Classification of Algebraic Subgroups of Lower Order Unipotent Algebraic Groups

Size: px
Start display at page:

Download "Classification of Algebraic Subgroups of Lower Order Unipotent Algebraic Groups"

Transcription

1 Classification of Algebraic Subgroups of Lower Order Unipotent Algebraic Groups AMS Special Session, Boston, MA; Differential Algebraic Geometry and Galois Theory (in memory of J. Kovacic) V. Ravi Srinivasan January 5, 2012

2 Introduction and Preliminaries All fields considered in this talk are of characteristic zero. We consider only ordinary differential fields (one derivation).

3 Introduction and Preliminaries Let F be a differential field with a field of constants C. Let U(n + 1, C) denote the group of upper triangular matrices with 1 s on the diagonal. We ask the following question: Under what conditions on F does there exist a P-V extension (of F) with a Galois group isomorphic to U(n + 1, C)?

4 Introduction and Preliminaries Condition on F (N & S) Let F be a differential field that satisfies the following condition: there are elements f 1, f 2,, f n F such that for any c 1, c 2,, c n C and for any f F if n i=1 c if i = f then c i = 0 for all i. Bialynicki-Birula, J. Kovacic

5 Extensions with unipotent algebraic groups as Galois Groups 1 x 1,1 x 2,1 x n,1 0 1 x 1,2 x n 1,2 Let E = F (g), where g := x 1,n Extend the derivation of F to E by setting g = Ag, where 0 f f 2 0 A := f n Then E is a Picard-Vessiot extension of F with a differential Galois group naturally isomorphic to U(n + 1, C).

6 Extensions with unipotent algebraic groups as Galois Groups We can also compute a linear differential operator over F for E. L(Y ) := w(y, 1, x 1,1, x 2,1,, x n,1 ) w(1, x 1,1, x 2,1,, x n,1 ) L 1 {0} =span C {1, x 1,1, x 2,1,, x n,1 }

7 Computing a differential equation for U(3, C) Let f 1, f 2 F be elements satisfying the condition N & S.

8 Computing a differential equation for U(3, C) Let f 1, f 2 F be elements satisfying the condition N & S. 1 x 1 y Let E = F (g), where g = 0 1 x Extend the derivation on F to E by setting 1 x 1 y 0 f x 1 y 0 1 x 2 = 0 0 f x We have x 1 = f 1, x 2 = f 2 and y = f 1 x 2..

9 Computing a differential equation for U(3, C) The differential field E is a NNC extension of F.

10 Computing a differential equation for U(3, C) The differential field E is a NNC extension of F. Let V :=span C {1, x 1, y} and G be the group of differential automorphisms of E fixing F.

11 Computing a differential equation for U(3, C) The differential field E is a NNC extension of F. Let V :=span C {1, x 1, y} and G be the group of differential automorphisms of E fixing F. Then GV V, F V = E and E G = F.

12 Computing a differential equation for U(3, C) The differential field E is a NNC extension of F. Let V :=span C {1, x 1, y} and G be the group of differential automorphisms of E fixing F. Then GV V, F V = E and E G = F. Thus the differential equation L(y) = w(y, 1, x 1, y)/w(1, x 1, y) has coefficients in F. Clearly L 1 {0} = V.

13 Computing a differential equation for U(3, C) The differential field E is a NNC extension of F. Let V :=span C {1, x 1, y} and G be the group of differential automorphisms of E fixing F. Then GV V, F V = E and E G = F. Thus the differential equation L(y) = w(y, 1, x 1, y)/w(1, x 1, y) has coefficients in F. Clearly L 1 {0} = V. Note that σ(x 1 ) = x 1 + α σ, σ(x 2 ) = x 2 + β σ and σ(y) = y + β σ x 1 + γ σ for some α σ, b σ, γ σ C.

14 Computing a differential equation for U(3, C) A computation shows ( f L(Y ) = Y 2 + 2f 1 f 2 f 1 ) ( Y + f 1 f f 1 f 2 ( f 1 f 1 ) ) 2 f 1 Y. f 1

15 Computing a differential equation for U(3, C) If E is Picard-Vessiot extension over F with a Galois group isomorphic to U(3, C) then there are algebraically independent elements x 1, x 2 and y E such that E = F (x 1, x 2, y) and x i F and y = x 1 x 2.

16 F = C(z), z = 1 Let c 1, c 2 C be distinct complex numbers and let f i = 1 x+c i. Then Y 3z + 2c 2 + c 1 (z + c 1 )(z + c 2 ) Y 1 + (z + c 1 )(z + c 2 ) Y = 0 has differential Galois group U(3, C). } ln(z + c2 ) Solution Space: span C {1, ln(z + c 1 ),. z + c 1

17 F = C(x), x = 1, G = U(4, C) let f i = 1 x+c i, where c i are distinct complex numbers for i = 1, 2, 3, 4. The differential equation d 4 dx 4 + 6x 2 + (3c 1 + 4c 2 + 5c 3 )x + c 2 c 1 + 2c 3 c 1 + 3c 3 c 2 d 3 (x + c 1 )(x + c 2 )(x + c 3 ) dx 3 d 2 + 7x + c 1 + 2c 2 + 4c 3 (x + c 1 )(x + c 2 )(x + c 3 ) dx 2 1 d + (x + c 1 )(x + c 2 )(x + c 3 ) dx. Solution Space: span C {1, ln(x + c 1 ), ln(x + c2 ) ln(x+c 3 } ) x+c, 2. x + c 1 x + c 1

18 Algebraic Subgroups of U(3, C) Let E = F (x 1, x 2, y) with x 1 = f 1, x 2 = f 2 and y = f 1 x 2 and let E K F be an intermediate differential field.

19 Algebraic Subgroups of U(3, C) Let E = F (x 1, x 2, y) with x 1 = f 1, x 2 = f 2 and y = f 1 x 2 and let E K F be an intermediate differential field. Assume that C is algebraically closed. We will first classify the differential subfields of E and then use the Galois correspondence to classify the algebraic subgroups of U(3, C).

20 Algebraic Subgroups of U(3, C) Let E = F (x 1, x 2, y) with x 1 = f 1, x 2 = f 2 and y = f 1 x 2 and let E K F be an intermediate differential field. Assume that C is algebraically closed. We will first classify the differential subfields of E and then use the Galois correspondence to classify the algebraic subgroups of U(3, C). If tr.d (K F ) = 3 then K = E and G(E K) is the trivial group. If tr.d (K F ) = 2 then we have three cases to discuss.

21 Algebraic Subgroups of U(3, C) E = F (x 1, x 2, y) with x 1 = f 1, x 2 = f 2 and y = f 1 x 2 and let E K F. First note that there is an element s K such that 0 s span C {x 1, x 2 }.

22 Algebraic Subgroups of U(3, C) E = F (x 1, x 2, y) with x 1 = f 1, x 2 = f 2 and y = f 1 x 2 and let E K F. First note that there is an element s K such that 0 s span C {x 1, x 2 }. Case 1. K F (x 1, x 2 ). Then K = F (x 1, x 2 ). 1 0 c G(E K) = c C 0 0 1

23 Algebraic Subgroups of U(3, C) E = F (x 1, x 2, y) with x 1 = f 1, x 2 = f 2 and y = f 1 x 2 and let E K F. First note that there is an element s K such that 0 s span C {x 1, x 2 }. Case 1. K F (x 1, x 2 ). Then K = F (x 1, x 2 ). 1 0 c G(E K) = c C Case 2. Suppose that x 2 / K. Then s = x 1 + cx 2 K for some c 2 K. Then one can deduce that K(x 2 ) = E. Thus y K(x 2 ).

24 Algebraic Subgroups of U(3, C) A computation will show that y = αx βx 2 + γ, for some α C, β, γ K. Furthermore, one can conclude, α = c/2, β = x 1 + cx 2 + d K for some d C, γ = y c 2 x2 2 x 1x 2 + cx 2 K.

25 Algebraic Subgroups of U(3, C) A computation will show that y = αx βx 2 + γ, for some α C, β, γ K. Furthermore, one can conclude, α = c/2, β = x 1 + cx 2 + d K for some d C, γ = y c 2 x2 2 x 1x 2 + cx 2 K. Since tr.d (K F ) = 2, we obtain K = F (β, γ).

26 Algebraic Subgroups of U(3, C) K = F (x 1 + cx 2, y c 2 x2 2 x 1x 2 + cx 2 ) G(E K) = 1 cδ c 2 δ2 + dδ 0 1 δ δ C

27 Algebraic Subgroups of U(3, C) Case 3. Suppose that x 2 K. Then K(x 1 ) = E and thus y K(x 1 ). Now one can conclude that y + dx 1 K for some d C.

28 Algebraic Subgroups of U(3, C) Case 3. Suppose that x 2 K. Then K(x 1 ) = E and thus y K(x 1 ). Now one can conclude that y + dx 1 K for some d C. Thus K = F (x 2, y + dx 1 ).

29 Algebraic Subgroups of U(3, C) Case 3. Suppose that x 2 K. Then K(x 1 ) = E and thus y K(x 1 ). Now one can conclude that y + dx 1 K for some d C. Thus K = F (x 2, y + dx 1 ). G(E K) = 1 δ dδ δ C

30 Algebraic Subgroups of U(3, C) If tr.d (K F ) = 1 then K = F (c 1 x 1 + c 2 x 2 ), where c 1, c 2 C and 1 a c G(E K) = 0 1 b c 1 a + c 2 b = 0, a, b, c C If tr.d (K F ) = 0 then K = F and G(E K) = U(3, C).

31 Algebraic Subgroups of U(3, C) Three dimensional subgroups: U(3, C). Two dimensional subgroups: Let c 1, c 2 C. 1 α γ 0 1 β c1 α + c 2 β = 0, α, β, γ C 0 0 1

32 Algebraic Subgroups of U(3, C) One dimensional subgroups: Let c, d C. 1 0 γ cδ c 2 δ2 + dδ 0 1 δ γ C δ C Let d C. 1 δ dδ δ C

Symmetries of meromorphic connections over Riemann Surfaces

Symmetries of meromorphic connections over Riemann Surfaces Symmetries of meromorphic connections over Riemann Surfaces Camilo Sanabria The CUNY Graduate Center February 13 th, 2009 Example Consider: y + 3(3z2 1) z(z 1)(z + 1) y + 221z4 206z 2 + 5 12z 2 (z 1) 2

More information

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields. [Parts from Chapter 16. Also applications of FTGT] Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

More information

[06.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ±1 such that AMB is diagonal.

[06.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ±1 such that AMB is diagonal. (January 14, 2009) [06.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ±1 such that AMB is diagonal. Let s give an algorithmic, rather than existential,

More information

On the structure of Picard-Vessiot extensions - Joint work with Arne Ledet - Kolchin Seminar in Differential Algebra May 06, 2006

On the structure of Picard-Vessiot extensions - Joint work with Arne Ledet - Kolchin Seminar in Differential Algebra May 06, 2006 On the structure of Picard-Vessiot extensions - Joint work with Arne Ledet - Kolchin Seminar in Differential Algebra May 06, 2006 (Sixth Visit Since March 17, 2001) 1 K is assumed to be a differential

More information

Galois Correspondence Theorem for Picard-Vessiot Extensions

Galois Correspondence Theorem for Picard-Vessiot Extensions Arnold Math J. (2016) 2:21 27 DOI 10.1007/s40598-015-0029-z RESEARCH CONTRIBUTION Galois Correspondence Theorem for Picard-Vessiot Extensions Teresa Crespo 1 Zbigniew Hajto 2 Elżbieta Sowa-Adamus 3 Received:

More information

Tutorial on Differential Galois Theory III

Tutorial on Differential Galois Theory III Tutorial on Differential Galois Theory III T. Dyckerhoff Department of Mathematics University of Pennsylvania 02/14/08 / Oberflockenbach Outline Today s plan Monodromy and singularities Riemann-Hilbert

More information

Differential Groups and Differential Relations. Michael F. Singer Department of Mathematics North Carolina State University Raleigh, NC USA

Differential Groups and Differential Relations. Michael F. Singer Department of Mathematics North Carolina State University Raleigh, NC USA Differential Groups and Differential Relations Michael F. Singer Department of Mathematics North Carolina State University Raleigh, NC 27695-8205 USA http://www.math.ncsu.edu/ singer Theorem: (Hölder,

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics PICARD VESSIOT EXTENSIONS WITH SPECIFIED GALOIS GROUP TED CHINBURG, LOURDES JUAN AND ANDY R. MAGID Volume 243 No. 2 December 2009 PACIFIC JOURNAL OF MATHEMATICS Vol. 243,

More information

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =.

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =. FINITE GROUP THEORY: SOLUTIONS TONY FENG These are hints/solutions/commentary on the problems. They are not a model for what to actually write on the quals. 1. 2010 FALL MORNING 5 (i) Note that G acts

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

Journal of Algebra 324 (2010) Contents lists available at ScienceDirect. Journal of Algebra.

Journal of Algebra 324 (2010) Contents lists available at ScienceDirect. Journal of Algebra. Journal of Algebra 324 (2010) 2042 2051 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra Iterated antiderivative extensions V. Ravi Srinivasan Department of

More information

Practice Algebra Qualifying Exam Solutions

Practice Algebra Qualifying Exam Solutions Practice Algebra Qualifying Exam Solutions 1. Let A be an n n matrix with complex coefficients. Define tr A to be the sum of the diagonal elements. Show that tr A is invariant under conjugation, i.e.,

More information

On the Definitions of Difference Galois Groups

On the Definitions of Difference Galois Groups On the Definitions of Difference Galois Groups Zoé Chatzidakis CNRS - Université Paris 7 Charlotte Hardouin Universität Heidelberg IWR INF 368 Michael F. Singer University of North Carolina Summary We

More information

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II.

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II. THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION 2006 110.402 - ADVANCED ALGEBRA II. Examiner: Professor C. Consani Duration: 3 HOURS (9am-12:00pm), May 15, 2006. No

More information

Rational constants of monomial derivations

Rational constants of monomial derivations Rational constants of monomial derivations Andrzej Nowicki and Janusz Zieliński N. Copernicus University, Faculty of Mathematics and Computer Science Toruń, Poland Abstract We present some general properties

More information

LECTURE 2: LANGLANDS CORRESPONDENCE FOR G. 1. Introduction. If we view the flow of information in the Langlands Correspondence as

LECTURE 2: LANGLANDS CORRESPONDENCE FOR G. 1. Introduction. If we view the flow of information in the Langlands Correspondence as LECTURE 2: LANGLANDS CORRESPONDENCE FOR G J.W. COGDELL. Introduction If we view the flow of information in the Langlands Correspondence as Galois Representations automorphic/admissible representations

More information

THE GALOIS CORRESPONDENCE FOR LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS

THE GALOIS CORRESPONDENCE FOR LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS THE GALOIS CORRESPONDENCE FOR LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS CHARLES H. FRANKE 1. Summary. In general the notation and terminology are as in [l ]. We assume the following throughout. All fields

More information

Sample algebra qualifying exam

Sample algebra qualifying exam Sample algebra qualifying exam University of Hawai i at Mānoa Spring 2016 2 Part I 1. Group theory In this section, D n and C n denote, respectively, the symmetry group of the regular n-gon (of order 2n)

More information

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1.

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1. 6 Orthogonal groups We now turn to the orthogonal groups. These are more difficult, for two related reasons. First, it is not always true that the group of isometries with determinant 1 is equal to its

More information

Vector Spaces and Linear Transformations

Vector Spaces and Linear Transformations Vector Spaces and Linear Transformations Wei Shi, Jinan University 2017.11.1 1 / 18 Definition (Field) A field F = {F, +, } is an algebraic structure formed by a set F, and closed under binary operations

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 10 Undetermined coefficients-annihilator

More information

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K.

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K. The third exam will be on Monday, April 9, 013. The syllabus for Exam III is sections 1 3 of Chapter 10. Some of the main examples and facts from this material are listed below. If F is an extension field

More information

5 Algebraicially closed fields and The Fundamental Theorem of Algebra

5 Algebraicially closed fields and The Fundamental Theorem of Algebra 5 Algebraicially closed fields and The Fundamental Theorem of Algebra In this chapter all fields will be of characteristic zero. Definition. A field K is algebraically closed if every polynomial in K[x],

More information

ALGEBRAIC GROUPS J. WARNER

ALGEBRAIC GROUPS J. WARNER ALGEBRAIC GROUPS J. WARNER Let k be an algebraically closed field. varieties unless otherwise stated. 1. Definitions and Examples For simplicity we will work strictly with affine Definition 1.1. An algebraic

More information

1 The Galois Group of a Quadratic

1 The Galois Group of a Quadratic Algebra Prelim Notes The Galois Group of a Polynomial Jason B. Hill University of Colorado at Boulder Throughout this set of notes, K will be the desired base field (usually Q or a finite field) and F

More information

What is a motive? David P. Roberts University of Minnesota, Morris. September 10, 2015

What is a motive? David P. Roberts University of Minnesota, Morris. September 10, 2015 What is a motive? David P. Roberts University of Minnesota, Morris September 10, 2015 1 Preliminary general remarks 2 Cohomology and cycles 3 Motives and motivic Galois groups 4 Role in the Langlands program

More information

Fifty Years in the Model Theory of Differential Fields. ASL Winter Meeting 2019 JMM Baltimore

Fifty Years in the Model Theory of Differential Fields. ASL Winter Meeting 2019 JMM Baltimore Fifty Years in the Model Theory of Differential Fields ASL Winter Meeting 2019 JMM Baltimore David Marker Mathematics, Statistics, and Computer Science University of Illinois at Chicago January 20, 2019

More information

Liouvillian solutions of third order differential equations

Liouvillian solutions of third order differential equations Article Submitted to Journal of Symbolic Computation Liouvillian solutions of third order differential equations Felix Ulmer IRMAR, Université de Rennes, 0 Rennes Cedex, France felix.ulmer@univ-rennes.fr

More information

ALGEBRA QUALIFYING EXAM SPRING 2012

ALGEBRA QUALIFYING EXAM SPRING 2012 ALGEBRA QUALIFYING EXAM SPRING 2012 Work all of the problems. Justify the statements in your solutions by reference to specific results, as appropriate. Partial credit is awarded for partial solutions.

More information

Examples: Solving nth Order Equations

Examples: Solving nth Order Equations Atoms L. Euler s Theorem The Atom List First Order. Solve 2y + 5y = 0. Examples: Solving nth Order Equations Second Order. Solve y + 2y + y = 0, y + 3y + 2y = 0 and y + 2y + 5y = 0. Third Order. Solve

More information

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should

More information

Differential Central Simple Algebras and Picard Vessiot Representations

Differential Central Simple Algebras and Picard Vessiot Representations Differential Central Simple Algebras and Picard Vessiot Representations Lourdes Juan Department of Mathematics Texas Tech University Lubbock TX 79409 Andy R. Magid Department of Mathematics University

More information

Geometry and combinatorics of spherical varieties.

Geometry and combinatorics of spherical varieties. Geometry and combinatorics of spherical varieties. Notes of a course taught by Guido Pezzini. Abstract This is the lecture notes from a mini course at the Winter School Geometry and Representation Theory

More information

Section V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement)

Section V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement) V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement) 1 Section V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement) Note. In this supplement, we consider splitting fields

More information

B Sc MATHEMATICS ABSTRACT ALGEBRA

B Sc MATHEMATICS ABSTRACT ALGEBRA UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc MATHEMATICS (0 Admission Onwards) V Semester Core Course ABSTRACT ALGEBRA QUESTION BANK () Which of the following defines a binary operation on Z

More information

9. Finite fields. 1. Uniqueness

9. Finite fields. 1. Uniqueness 9. Finite fields 9.1 Uniqueness 9.2 Frobenius automorphisms 9.3 Counting irreducibles 1. Uniqueness Among other things, the following result justifies speaking of the field with p n elements (for prime

More information

Fields and Galois Theory

Fields and Galois Theory Fields and Galois Theory Rachel Epstein September 12, 2006 All proofs are omitted here. They may be found in Fraleigh s A First Course in Abstract Algebra as well as many other algebra and Galois theory

More information

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism 1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

More information

The Grothendieck-Katz Conjecture for certain locally symmetric varieties

The Grothendieck-Katz Conjecture for certain locally symmetric varieties The Grothendieck-Katz Conjecture for certain locally symmetric varieties Benson Farb and Mark Kisin August 20, 2008 Abstract Using Margulis results on lattices in semi-simple Lie groups, we prove the Grothendieck-

More information

Math 594. Solutions 5

Math 594. Solutions 5 Math 594. Solutions 5 Book problems 6.1: 7. Prove that subgroups and quotient groups of nilpotent groups are nilpotent (your proof should work for infinite groups). Give an example of a group G which possesses

More information

Section VI.33. Finite Fields

Section VI.33. Finite Fields VI.33 Finite Fields 1 Section VI.33. Finite Fields Note. In this section, finite fields are completely classified. For every prime p and n N, there is exactly one (up to isomorphism) field of order p n,

More information

Math 21b. Review for Final Exam

Math 21b. Review for Final Exam Math 21b. Review for Final Exam Thomas W. Judson Spring 2003 General Information The exam is on Thursday, May 15 from 2:15 am to 5:15 pm in Jefferson 250. Please check with the registrar if you have a

More information

TOPOLOGICAL GALOIS THEORY. A. Khovanskii

TOPOLOGICAL GALOIS THEORY. A. Khovanskii TOPOLOGICAL GALOIS THEORY A. Khovanskii METHODS 1. ABEL AND LIOUVILLE (1833). 2.GALOIS AND PICARD- VESSIO (1910). 3. TOPOLOGICAL VERSION: ONE DIMENSIONAL CASE (1972), MULTI- DIMENSIONAL CASE (2003). 2

More information

Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1)

Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1) Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1) PROBLEM 1 (DG) Let S denote the surface in R 3 where the coordinates (x, y, z) obey x 2 + y 2 = 1 +

More information

Algebra Qualifying Exam August 2001 Do all 5 problems. 1. Let G be afinite group of order 504 = 23 32 7. a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt 7. (5 points) b.

More information

Real and p-adic Picard-Vessiot fields

Real and p-adic Picard-Vessiot fields Spring Central Sectional Meeting Texas Tech University, Lubbock, Texas Special Session on Differential Algebra and Galois Theory April 11th 2014 Real and p-adic Picard-Vessiot fields Teresa Crespo, Universitat

More information

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions Basic Questions 1. Give an example of a prime ideal which is not maximal. In the ring Z Z, the ideal {(0,

More information

disc f R 3 (X) in K[X] G f in K irreducible S 4 = in K irreducible A 4 in K reducible D 4 or Z/4Z = in K reducible V Table 1

disc f R 3 (X) in K[X] G f in K irreducible S 4 = in K irreducible A 4 in K reducible D 4 or Z/4Z = in K reducible V Table 1 GALOIS GROUPS OF CUBICS AND QUARTICS IN ALL CHARACTERISTICS KEITH CONRAD 1. Introduction Treatments of Galois groups of cubic and quartic polynomials usually avoid fields of characteristic 2. Here we will

More information

List of topics for the preliminary exam in algebra

List of topics for the preliminary exam in algebra List of topics for the preliminary exam in algebra 1 Basic concepts 1. Binary relations. Reflexive, symmetric/antisymmetryc, and transitive relations. Order and equivalence relations. Equivalence classes.

More information

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces J. A. Thas H. Van Maldeghem 1 Introduction Definition 1.1 A (finite) generalized quadrangle (GQ) S = (P, B, I) is a point-line incidence

More information

Solutions of exercise sheet 2

Solutions of exercise sheet 2 D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 2 1. Let k be a field with char(k) 2. 1. Let a, b k be such that a is a square in k(β), where β is an element algebraic over k

More information

Algebra Exam, Spring 2017

Algebra Exam, Spring 2017 Algebra Exam, Spring 2017 There are 5 problems, some with several parts. Easier parts count for less than harder ones, but each part counts. Each part may be assumed in later parts and problems. Unjustified

More information

Math 414 Answers for Homework 7

Math 414 Answers for Homework 7 Math 414 Answers for Homework 7 1. Suppose that K is a field of characteristic zero, and p(x) K[x] an irreducible polynomial of degree d over K. Let α 1, α,..., α d be the roots of p(x), and L = K(α 1,...,α

More information

Section V.7. Cyclic Extensions

Section V.7. Cyclic Extensions V.7. Cyclic Extensions 1 Section V.7. Cyclic Extensions Note. In the last three sections of this chapter we consider specific types of Galois groups of Galois extensions and then study the properties of

More information

ALGEBRA 8: Linear algebra: characteristic polynomial

ALGEBRA 8: Linear algebra: characteristic polynomial ALGEBRA 8: Linear algebra: characteristic polynomial Characteristic polynomial Definition 8.1. Consider a linear operator A End V over a vector space V. Consider a vector v V such that A(v) = λv. This

More information

Notes on Group Theory Lie Groups, Lie Algebras, and Linear Representations

Notes on Group Theory Lie Groups, Lie Algebras, and Linear Representations Contents Notes on Group Theory Lie Groups, Lie Algebras, and Linear Representations Andrew Forrester January 28, 2009 1 Physics 231B 1 2 Questions 1 2.1 Basic Questions...........................................

More information

Section V.2. The Fundamental Theorem (of Galois Theory)

Section V.2. The Fundamental Theorem (of Galois Theory) V.2. The Fundamental Theorem (of Galois Theory) 1 Section V.2. The Fundamental Theorem (of Galois Theory) Note. In this section, we define the Galois group of an arbitrary field extension. We prove (after

More information

Selected Texts. Contents. Pierre-Yves Gaillard. Monday 26 th June, 2017, 10:36. I put together three short texts I have written.

Selected Texts. Contents. Pierre-Yves Gaillard. Monday 26 th June, 2017, 10:36. I put together three short texts I have written. Selected Texts Pierre-Yves Gaillard Monday 26 th June, 2017, 10:36 I put together three short texts I have written. Contents 1 The Fundamental Theorem of Galois Theory 2 2 Function of a Matrix 4 3 Zorn

More information

Algorithmic aspects of Galois theory in recent times

Algorithmic aspects of Galois theory in recent times Algorithmic aspects of Galois theory in recent times Michael F. Singer Department of Mathematics North Carolina State University Raleigh, NC 27695-8205 singer@math.ncsu.edu Bicentenaire de la naissance

More information

Algebra Ph.D. Preliminary Exam

Algebra Ph.D. Preliminary Exam RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS! Algebra Ph.D. Preliminary Exam August 18, 2008 INSTRUCTIONS: 1. Answer each question on a separate page. Turn in a page for each problem even if you

More information

Part II Galois Theory

Part II Galois Theory Part II Galois Theory Definitions Based on lectures by C. Birkar Notes taken by Dexter Chua Michaelmas 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Existence of a Picard-Vessiot extension

Existence of a Picard-Vessiot extension Existence of a Picard-Vessiot extension Jerald Kovacic The City College of CUNY jkovacic@verizon.net http:/mysite.verizon.net/jkovacic November 3, 2006 1 Throughout, K is an ordinary -field of characteristic

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

More information

Hyperelliptic Jacobians in differential Galois theory (preliminary report)

Hyperelliptic Jacobians in differential Galois theory (preliminary report) Hyperelliptic Jacobians in differential Galois theory (preliminary report) Jerald J. Kovacic Department of Mathematics The City College of The City University of New York New York, NY 10031 jkovacic@member.ams.org

More information

GALOIS THEORY AT WORK: CONCRETE EXAMPLES

GALOIS THEORY AT WORK: CONCRETE EXAMPLES GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are

More information

Algebra Qualifying Exam, Fall 2018

Algebra Qualifying Exam, Fall 2018 Algebra Qualifying Exam, Fall 2018 Name: Student ID: Instructions: Show all work clearly and in order. Use full sentences in your proofs and solutions. All answers count. In this exam, you may use the

More information

On exceptional completions of symmetric varieties

On exceptional completions of symmetric varieties Journal of Lie Theory Volume 16 (2006) 39 46 c 2006 Heldermann Verlag On exceptional completions of symmetric varieties Rocco Chirivì and Andrea Maffei Communicated by E. B. Vinberg Abstract. Let G be

More information

X G X by the rule x x g

X G X by the rule x x g 18. Maps between Riemann surfaces: II Note that there is one further way we can reverse all of this. Suppose that X instead of Y is a Riemann surface. Can we put a Riemann surface structure on Y such that

More information

MATHEMATICS COMPREHENSIVE EXAM: IN-CLASS COMPONENT

MATHEMATICS COMPREHENSIVE EXAM: IN-CLASS COMPONENT MATHEMATICS COMPREHENSIVE EXAM: IN-CLASS COMPONENT The following is the list of questions for the oral exam. At the same time, these questions represent all topics for the written exam. The procedure for

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Fields. We learned to work with fields of numbers in school: Q = fractions of integers R = all real numbers, represented by infinite

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 1. Please write your 1- or 2-digit exam number on

More information

Hecke Operators for Arithmetic Groups via Cell Complexes. Mark McConnell. Center for Communications Research, Princeton

Hecke Operators for Arithmetic Groups via Cell Complexes. Mark McConnell. Center for Communications Research, Princeton Hecke Operators for Arithmetic Groups via Cell Complexes 1 Hecke Operators for Arithmetic Groups via Cell Complexes Mark McConnell Center for Communications Research, Princeton Hecke Operators for Arithmetic

More information

Closed Form Solutions

Closed Form Solutions Closed Form Solutions Mark van Hoeij 1 Florida State University Slides of this talk: www.math.fsu.edu/ hoeij/issac2017.pdf 1 Supported by NSF 1618657 1 / 29 What is a closed form solution? Example: Solve

More information

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018 Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018 Do 6 problems with at least 2 in each section. Group theory problems: (1) Suppose G is a group. The

More information

Galois Theory, summary

Galois Theory, summary Galois Theory, summary Chapter 11 11.1. UFD, definition. Any two elements have gcd 11.2 PID. Every PID is a UFD. There are UFD s which are not PID s (example F [x, y]). 11.3 ED. Every ED is a PID (and

More information

Graduate Preliminary Examination

Graduate Preliminary Examination Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

More information

A density theorem for parameterized differential Galois theory

A density theorem for parameterized differential Galois theory A density theorem for parameterized differential Galois theory Thomas Dreyfus University Paris 7 The Kolchin Seminar in Differential Algebra, 31/01/2014, New York. In this talk, we are interested in the

More information

Math 121 Homework 6 Solutions

Math 121 Homework 6 Solutions Math 11 Homework 6 Solutions Problem 14. # 17. Let K/F be any finite extension and let α K. Let L be a Galois extension of F containing K and let H Gal(L/F ) be the subgroup corresponding to K. Define

More information

(1) Let G be a finite group and let P be a normal p-subgroup of G. Show that P is contained in every Sylow p-subgroup of G.

(1) Let G be a finite group and let P be a normal p-subgroup of G. Show that P is contained in every Sylow p-subgroup of G. (1) Let G be a finite group and let P be a normal p-subgroup of G. Show that P is contained in every Sylow p-subgroup of G. (2) Determine all groups of order 21 up to isomorphism. (3) Let P be s Sylow

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

MATH 312 Section 4.5: Undetermined Coefficients

MATH 312 Section 4.5: Undetermined Coefficients MATH 312 Section 4.5: Undetermined Coefficients Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Differential Operators 2 Annihilators 3 Undetermined Coefficients 4 Conclusion ODEs

More information

AN UPPER BOUND FOR SIGNATURES OF IRREDUCIBLE, SELF-DUAL gl(n, C)-REPRESENTATIONS

AN UPPER BOUND FOR SIGNATURES OF IRREDUCIBLE, SELF-DUAL gl(n, C)-REPRESENTATIONS AN UPPER BOUND FOR SIGNATURES OF IRREDUCIBLE, SELF-DUAL gl(n, C)-REPRESENTATIONS CHRISTOPHER XU UROP+ Summer 2018 Mentor: Daniil Kalinov Project suggested by David Vogan Abstract. For every irreducible,

More information

San Francisco State University

San Francisco State University AN INTRODUCTION TO DIFFERENTIAL GALOIS THEORY BRUCE SIMON San Francisco State University Abstract. Differential Galois theory takes the approach of algebraic Galois theory and applies it to differential

More information

Overview: The short answer is no because there are 5 th degree polynomials whose Galois group is isomorphic to S5 which is not a solvable group.

Overview: The short answer is no because there are 5 th degree polynomials whose Galois group is isomorphic to S5 which is not a solvable group. Galois Theory Overview/Example Part 2: Galois Group and Fixed Fields I ll repeat the overview because it explains what I m doing with the example. Then I ll move on the second part of the example where

More information

7 Orders in Dedekind domains, primes in Galois extensions

7 Orders in Dedekind domains, primes in Galois extensions 18.785 Number theory I Lecture #7 Fall 2015 10/01/2015 7 Orders in Dedekind domains, primes in Galois extensions 7.1 Orders in Dedekind domains Let S/R be an extension of rings. The conductor c of R (in

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Solutions for Field Theory Problem Set 5

Solutions for Field Theory Problem Set 5 Solutions for Field Theory Problem Set 5 A. Let β = 2 + 2 2 2 i. Let K = Q(β). Find all subfields of K. Justify your answer carefully. SOLUTION. All subfields of K must automatically contain Q. Thus, this

More information

Galois Theory Overview/Example Part 1: Extension Fields. Overview:

Galois Theory Overview/Example Part 1: Extension Fields. Overview: Galois Theory Overview/Example Part 1: Extension Fields I ll start by outlining very generally the way Galois theory works. Then, I will work through an example that will illustrate the Fundamental Theorem

More information

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

More information

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A. Problem 1A Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1 (Hint: 1 1 (something)dz) Solution: The volume is 1 1 4xydz where x = y = 1 z 2 This integral has value 16/3 Problem 2A Let f(x)

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

Parabolic subgroups Montreal-Toronto 2018

Parabolic subgroups Montreal-Toronto 2018 Parabolic subgroups Montreal-Toronto 2018 Alice Pozzi January 13, 2018 Alice Pozzi Parabolic subgroups Montreal-Toronto 2018 January 13, 2018 1 / 1 Overview Alice Pozzi Parabolic subgroups Montreal-Toronto

More information

55 Separable Extensions

55 Separable Extensions 55 Separable Extensions In 54, we established the foundations of Galois theory, but we have no handy criterion for determining whether a given field extension is Galois or not. Even in the quite simple

More information

Sylow 2-Subgroups of Solvable Q-Groups

Sylow 2-Subgroups of Solvable Q-Groups E extracta mathematicae Vol. 22, Núm. 1, 83 91 (2007) Sylow 2-Subgroups of Solvable Q-roups M.R. Darafsheh, H. Sharifi Department of Mathematics, Statistics and Computer Science, Faculty of Science University

More information

ON THE CONSTRUCTIVE INVERSE PROBLEM IN DIFFERENTIAL GALOIS THEORY #

ON THE CONSTRUCTIVE INVERSE PROBLEM IN DIFFERENTIAL GALOIS THEORY # Communications in Algebra, 33: 3651 3677, 2005 Copyright Taylor & Francis, Inc. ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870500243304 ON THE CONSTRUCTIVE INVERSE PROBLEM IN DIFFERENTIAL

More information

Unit 1 Matrices Notes Packet Period: Matrices

Unit 1 Matrices Notes Packet Period: Matrices Algebra 2/Trig Unit 1 Matrices Notes Packet Name: Period: # Matrices (1) Page 203 204 #11 35 Odd (2) Page 203 204 #12 36 Even (3) Page 211 212 #4 6, 17 33 Odd (4) Page 211 212 #12 34 Even (5) Page 218

More information

arxiv: v2 [math.ds] 26 Sep 2018

arxiv: v2 [math.ds] 26 Sep 2018 arxiv:1807.05272v2 [math.ds] 26 Sep 2018 Galoisian and Qualitative Approaches to Linear Polyanin-Zaitsev Vector Fields Primitivo B. Acosta-Humánez, Alberto Reyes-Linero, and Jorge Rodríguez-Contreras Abstract.

More information

FIELD THEORY. Contents

FIELD THEORY. Contents FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions

More information

Universal Covers and Category Theory in Polynomial and Differential Galois Theory

Universal Covers and Category Theory in Polynomial and Differential Galois Theory Fields Institute Communications Volume 00, 0000 Universal Covers and Category Theory in Polynomial and Differential Galois Theory Andy R. Magid Department of Mathematics University of Oklahoma Norman OK

More information