebAssign due

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 2 TEST REVIEW 1. Samantha walks along a horizontal path in the direction shown. The curved

More information

Chapter 9: Impulse and Momentum

Chapter 9: Impulse and Momentum Midterm: covers everything in chapters 1-8 - three problems, each worth 10 points. - first problem is actually five short-answer (1 line) questions (definitions, F = this, a = that, what is m?) - second

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

Physics 111. = v i. v f. + v i. = x i. (Δt) + 1. x f. Keq - graphs. Keq - graphs. Δt t f. t i

Physics 111. = v i. v f. + v i. = x i. (Δt) + 1. x f. Keq - graphs. Keq - graphs. Δt t f. t i ics Announcements day, ember 9, 004 Ch 3: Kinematic Equations Structured Approach to Problem Solving Ch 4: Projectile Motion EXAMPLES! Help sessions meet Sunday, 6:30-8 pm in CCLIR 468 Wednesday, 8-9 pm

More information

Momentum and Collisions. Phy 114

Momentum and Collisions. Phy 114 Momentum and Collisions Phy 114 Momentum Momentum: p = mv Units are kg(m/s): no derived units A vector quantity: same direction as velocity v=2m/s p= 3 kg (2m/s) From Newton s 2nd ΣF = ΣF = ma v m t ΣF(

More information

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. PHYS1110H, 2011 Fall. Shijie Zhong Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. Linear momentum. For a particle of mass m moving at a velocity v, the linear momentum for the

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular motion Impulse and momentum 08-2 1 Current assignments Reading: Chapter 9 in textbook Prelecture due next Thursday HW#8 due NEXT Friday (extension!)

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 pplying Newton s Laws 1 Friction When you push horizontally on a heavy box at rest on a horizontal floor with a steadily increasing force, the box will remain at rest initially,

More information

Impulse. Two factors influence the amount by which an object s momentum changes.

Impulse. Two factors influence the amount by which an object s momentum changes. Impulse In order to change the momentum of an object, either its mass, its velocity, or both must change. If the mass remains unchanged, which is most often the case, then the velocity changes and acceleration

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

Conserv. of Momentum (Applications)

Conserv. of Momentum (Applications) Conserv. of Momentum (Applications) Announcements: Next midterm a week from Thursday (3/15). Chapters 6 9 will be covered LA information session at 6pm today, UMC 235. Will do some longer examples today.

More information

PHYS 1441 Section 002 Lecture #17

PHYS 1441 Section 002 Lecture #17 PHYS 1441 Section 002 Lecture #17 Monday, April 1, 2013 Linear Momentum Linear Momentum and Impulse Linear Momentum and Forces Linear Momentum Conservation Linear Momentum Conservation in a Two - body

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

Recap: Energy Accounting

Recap: Energy Accounting Recap: Energy Accounting Energy accounting enables complex systems to be studied. Total Energy = KE + PE = conserved Even the simple pendulum is not easy to study using Newton s laws of motion, as the

More information

Kinetic Energy and Work

Kinetic Energy and Work Kinetic Energy and Work 8.01 W06D1 Today s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8 Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

AP Physics 1 First Semester Final Exam Review

AP Physics 1 First Semester Final Exam Review AP Physics First Semester Final Exam Review Chapters and. Know the SI Units base units.. Be able to use the factor-label method to convert from one unit to another (ex: cm/s to m/year) 3. Be able to identify

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

LAWS OF MOTION. Chapter Five MCQ I

LAWS OF MOTION. Chapter Five MCQ I Chapter Five LAWS OF MOTION MCQ I 5. A ball is travelling with uniform translatory motion. This means that (a) it is at rest. (b) the path can be a straight line or circular and the ball travels with uniform

More information

Physics 231 Lecture 14

Physics 231 Lecture 14 Physics 231 Lecture 14 Impulses: forces that last a short time Momentum: p = mv Impulse-Momentum theorem: FΔt = Δp = mδv = m( v f v i ) Momentum conservation: p tot,f p 1,f + p 2,f = p 1,i + p 2,i p tot,i

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

King Fahd University of Petroleum and Minerals Physics Department Physics 101 Recitation Term 131 Fall 013 Quiz # 4 Section 10 A 1.50-kg block slides down a frictionless 30.0 incline, starting from rest.

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture ask a physicist

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture ask a physicist Welcome back to Physics 211 Today s agenda: Forces in Circular Motion Impulse Physics 211 Spring 2014 Lecture 07-1 1 ask a physicist My question is on sonoluminescence, which is supposed to be when a sound

More information

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B) PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x - x 0 = v 0 t + ½ at 2 2a(x - x

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Chapter 9: Momentum and Conservation. Newton s Laws applied

Chapter 9: Momentum and Conservation. Newton s Laws applied Chapter 9: Momentum and Conservation Newton s Laws applied Dynamics of Physics Dynamics are the CAUSES of CHANGE in Physics. Recall that position is changed by velocity. Velocity is changed by acceleration.

More information

Physics 111. Free-Body diagrams - block. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111. Free-Body diagrams - block. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics day, ember 21, 2004 Ch 5: Free-Body Diagrams Newton s Laws Newton s 2nd Law - force & acceleration Newton s 1st Law - Inertia Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Impulse and momentum 09-2 1 Current assignments Reading: Chapter 10 in textbook Prelecture due next Tuesday HW#8 due this Friday at 5 pm. 09-2 2 9-2.1 A crash

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

AP Physics: Newton's Laws 2

AP Physics: Newton's Laws 2 Assignment Due Date: December 12, 2011 AP Physics: Newton's Laws 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A lamp with a mass m = 42.6 kg is hanging

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Lecture 18. Newton s Laws

Lecture 18. Newton s Laws Agenda: l Review for exam Lecture 18 l Assignment: For Monday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] Multiple choice questions [60 points] Answer all of the following questions. Read each question carefully. Fill the correct bubble on your scantron sheet. Each correct answer is worth 4 points. Each question

More information

Sara Rwentambo. PHYS 1007 AB

Sara Rwentambo. PHYS 1007 AB Topics: Free body diagrams (FBDs) Static friction and kinetic friction Tension and acceleration of a system Tension in dynamic equilibrium (bonus question) Opener: Find Your Free Body Diagram Group Activity!

More information

Uniform circular motion: Review

Uniform circular motion: Review Announcements: 1 st test at Lockett #6 (6:00PM, Feb 3 rd ) Formula sheet will be provided No other materials is needed Practice exam and answers are on the web Uniform circular motion: Review As you go

More information

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string.

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string. Free-body diagrams 1. wo blocks of masses m1 = 5.0 kg and m =.0 kg hang on both sides of an incline, connected through an ideal, massless string that goes through an ideal, massless pulley, as shown below.

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem Today Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem System of particles Conservation of Momentum 1 Data : Fatality of a driver in head-on collision

More information

Page 2. Example Example Example Jerk in a String Example Questions B... 39

Page 2. Example Example Example Jerk in a String Example Questions B... 39 Page 1 Dynamics Newton's Laws...3 Newton s First Law... 3 Example 1... 3 Newton s Second Law...4 Example 2... 5 Questions A... 6 Vertical Motion...7 Example 3... 7 Example 4... 9 Example 5...10 Example

More information

Phys Phy ics sics 131: 131: Lecture Lecture 19 Clicker Question 1: Clicker Question Today Today s Agenda Clicker Question 1: Clicker Question

Phys Phy ics sics 131: 131: Lecture Lecture 19 Clicker Question 1: Clicker Question Today Today s Agenda Clicker Question 1: Clicker Question Review Physics 131: Lecture 19 Today s Agenda Clicker Question 1: pulled over a frictionless surface by a force of 0 N. What acceleration does block A have? a) Zero m/s b). m/s c) 6.67 m/s d) 60 m/s e)

More information

Physics Exam 2 October 11, 2007

Physics Exam 2 October 11, 2007 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Chapter 9 Impulse and Momentum

Chapter 9 Impulse and Momentum Chapter 9 Impulse and Momentum Chapter Goal: To understand and apply the new concepts of impulse and momentum. Slide 9-2 Chapter 9 Preview Slide 9-3 Chapter 9 Preview Slide 9-4 Chapter 9 Preview Slide

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

Final Mock Exam PH 221-1D

Final Mock Exam PH 221-1D Final Mock Exam PH 221-1D April 18, 2015 You will have 2 hours to complete this exam. You must answer 8 questions to make a perfect score of 80. 1 Chapter Concept Summary Equations: Cutnell & Johnson

More information

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity Chapter 4 Forces and Newton s Laws of Motion F=ma; gravity 0) Background Galileo inertia (horizontal motion) constant acceleration (vertical motion) Descartes & Huygens Conservation of momentum: mass x

More information

Physics 207 Lecture 17

Physics 207 Lecture 17 Physics 207, Lecture 17, Oct. 31 Agenda: Review for exam Exam will be held in rooms B102 & B130 in Van Vleck at 7:15 PM Example Gravity, Normal Forces etc. Consider a women on a swing: Assignment: MP Homework

More information

Name. VCE Physics Unit 3 Preparation Work

Name. VCE Physics Unit 3 Preparation Work Name. VCE Physics Unit 3 Preparation Work Transition into 2019 VCE Physics Unit 3+4 Units 3 and 4 include four core areas of study plus one detailed study. Unit 3: How do fields explain motion and electricity?

More information

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9

Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 231 Lecture 9 Main points of today s lecture: Normal force Newton s 3 d Law Frictional forces: kinetic friction: static friction Examples. Physic 3 Lecture 9 f N k = µ k f N s < µ s Atwood s machine Consider the Atwood

More information

Downloaded from

Downloaded from Chapter 5 (Laws of Motion) Multiple Choice Questions Single Correct Answer Type Q1. A ball is travelling with uniform translatory motion. This means that (a) it is at rest. (b) the path can be a straight

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Physics 111. Thursday, November 11, 2004

Physics 111. Thursday, November 11, 2004 ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 8-9 pm in NSC 118/119

More information

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle ics Tuesday, ember 9, 2004 Ch 12: Ch 15: Gravity Universal Law Potential Energy Kepler s Laws Fluids density hydrostatic equilibrium Pascal s Principle Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall Goals: Lecture 11 Chapter 8: Employ rotational motion models with friction or in free fall Chapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation

More information

October 24. Linear Momentum: - It is a vector which may require breaking it into components

October 24. Linear Momentum: - It is a vector which may require breaking it into components October 24 Linear Momentum: - It is a vector which may require breaking it into components Newton s First Law: A body continues with Constant Linear Momentum unless it is acted upon by a Net External Force.

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

NOTE: x and d are both variables for distance. Either may be used. x f = x i + v t

NOTE: x and d are both variables for distance. Either may be used. x f = x i + v t Motion Equations NOTE: x and d are both variables for distance. Either may be used. Special case when a=g, up and down problems, parabolic motion Kinematics REMEMBER DISTANCE MY BE INDICATED BY EITHER

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant JUST IN TIME TEACHING E-ail or bring e your questions prior

More information

Part A Atwood Machines Please try this link:

Part A Atwood Machines Please try this link: LAST NAME FIRST NAME DATE Assignment 2 Inclined Planes, Pulleys and Accelerating Fluids Problems 83, 108 & 109 (and some handouts) Part A Atwood Machines Please try this link: http://www.wiley.com/college/halliday/0470469080/simulations/sim20/sim20.html

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed. Warm-up A mosquito collides head-on with a car traveling 60 mph. How do you think the size of the force that car exerts on the mosquito compares to the size of the force that mosquito exerts on car? 12.1

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Chapter 9: Impulse and Momentum

Chapter 9: Impulse and Momentum Conservation Laws Much of the rest of Phys 221 will be concerned with conservation of energy and momentum This new perspective of conservation laws requires us to compare situations BEFORE and AFTER an

More information