Supplementary Figure 1: SAW transducer equivalent circuit

Size: px
Start display at page:

Download "Supplementary Figure 1: SAW transducer equivalent circuit"

Transcription

1 Supplementary Figure : SAW transducer equivalent circuit Supplementary Figure : Radiation conductance and susceptance of.6um IDT, experiment & calculation Supplementary Figure 3: Calculated z-displacement field plots of Rayleigh modes of the 4.0µm wavelength IDT. AlN SiO R- R- R-3 - -

2 Supplementary Figure 4: Calculated z-displacement field plots of Rayleigh modes of the 0.5µm wavelength IDT. R- R- R-3 R-4 R-5 R-6 R-7 R-8 R-9 R-0 R- R- R-3 R-4 R-5 - -

3 Supplementary Figure 5: Modulation measurement schematics. VNA: Vector Network Analyzer, EDFA: Erbium-Doped Fiber Amplifier, OTF: Optical Tunable Filter, LS-PD: Low speed Photo Detector, HS-PD: High-speed Photo Detector, LNA: Low Noise Amplifier, FC- Fiber Coupler

4 Supplementary Note To extract the electromechanical coupling coefficient from the S spectra of the SAW devices, we used a simplified form of Mason s equivalent circuit model of the interdigital transducer (IDT). Supplementary Figure shows circuit diagram of this model. R p and C t are the parasitic resistance & static capacitance of the IDT fingers; B a (f), and G a (f) are the radiation susceptance and conductance of the IDT defined as: where G o t o Ga( f ) Gosinc X B ( f ) G a o sin( X) X X 8 C f N and X N(f f ) f. o o f o and N are the resonant frequency & number of electrodes of the IDT, and k is the electromechanical coupling coefficient of the piezoelectric substrate. After measuring the complex impedance of the IDT using the network analyzer, we subtracted the real component values that lie well outside the SAW resonance linewidth. This subtracted frequency independent resistance corresponds to the parasitic resistance, R p. The inverse of the remaining impedance gives the IDT admittance, Y a (f), whose real part is the IDT radiation conductance and its imaginary part comprising the radiation susceptance and the susceptance contribution of the IDT electrodes static capacitance. Since the radiation susceptance should vanish at the resonant SAW frequency, the susceptance value at this frequency gives the static capacitance of the IDT electrodes. This value, together with the radiation conductance value at the resonance SAW frequency, can be used to calculate the electromechanical coupling coefficient. Such analysis is done for R modes of IDTs of different SAW wavelengths and the results are shown in Fig. c of the main paper. As an example, we presented the analysis we did on an R mode of a.6µm IDT, the S spectra of which is shown in Fig. (a) of the main paper. We calculated k and C t to be 0.7% and.8pf, respectively. We used these extracted values to calculate the radiation conductance and susceptance of the IDT. Supplementary Figure shows a comparison of the calculated and measured values. In the calculated plot of the radiation conductance, the sinc function behavior is a signature of the finite size of the IDT transducer

5 Supplementary Note We consider a TE waveguide mode with its dominant electric field pointing in the x-direction. The wave propagate along the y-axis and the z-axis pointing out of the plane along the c-axis of the AlN polycrystalline film. A travelling SAW wave modulates the dielectric constant of the material it propagates in through elasto-optic effect directly, and electro-optic effect indirectly. The contribution of the indirect electro-optic effect can be lumped into the elasto-optic effect by defining an effective elasto-optic coefficient as p ( rik lk )( lieij ) p ( l l ) eff ij ij S i ij j where l k is k th component of the unit vector along the direction of SAW wave propagation, and r ij represents the electro-optic coefficient, which can be written in the contracted form for crystalline material with 6mm symmetry as: r ij 0 0 r3 0 0 r r 33 0 r5 0 r with coefficiecnts r 3 =0.67pm/V, r 33 =0.9pm/V, and r 5 0 in AlN 3. For a SAW wave propagating along the x-axis (transverse to the optical waveguide), the only nonzero electro-optic contributions comes from r 5. But, this value is quite small and can be ignored, leaving the elasto-optic coefficient unchanged. Invoking the definition of index ellipsoid and using the contracted form of the elasto-optic coefficient, we can write the change in refractive index as: p,,, 6 ijs j i j n j i where p ij is the elasto-optic coefficient tensor, and S j is the strain field tensor. A simple differentiation reduces the above expression to: - 5 -

6 n n p S 3 i i ij j j For a hexagonal crystal system like AlN, the elasto-optic coefficient tensor takes the form p ij p p p p p p p3 p3 p p p p66 with values p =0., p 33 =0.07, p =0.07, p 3 =0.09, p 44 =0.03, and p 66 =0.037 for AlN thin films 4. Since the film is polycrystalline, we can approximate the in-plane elasto-optic coefficients as the average of the a- and b-direction coefficients of the crystal: p p p p / Ignoring the shear components of the strain field tensor (S 4, S 5, S 6 ), which are much weaker than the normal components, one can write the elasto-optic refractive index change as: n n p S p S 3 x, y o 3 3 where S and S 3 correspond to the normal strain fields in the x- and z-directions respectively. This change in refractive index induces a change in mode frequency of the optical resonator. Since the SAW-induced refractive index change is very small (n/n <<), one can use perturbation theory to estimate this change in frequency to the first order in n as 5 : n( r) E( r) dr n(x,z) E (x,z) dxdz n( r) E( r) dr n(x,z) E (x,z) dxdz where E is the dominant electric field of the TE mode waveguide. This implies that the change in mode frequency is proportional to an overlap integral of the SAW strain field with the waveguide mode electric field, which can be written as: - 6 -

7 p S ( x, z) p S ( x, z) E ( x, z) dxdz 3 3 E ( x, z) dxdz This overlap factor can be calculated to optimize the geometry of a waveguide for maximum SAW-optics interaction. Supplementary Note 3 Analogous to optomechanical systems, the strength of acousto-optic interaction in an optical cavity can be quantified by an optomechanical coupling rate (G om ). We defined this coupling rate as: G A om where is the change in resonance frequency of the optical cavity due to acousto-optic modulation, and <A> is the mean amplitude of the SAW displacement field. This displacement field amplitude is a measure of the acoustic energy which depends on the electromechanical coupling coefficient and the microwave power input to the IDT. The acoustic elastic energy density is given as: U 3 S C S i, j i ij j where S i is the strain field tensor component and C ij is the elements of elastic modules tensor which can be written in its reduced form as 6 C C C C C C C3 C3 C C C C C66 with element values C =40 GPa, C =49 GPa, C 3 =99 GPa, C 33 =389 GPa, C 44 =5 GPa for AlN. The strain field vector of the surface acoustic wave propagating along the z-axis can be expressed as: S S 0 S 0 S 0 3 5, where S and S 3 are the normal strain fields along the - 7 -

8 x and z-directions, respectively, and S 5 is the shear strain field. Ignoring the relatively weak shear component of the strain field and taking into account the fact that S and S 3 are 90 o out of phase (where cross-terms vanish upon averaging over a SAW wavelength), the energy density reduces to: U C S C S C S where in the last step we took the upper bound of the energy density for the case of simplicity. The z-component strain field can be expressed as: u A z z z z/ z/ S3 ( Ae sin x) e sin x where the out-of-the-plane displacement u z with amplitude A is assumed to decay exponentially at a rate of /into the substrate for surface waves. Thus, the energy averaged over a SAW wavelength can be written as: which integrates to AW / 33 e z E Udxdydz C sin x dxdz E C33W A 4 where W is the SAW beam width and <A> represents average amplitude of the SAW displacement field. The electromechanical coupling coefficient k and the IDT reflection coefficient S relates the SAW wave power, P SAW, to the microwave power input to the IDT, P in, as: SAW ( ) in o P S k P Ef where f o is the SAW resonance frequency. Substituting the energy E expression into this power equation gives the approximate relation of the SAW displacement field amplitude with the microwave power input to the IDT as: - 8 -

9 A 33 k 4( S ) C Wf o P in From the measurement data analysis, we determined that the frequency modulation has a linear relationship with the square root of the microwave power input to the IDT. The slope of this linear plot, coupling coefficient quantified with respect to microwave input voltage, can be converted into the optomechanical coupling rate, G om, using the equation derived above. Supplementary Note 4 We employed finite element method to calculate the eigen frequencies of the IDT structure. The periodicity of the IDT allowed the use of only one unit cell with periodic boundary conditions set at the ends of the unit cell. Appropriate material parameters and boundary conditions were imposed and the geometry was solved for an optimally meshed IDT structure. All the possible eigen modes allowed by the geometry were calculated, and this led to the mapping of the SAW dispersion curve as shown in Fig. b of the main paper. The calculated strain field distribution was used in a post-processing recipe to calculate the acousto-optic overlap factor. Representative results are shown in Fig 4 of the main paper. In Supplementary Figure 3 and 4, we showed the eigen mode profiles calculated for 4.0µm and 0.5µm wavelength IDTs. The plots are shown for the out of plane displacement field. The 4.0µm IDT supports only three modes, while the 0.5µm IDT has 5 modes. This is in line with the fact that the SAW amplitude decays exponentially into the substrate and hence limiting the number of R-modes of large wavelength IDTs to fewer than those of smaller wavelength IDTs. The AlN and silicon dioxide film thickness determines the possible number of modes supported for a particular wavelength IDT. Supplementary Note 5 The measurement scheme is shown in Supplementary Figure 5. Microwave signal from port- of the vector network analyzer was input to the IDT to excite the SAW waves. Laser light with wavelength set half the linewidth off the optical resonance was sent to the input grating couple. The resonator s transmitted light was collected from the output grating coupler and split into 0. & 0.9 ratio using a fiber coupler. The 0% light was used to monitor and optimize fiber arrays position with respect to the grating couplers. The 90% light was sent to an erbium doped fiber amplifier (EDFA). The amplified light signal was sent to a tunable optical filter to remove any - 9 -

10 amplified spontaneous emission noise induced by the EDFA. Finally the light signal was sent to a high-speed photoreceiver for detection. The electrical signal from the detector was fed back to port- of the vector network analyzer and the optical S spectrum was measured by sweeping the network analyzer frequency. Supplementary References: Hines, J. H. & Malocha, D. C. in Ultrasonics Symposium, 993. Proceedings., IEEE vol.7. Xu, J. & Stroud, R. Acousto-optic devices : principles, design, and applications. (Wiley, 99). 3 Gräupner, P., Pommier, J. C., Cachard, A. & Coutaz, J. L. Electro optical effect in aluminum nitride waveguides. J. Appl. Phys. 7, (99). 4 Davydov, S. Y. Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN. Semiconductors 36, 4-44 (00). 5 Johnson, S. G. et al. Perturbation theory for Maxwell's equations with shifting material boundaries. Physical review. E, Statistical, nonlinear, and soft matter physics 65, 0666 (00). 6 Wright, A. F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 8, (997)

FEM Simulation of Generation of Bulk Acoustic Waves and Their Effects in SAW Devices

FEM Simulation of Generation of Bulk Acoustic Waves and Their Effects in SAW Devices Excerpt from the Proceedings of the COMSOL Conference 2010 India FEM Simulation of Generation of ulk Acoustic Waves and Their Effects in SAW Devices Ashish Kumar Namdeo 1, Harshal. Nemade* 1, 2 and N.

More information

SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD

SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (5), P. 630 634 SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD V. P. Pashchenko 1,2 1 Saint Petersburg State Polytechnical

More information

COMSOL for Modelling of STW Devices

COMSOL for Modelling of STW Devices COMSOL for Modelling of STW Devices V. Yantchev *1 and V. Plessky **2 1 Chalmers University of Technology, Biophysical Technology Laboratory, Göteborg, Sweden 2 GVR Trade SA, Chez-le-Bart, Switzerland

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Interaction between surface acoustic waves and a transmon qubit

Interaction between surface acoustic waves and a transmon qubit Interaction between surface acoustic waves and a transmon qubit Ø Introduction Ø Artificial atoms Ø Surface acoustic waves Ø Interaction with a qubit on GaAs Ø Nonlinear phonon reflection Ø Listening to

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Solid State Physics (condensed matter): FERROELECTRICS

Solid State Physics (condensed matter): FERROELECTRICS Solid State Physics (condensed matter): FERROELECTRICS Prof. Igor Ostrovskii The University of Mississippi Department of Physics and Astronomy Oxford, UM: May, 2012 1 People: Solid State Physics Condensed

More information

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES Abstract A. Lonsdale Technical Director Sensor Technology Ltd The subject of torque measurement has previously been addressed extensively.

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Embedded interdigital transducers for high-frequency surface acoustic waves on GaAs

Embedded interdigital transducers for high-frequency surface acoustic waves on GaAs JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 6 15 SEPTEMBER 2004 Embedded interdigital transducers for high-frequency surface acoustic waves on GaAs M. M. de Lima, Jr., W. Seidel, H. Kostial, and P. V.

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

International Distinguished Lecturer Program

International Distinguished Lecturer Program U 005-006 International Distinguished Lecturer Program Ken-ya Hashimoto Chiba University Sponsored by The Institute of Electrical and Electronics Engineers (IEEE) Ultrasonics, Ferroelectrics and Frequency

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control

Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control 1 Abstract For miniaturization of ultrasonic transducers, a surface acoustic wave device has an advantage in rigid mounting and high-power-density

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 1 Context and Scope of the Course (Refer Slide Time: 00:44) Welcome to this course

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Finite Element Modeling of Surface Acoustic Waves in Piezoelectric Thin Films

Finite Element Modeling of Surface Acoustic Waves in Piezoelectric Thin Films Journal of the Korean Physical Society, Vol. 57, No. 3, September 2010, pp. 446 450 Finite Element Modeling of Surface Acoustic Waves in Piezoelectric Thin Films Gwiy-Sang Chung and Duy-Thach Phan School

More information

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou Chapter 6. Fiber Optic Thermometer Ho Suk Ryou Properties of Optical Fiber Optical Fiber Composed of rod core surrounded by sheath Core: conducts electromagnetic wave Sheath: contains wave within the core

More information

FIELD MODELS OF POWER BAW RESONATORS

FIELD MODELS OF POWER BAW RESONATORS FIELD MODELS OF POWER BAW RESONATORS MIHAI MARICARU 1, FLORIN CONSTANTINESCU 1, ALEXANDRE REINHARDT 2, MIRUNA NIŢESCU 1, AURELIAN FLOREA 1 Key words: Power BAW resonators, 3D models. A simplified 3 D model,

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Supplementary Information for Coherent optical wavelength conversion via cavity-optomechanics

Supplementary Information for Coherent optical wavelength conversion via cavity-optomechanics Supplementary Information for Coherent optical wavelength conversion via cavity-optomechanics Jeff T. Hill, 1 Amir H. Safavi-Naeini, 1 Jasper Chan, 1 and O. Painter 1 1 Kavli Nanoscience Institute and

More information

Paper V. Acoustic Radiation Losses in Busbars. J. Meltaus, S. S. Hong, and V. P. Plessky J. Meltaus, S. S. Hong, V. P. Plessky.

Paper V. Acoustic Radiation Losses in Busbars. J. Meltaus, S. S. Hong, and V. P. Plessky J. Meltaus, S. S. Hong, V. P. Plessky. Paper V Acoustic Radiation Losses in Busbars J. Meltaus, S. S. Hong, and V. P. Plessky 2006 J. Meltaus, S. S. Hong, V. P. Plessky. V Report TKK-F-A848 Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics,

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

PHYSICAL REVIEW B 71,

PHYSICAL REVIEW B 71, Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen,

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

Structural and Optical Properties of ZnSe under Pressure

Structural and Optical Properties of ZnSe under Pressure www.stmjournals.com Structural and Optical Properties of ZnSe under Pressure A. Asad, A. Afaq* Center of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan Abstract The

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplemental Material Property Tables Cited in Main Text Table SI. Measured parameters for the sapphire-derived optical fibers Fiber Maximum Alumina Content Δn 10-3 Core Size Mole Percent (%) Weight Percent

More information

Gratings in Electrooptic Polymer Devices

Gratings in Electrooptic Polymer Devices Gratings in Electrooptic Polymer Devices Venkata N.P.Sivashankar 1, Edward M. McKenna 2 and Alan R.Mickelson 3 Department of Electrical and Computer Engineering, University of Colorado at Boulder, Boulder,

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Table of Contents. Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity... 1

Table of Contents. Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity... 1 Preface... General Introduction... xiii xvii Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity.... 1 1.1. Crystal structure... 1 1.1.1. Crystal = lattice + pattern... 1 1.1.2.

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

Rapid SAW Sensor Development Tools

Rapid SAW Sensor Development Tools Rapid SAW Sensor Development Tools W. (Cy) Wilson NASA Langley Research Center G. M. Atkinson Virginia Commonwealth University Outline Motivation Introduction to Surface Acoustic Wave Devices Approach

More information

Tailoring of optical properties of LiNbO 3 by ion implantation

Tailoring of optical properties of LiNbO 3 by ion implantation SMR/1758-14 "Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization" 26 June - 1 July 2006 Tailoring of Optical Properties of LiNbO3 by ion implantation Cinzia SADA

More information

Section 2 ADVANCED TECHNOLOGY DEVELOPMENTS

Section 2 ADVANCED TECHNOLOGY DEVELOPMENTS Section 2 ADVANCED TECHNOLOGY DEVELOPMENTS 2.A Application of KTP Crystal as an Electro-Optic Amplitude Modulator Potassium titanyl phosphate (KTiOP04 or KTP) has become a widely used nonlinear optical

More information

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation Advances in Science and Technology Vol. 54 (28) pp 366-371 online at http://www.scientific.net (28) Trans Tech Publications, Switzerland Online available since 28/Sep/2 Friction Drive Simulation of a SAW

More information

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin

More information

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances)

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) A 1 General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) 1. Waves Propagating on a Transmission Line General A transmission line is a 1-dimensional medium which can

More information

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Jiacheng Hu ( ) 1,2, Fuchang Chen ( ) 1,2, Chengtao Zhang ( ) 1,2,

More information

Introduction to Photonic Crystals

Introduction to Photonic Crystals 1 Introduction to Photonic Crystals Summary. Chapter 1 gives a brief introduction into the basics of photonic crystals which are a special class of optical media with periodic modulation of permittivity.

More information

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model

Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model Optimized Surface Acoustic Waves Devices With FreeFem++ Using an Original FEM/BEM Numerical Model P. Ventura*, F. Hecht**, Pierre Dufilié*** *PV R&D Consulting, Nice, France Laboratoire LEM3, Université

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Equivalent electrostatic capacitance Computation using FreeFEM++

Equivalent electrostatic capacitance Computation using FreeFEM++ Equivalent electrostatic capacitance Computation using FreeFEM++ P. Ventura*, F. Hecht** *PV R&D Consulting, Nice, France **Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris, France

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

Poled Thick-film Polymer Electro-optic Modulation Using Rotational Deformation Configuration

Poled Thick-film Polymer Electro-optic Modulation Using Rotational Deformation Configuration PIERS ONLINE, VOL. 5, NO., 29 4 Poled Thick-film Polymer Electro-optic Modulation Using Rotational Deformation Configuration Wen-Kai Kuo and Yu-Chuan Tung Institute of Electro-Optical and Material Science,

More information

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES Progress In Electromagnetics Research, PIER 22, 197 212, 1999 A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES M. Akbari, M. Shahabadi, and K. Schünemann Arbeitsbereich Hochfrequenztechnik Technische

More information

CALCULATION OF ELECRON MOBILITY IN WZ-AlN AND AT LOW ELECTRIC FIELD

CALCULATION OF ELECRON MOBILITY IN WZ-AlN AND AT LOW ELECTRIC FIELD International Journal of Science, Environment and Technology, Vol. 1, No 5, 2012, 395-401 CALCULATION OF ELECRON MOBILITY IN AND AT LOW ELECTRIC FIELD H. Arabshahi, M. Izadifard and A. Karimi E-mail: hadi_arabshahi@yahoo.com

More information

Photonic Crystals. Introduction

Photonic Crystals. Introduction Photonic Crystals Introduction Definition Photonic crystals are new, artificialy created materials, in which refractive index is periodically modulated in a scale compared to the wavelength of operation.

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 213, Le Mans, France www.ndt.net/?id=1557 More Info at Open Access Database www.ndt.net/?id=1557 A model

More information

Module 13: Network Analysis and Directional Couplers

Module 13: Network Analysis and Directional Couplers Module 13: Network Analysis and Directional Couplers 13.2 Network theory two port networks, S-parameters, Z-parameters, Y-parameters The study of two port networks is important in the field of electrical

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Left-handed materials: Transfer matrix method studies

Left-handed materials: Transfer matrix method studies Left-handed materials: Transfer matrix method studies Peter Markos and C. M. Soukoulis Outline of Talk What are Metamaterials? An Example: Left-handed Materials Results of the transfer matrix method Negative

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

Fundamentals of fiber waveguide modes

Fundamentals of fiber waveguide modes SMR 189 - Winter College on Fibre Optics, Fibre Lasers and Sensors 1-3 February 007 Fundamentals of fiber waveguide modes (second part) K. Thyagarajan Physics Department IIT Delhi New Delhi, India Fundamentals

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

POTENTIAL OF Al 2 O 3 /GaN/SAPPHIRE LAYERED STRUCTURE FOR HIGH TEMPERATURE SAW SENSORS

POTENTIAL OF Al 2 O 3 /GaN/SAPPHIRE LAYERED STRUCTURE FOR HIGH TEMPERATURE SAW SENSORS POTENTIAL OF Al 2 O 3 /GaN/SAPPHIRE LAYERED STRUCTURE FOR HIGH TEMPERATURE SAW SENSORS Sergei ZHGOON 1,*, Ouarda LEGRANI 2,3, Omar ELMAZRIA 4, Thierry AUBERT 2,3,5, Meriem ELHOSNI 4, Hamza MERSNI 2,3,

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Mechanical Energy Domain Physics Surface acoustic waves Silicon microresonators Variable resistance sensors Piezoelectric sensors Capacitive

More information

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix Nikola Dordevic and Yannick Salamin 30.10.2017 1 Content Revision Wave Propagation Losses Wave Propagation

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 77 CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 5.1 INTRODUCTION Fixed guided clamped and cantilever beams have been designed and analyzed using ANSYS and their performance were calculated. Maximum deflection

More information

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, 10-12 Oct 2011 Lamb waves in an anisotropic plate of a single crystal silicon wafer Young-Kyu PARK 1, Young H. KIM 1 1 Applied Acoustics

More information

MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION

MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION Progress In Electromagnetics Research, PIER 65, 71 80, 2006 MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION A. A. Pavel, P. Kirawanich,

More information

Introduction to physical acoustics

Introduction to physical acoustics Loughborough University Institutional Repository Introduction to physical acoustics This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation: KRASIL'NIKOV,

More information

Introduction to SAWAVE. A 3D-Based Surface Acoustic Wave (SAWAVE) Device Simulator

Introduction to SAWAVE. A 3D-Based Surface Acoustic Wave (SAWAVE) Device Simulator Introduction to SAWAVE A 3D-Based Surface Acoustic Wave (SAWAVE) Device Simulator SAWAVE FV Data Structure Unstructured Finite Volume (FV) mesh allows unparalleled flexibility in 3D structure definition.

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Guigen Zhang Department of Bioengineering Department of Electrical and Computer Engineering Institute for Biological Interfaces of Engineering

More information

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff CHARLES R. BOYD, JR. Microwave Applications Group, Santa Maria, California, U. S. A. ABSTRACT Unlike conventional waveguides, lossless

More information

SIMULATION OF ELECTROMECHANICAL PROPERTIES OF ORDERED CARBON NANOTUBE ARRAYS

SIMULATION OF ELECTROMECHANICAL PROPERTIES OF ORDERED CARBON NANOTUBE ARRAYS Materials Physics and Mechanics 27 (216) 113-117 Received: February 19, 216 SIMULATION OF ELECTROMECHANICAL PROPERTIES OF ORDERED CARBON NANOTUBE ARRAYS Viatcheslav Baraline *, Aliasandr Chashynsi Belarusian

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

Angular dependence of surface acoustic wave characteristics in AlN thin films on a-plane sapphire substrates

Angular dependence of surface acoustic wave characteristics in AlN thin films on a-plane sapphire substrates Appl. Phys. A 83, 411 415 (2006) DOI: 10.1007/s00339-006-3520-5 Applied Physics A Materials Science & Processing j. xu j.s. thakur g. hu q. wang y. danylyuk h. ying g.w. auner Angular dependence of surface

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

Optical Properties of Thin Semiconductor Films

Optical Properties of Thin Semiconductor Films Optical Properties of Thin Semiconductor Films Grolik Benno,KoppJoachim October, 31st 2003 1 Introduction Optical experiments provide a good way of examining the properties of semiconductors. Particulary

More information

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

More information

LIGHT CONTROLLED PHOTON TUNNELING. University of Maryland, College Park, MD Phone: , Fax: ,

LIGHT CONTROLLED PHOTON TUNNELING. University of Maryland, College Park, MD Phone: , Fax: , LIGHT CONTROLLED PHOTON TUNNELING Igor I. Smolyaninov 1), Anatoliy V. Zayats 2), and Christopher C. Davis 1) 1) Department of Electrical and Computer Engineering University of Maryland, College Park, MD

More information

Quantum Photonic Integrated Circuits

Quantum Photonic Integrated Circuits Quantum Photonic Integrated Circuits IHFG Hauptseminar: Nanooptik und Nanophotonik Supervisor: Prof. Dr. Peter Michler 14.07.2016 Motivation and Contents 1 Quantum Computer Basics and Materials Photon

More information

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4 Presented at the COMSOL Conference 2010 Paris Two-dimensional FEM Analysis of Brillouin Gain Spectra in Acoustic Guiding and Antiguiding Single Mode Optical Fibers Yolande Sikali 1,Yves Jaouën 2, Renaud

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information