NATURAL MODES OF VIBRATION OF BUILDING STRUCTURES CE 131 Matrix Structural Analysis Henri Gavin Fall, 2006

Size: px
Start display at page:

Download "NATURAL MODES OF VIBRATION OF BUILDING STRUCTURES CE 131 Matrix Structural Analysis Henri Gavin Fall, 2006"

Transcription

1 NATURAL MODES OF VIBRATION OF BUILDING STRUCTURES CE 131 Matrix Structural Analysis Henri Gavin Fall, Mass and Stiffness Matrices Consider a building frame modeled by a set of rigid, massive flos suppted by flexible, massless columns This provides the simplest representation of a building f the purposes of investigating lateral dynamic responses, as produced by earthquakes strong winds The lateral position of mass i with respect to the ground will be given the variable r i (t), k i is the lateral stiffness of the columns in sty i, and the mass of mass i is m i F a three-sty building, this kind of representation is shown in Figure 1 m 3 r 3 k 3 k m m 1 r r 1 k 1 Figure 1 A simplified model of a building frame with massive rigid flos and light flexible columns Exercise 1: Show that the mass matrix and stiffness matrix f this threesty building can be written: m k 1 + k k 0 M = 0 m 0 and K = k k + k 3 k 3 (1) 0 0 m 3 0 k 3 k 3 F an n-sty building modeled in this way, the mass and stiffness matrices are m m M = m n ()

2 Natural Modes of Vibration and K = k 1 + k k 0 0 k k + k 3 k k 3 k 3 + k 4 k k 4 k n 1 0 k n 1 k n 1 + k n k n (3) k n k n Coupled Second Order Differential Equations The coupled n second der differential equations can be written in matrix fm as: M r(t) + Cṙ(t) + Kr(t) = f(t), r(0) = d o, ṙ(0) = v o, (4) where C is a symmetric non-negative definite damping matrix and f(t) is a vect of n external hizontal fces applied to the n masses Exercise : Write out the three dinary differential equations f n = 3 using the mass and stiffness matrices of equation 1 and a diagonal damping matrix Convince yourself that each of these three differential equation involves two me adjacent flo displacements and because of this, the three differential equations are inter-related coupled 3 Natural Modes F the time-being, assume that the structural system has almost no damping and no external fcing In this case M r(t) + Kr(t) = 0, r(0) = d o, ṙ(0) = v o, (5) and one may presume that the natural responses will be sinusoidal with frequency ω n rad/s and a vect of amplitudes r, r = [ r 1 r r 3 ] T Substituting the displacements and accelerations r(t) = r sin ω n t, r(t) = r ω n sin ω n t, into equation 5 and eliminating sin ω n t we obtain, K r ω nm r = 0, (6) which may be re-written as the generalized eigenvalue problem, [K ω nm] r = 0

3 Natural Modes of Vibration 3 The square of the natural frequencies are the eigenvalues and the amplitudes of natural vibration are the associated eigenvects As long as M and K are positive definite, the natural frequencies will be positive A planar building frame with n rigid flo masses will have n natural frequencies, ω ni, and n natural mode shapes, r i, i = 1,, n F a natural frequency ω ni and natural mode shape r i satisfying equation 6, this equation may be pre-multiplied by r T i to obtain which is called the Rayleigh quotient f mode i ω ni = rt i K r i r T i M r i, (7) The natural modes are mass-thogonal and stiffness-thogonal This means that { 0 i j r T i M r j = i = j m i and so that ω ni = k i /m i { 0 i j r T i K r j = i = j k i, The n natural mode vects r 1,, r n may be arranged column-wise into a modal matrix, R, R = [ r 1 r n ] Exercise 3: Use the WEAVE module entitled Building Vibrations - Natural Modes to investigate the effect of different mass and stiffness distributions on the natural mode shapes F the combinations of mass and stiffness shown in Table 1, use the module to determine natural frequencies and natural mode vects Write the three natural frequencies and sketch the three mode vects f the six cases shown in Table 1 Table 1 Six cases of mass and stiffness distribution case: units m ton m ton m ton k N/mm k N/mm k N/mm

4 Natural Modes of Vibration 4 4 Proptional Damping In general, mode vects that are mass-thogonal and stiffness-thogonal will not also be damping-thogonal In many lightly-damped structures, however, the damping may be approximately modeled by a matrix that is proptional to mass and stiffness, C = αm + βk (8) This representation of damping is called Rayleigh damping proptional damping Exercise 4: Show that if the units of all terms in C are N/mm/s, the units of M is tons and the units of K is N/mm, then the unit of α is (1/seconds) and the unit of β is seconds Exercise 5: Show that if the damping matrix is proptional to the mass and stiffness matrices, then { r T 0 i j i C r j = c i = αm i + βki i = j 5 Modal Codinates At any point in time, the lateral displacement of the flo masses is given by the vect r(t), r(t) = [r 1 (t), r (t),, r n (t)] T Because the set of natural mode vects fills the n-dimensional space of flo displacement vects, the flo displacement vects can be written as a weighted sum of the natural mode vects r 1 (t) r (t) r n (t) r(t) = r 1 q 1 (t) + r q (t) + + r n q n (t), = r 11 r 1 r n1 r 1 (t) r (t) r n (t) q 1(t) + = r 1 r r n r 11 r 1 r 1n r 1 r r n r n1 r n r nn q (t) + + q 1 (t) q (t) q n (t) r 1n r n r nn q n(t), r(t) = R q(t) (9) The vect q(t) is called the vect of modal codinates In a free vibration, q(t) are sinusoidal functions with a single frequency, q 1 (t) oscillates only at the first natural frequency, ω n1, q (t) oscillates only at the second natural frequency, ω n, and so on The free vibration of the masses, r(t), can involve all the modes of vibration, and can oscillate at all of the natural frequencies The elements of the modal codinate vect represent the amount of each mode present in the total response Exercise 6: Show that the n by n matrices R T M R and R T K R are diagonal matrices

5 Natural Modes of Vibration 5 6 Un-coupled Second Order Differential Equations Substituting equation 9 into equation 4 results in M R q(t) + C R q(t) + K Rq(t) = f(t), q(0) = R 1 d o, q(0) = R 1 v o Pre-multiplying both sides of this equation by the transpose of the modal matrix results in: R T M R q(t) + R T C R q(t) + R T K Rq(t) = R T f(t), q(0) = R 1 d o, q(0) = R 1 v o Because the modal matrix is mass-thogonal and stiffness-thogonal, and assuming the modal matrix is also damping-thogonal (eg, the damping is proptional), then the equation above may be written m m m n q 1 (t) q (t) q n(t) + c c c n r 11 r 1 r n1 r 1 r r n r 1n r n r nn q 1 (t) q (t) q n(t) k k kn f 1 (t) f (t) f n(t), q 1 (t) q (t) q n(t) m i q i (t) + c i q i (t) + k i q i (t) = r T i f(t) (10) f each mode i = 1,, n This represents n un-coupled second der differential equations in terms of the modal codinates q i (t) All of the solutions pertaining to a single degree of freedom oscillat are relevant to equation 10 Diving both sides of equation 10 by m i, q i (t) + c i m i q i (t) + k i q m i (t) = 1 r T i m i f(t), i q i (t) + ζ i ω ni q i (t) + ω niq i (t) = 1 m i r T i f(t), where ζ i is the damping ratio associated with mode i, and = ζ i = c i c ci = c i m i k i Exercise 7: Use the WEAVE module entitled Building Vibration - Natural Modes to determine values of α and β that will give approximately 5 percent damping in the first mode and approximately 1 percent damping in the third mode f cases, 4, and 6 shown in Table 1 Does increasing α increase the damping in the lower-frequency modes the higher-frequency modes? Does increasing β increase the damping in the lower-frequency modes the higher-frequency modes?

6 Natural Modes of Vibration 6 7 Initial Displacements and Free Response If the initial displacements, d o are proptional to the i-th natural mode vect, r i, then the free response ensuing from that initial displacement will consist entirely of the i-th mode, and will have no components from other modes Exercise 8: Use the WEAVE module entitled Building Vibration - Natural Modes to investigate this property of natural modes F a fixed distribution of mass and stiffness, set the initial displacement proptional to each of the three mode shape vects, and observe that the free response consists almost entirely of that mode Now select some other set of initial displacements and observe that the free response contains all three modes Print a few plots of these mode-shape and free response plots and discuss the results in a sht paragraph 8 Exple! Exercise 9: Use the WEAVE module entitled Building Vibration - Natural Modes to exple the effects of very large and very small values of mass, damping, and stiffness What happens if you increase α and/ β so that the damping is me than 100 percent? What happens if α is positive and β is slightly negative, and vice-versa? What happens if one of the stiffness coefficients is much much larger than the other coefficients? What happens if one of the stiffness coefficients is slightly negative? What happens if one of the mass coefficients is very negative?

Control of Earthquake Induced Vibrations in Asymmetric Buildings Using Passive Damping

Control of Earthquake Induced Vibrations in Asymmetric Buildings Using Passive Damping Control of Earthquake Induced Vibrations in Asymmetric Buildings Using Passive Damping Rakesh K. Goel, California Polytechnic State University, San Luis Obispo Abstract This paper summarizes the results

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Design of Structures for Earthquake Resistance

Design of Structures for Earthquake Resistance NATIONAL TECHNICAL UNIVERSITY OF ATHENS Design of Structures for Earthquake Resistance Basic principles Ioannis N. Psycharis Lecture 3 MDOF systems Equation of motion M u + C u + K u = M r x g(t) where:

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS

Differential Equations and Linear Algebra Exercises. Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS Differential Equations and Linear Algebra Exercises Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS CHAPTER 1 Linear second order ODEs Exercises 1.1. (*) 1 The following differential

More information

Problem 1: A simple 3-dof shear-building model has the following equation: =

Problem 1: A simple 3-dof shear-building model has the following equation: = MEEN 6 E: Normalization and Damped Response Fall 24 Problem : A simple -dof shear-building model has the following equation: m u k+ k2 k2 u p( t) m u k k k k + + u = p ( t) 2 2 2 2 2 2 m u k k u p( t)

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Lecture 25 Continuous System In the last class, in this, we will

More information

Transient Response Analysis of Structural Systems

Transient Response Analysis of Structural Systems . 21 Transient Response Analysis of Structural Systems 21 1 Chapter 21: TRANSIENT RESPONSE ANALYSIS OF STRUCTURAL SYSTEMS 21 2 21.1 MODAL APPROACH TO TRANSIENT ANALYSIS Consider the following large-order

More information

Solution of Vibration and Transient Problems

Solution of Vibration and Transient Problems . 9 Solution of Vibration and Transient Problems 9 Chapter 9: SOLUTION OF VIBRATION AND TRANSIENT PROBLEMS 9 9. MODAL APPROACH TO TRANSIENT ANALYSIS Consider the following large-order finite element model

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

Structural System, Machines and Load Cases

Structural System, Machines and Load Cases Machine-Induced Vibrations Machine-Induced Vibrations In the following example the dynamic excitation of two rotating machines is analyzed. A time history analysis in the add-on module RF-DYNAM Pro - Forced

More information

University of California at Berkeley Structural Engineering Mechanics & Materials Department of Civil & Environmental Engineering Spring 2012 Student name : Doctoral Preliminary Examination in Dynamics

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS ANALYSIS OF HIGHRISE BUILDING SRUCURE WIH SEBACK SUBJEC O EARHQUAKE GROUND MOIONS 157 Xiaojun ZHANG 1 And John L MEEK SUMMARY he earthquake response behaviour of unframed highrise buildings with setbacks

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

RESPONSE SPECTRUM METHOD FOR ESTIMATION OF PEAK FLOOR ACCELERATION DEMAND

RESPONSE SPECTRUM METHOD FOR ESTIMATION OF PEAK FLOOR ACCELERATION DEMAND RESPONSE SPECTRUM METHOD FOR ESTIMATION OF PEAK FLOOR ACCELERATION DEMAND Shahram Taghavi 1 and Eduardo Miranda 2 1 Senior catastrophe risk modeler, Risk Management Solutions, CA, USA 2 Associate Professor,

More information

Modal analysis of shear buildings

Modal analysis of shear buildings Modal analysis of shear buildings A comprehensive modal analysis of an arbitrary multistory shear building having rigid beams and lumped masses at floor levels is obtained. Angular frequencies (rad/sec),

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports.

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports. Outline of Multi-Degree-of-Freedom Systems (cont.) System Reduction. Truncated Modal Expansion with Quasi-Static Correction. Guyan Reduction. Vibration due to Movable Supports. Earthquake Excitations.

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

DYNAMICS OF MACHINERY 41514

DYNAMICS OF MACHINERY 41514 DYNAMICS OF MACHINERY 454 PROJECT : Theoretical and Experimental Modal Analysis and Validation of Mathematical Models in Multibody Dynamics Holistic Overview of the Project Steps & Their Conceptual Links

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

ANNEX A: ANALYSIS METHODOLOGIES

ANNEX A: ANALYSIS METHODOLOGIES ANNEX A: ANALYSIS METHODOLOGIES A.1 Introduction Before discussing supplemental damping devices, this annex provides a brief review of the seismic analysis methods used in the optimization algorithms considered

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Math 51, Homework-2. Section numbers are from the course textbook.

Math 51, Homework-2. Section numbers are from the course textbook. SSEA Summer 2017 Math 51, Homework-2 Section numbers are from the course textbook. 1. Write the parametric equation of the plane that contains the following point and line: 1 1 1 3 2, 4 2 + t 3 0 t R.

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

ME scope Application Note 28

ME scope Application Note 28 App Note 8 www.vibetech.com 3/7/17 ME scope Application Note 8 Mathematics of a Mass-Spring-Damper System INTRODUCTION In this note, the capabilities of ME scope will be used to build a model of the mass-spring-damper

More information

. Let us consider the point P with coordinates y = R, z =0,0 x L. Evaluate the principal stresses and the principal stress directions.

. Let us consider the point P with coordinates y = R, z =0,0 x L. Evaluate the principal stresses and the principal stress directions. 14 3. The linear 3-D elasticity mathematical model and substituting in (3.94) gives (n 1 ) =1 (n ) ( ) t n =λ 1 ( 1 (n ) ( ) ) + λ (n ) + λ 3 ( ) t n =λ 1 +(λ λ 1 )(n ) +(λ 3 λ 1 )( ). (3.95) Since λ 1

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way.

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way. Chapter 9. Dynamics in 1D 9.4. Coupled motions in 1D 491 only the forces from the outside; the interaction forces cancel because they come in equal and opposite (action and reaction) pairs. So we get:

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Laboratory notes. Torsional Vibration Absorber

Laboratory notes. Torsional Vibration Absorber Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/1-11, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 1B. Damping By Tom Irvine Introduction Recall the homework assignment from Unit 1A. The data.txt time history represented a rocket vehicle dropped from

More information

A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis

A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis International Aerospace Symposium of South Africa 14 to 16 September, 215 Stellenbosch, South Africa Louw van

More information

Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler

Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler Acoustic and Vibration Stability Analysis of Furnace System in Supercritical Boiler Hyuk-Min Kwon 1 ; Chi-Hoon Cho 2 ; Heui-Won Kim 3 1,2,3 Advanced Technology Institute, Hyundai Heavy Industries, Co.,

More information

Dynamics of Structures: Theory and Analysis

Dynamics of Structures: Theory and Analysis 1. Free vibrations 2. Forced vibrations 3. Transient response 4. Damping mechanisms Dynamics of Structures: Theory and Analysis Steen Krenk Technical University of Denmark 5. Modal analysis I: Basic idea

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get Assignment 6 Goldstein 6.4 Obtain the normal modes of vibration for the double pendulum shown in Figure.4, assuming equal lengths, but not equal masses. Show that when the lower mass is small compared

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

Identification of Damping Using Proper Orthogonal Decomposition

Identification of Damping Using Proper Orthogonal Decomposition Identification of Damping Using Proper Orthogonal Decomposition M Khalil, S Adhikari and A Sarkar Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk

More information

Software Verification

Software Verification EXAMPLE 6-6 LINK SUNY BUFFALO DAMPER WITH LINEAR VELOCITY EXPONENT PROBLEM DESCRIPTION This example comes from Section 5 of Scheller and Constantinou 1999 ( the SUNY Buffalo report ). It is a two-dimensional,

More information

Damping Modelling and Identification Using Generalized Proportional Damping

Damping Modelling and Identification Using Generalized Proportional Damping Damping Modelling and Identification Using Generalized Proportional Damping S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk Generalized

More information

Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device

Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device A. Krishnamoorthy Professor, Department of Civil Engineering Manipal

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts

Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts SOUND AND VIBRATION March 1999 Vibration fixtures, at times, have resonant

More information

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION S. Uhlenbrock, University of Rostock, Germany G. Schlottmann, University of

More information

Structural Health Monitoring and Dynamic Identification of Structures: Applications

Structural Health Monitoring and Dynamic Identification of Structures: Applications Structural Health Monitoring and Dynamic Identification of Structures: Applications Computer Lab II, IMSS (017) Ground Work: Definition of the problem & System Modeling when we have full knowledge of the

More information

Practice Final Exam. Solutions.

Practice Final Exam. Solutions. MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be

More information

Two Dimensional Linear Systems of ODEs

Two Dimensional Linear Systems of ODEs 34 CHAPTER 3 Two Dimensional Linear Sstems of ODEs A first-der, autonomous, homogeneous linear sstem of two ODEs has the fm x t ax + b, t cx + d where a, b, c, d are real constants The matrix fm is 31

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

Parametrically Excited Vibration in Rolling Element Bearings

Parametrically Excited Vibration in Rolling Element Bearings Parametrically Ecited Vibration in Rolling Element Bearings R. Srinath ; A. Sarkar ; A. S. Sekhar 3,,3 Indian Institute of Technology Madras, India, 636 ABSTRACT A defect-free rolling element bearing has

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

A Guide to linear dynamic analysis with Damping

A Guide to linear dynamic analysis with Damping A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced

More information

Final Exam December 11, 2017

Final Exam December 11, 2017 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Response Analysis for Multi Support Earthquake Excitation

Response Analysis for Multi Support Earthquake Excitation Chapter 5 Response Analysis for Multi Support Earthquake Excitation 5.1 Introduction It is very important to perform the dynamic analysis for the structure subjected to random/dynamic loadings. The dynamic

More information

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine May 24, 2010

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine   May 24, 2010 SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine Email: tomirvine@aol.com May 4, 010 Introduction The primary purpose of this tutorial is to present the Modal Transient method

More information

Structural Dynamics Prof. P. Banerji Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 1 Introduction

Structural Dynamics Prof. P. Banerji Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 1 Introduction Structural Dynamics Prof. P. Banerji Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 1 Introduction Hello, I am Pradipta Banerji from the department of civil engineering,

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

APPLICATION OF RESPONSE SPECTRUM METHOD TO PASSIVELY DAMPED DOME STRUCTURE WITH HIGH DAMPING AND HIGH FREQUENCY MODES

APPLICATION OF RESPONSE SPECTRUM METHOD TO PASSIVELY DAMPED DOME STRUCTURE WITH HIGH DAMPING AND HIGH FREQUENCY MODES 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 5 APPLICATION OF RESPONSE SPECTRUM METHOD TO PASSIVELY DAMPED DOME STRUCTURE WITH HIGH DAMPING AND HIGH FREQUENCY

More information

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg Stability for Bridge Cable and Cable-Deck Interaction Dr. Maria Rosaria Marsico D.J. Wagg S.A. Neild Introduction The interaction between cables and structure can lead to complex vibration response Cables

More information

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Time Frequency and Wavelet Techniquesc Satish Nagarajaiah Professor of Civil and

More information

Lab #2 - Two Degrees-of-Freedom Oscillator

Lab #2 - Two Degrees-of-Freedom Oscillator Lab #2 - Two Degrees-of-Freedom Oscillator Last Updated: March 0, 2007 INTRODUCTION The system illustrated in Figure has two degrees-of-freedom. This means that two is the minimum number of coordinates

More information

Vibrations: Second Order Systems with One Degree of Freedom, Free Response

Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single

More information

Elementary Linear Algebra

Elementary Linear Algebra Matrices J MUSCAT Elementary Linear Algebra Matrices Definition Dr J Muscat 2002 A matrix is a rectangular array of numbers, arranged in rows and columns a a 2 a 3 a n a 2 a 22 a 23 a 2n A = a m a mn We

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Laboratory handouts, ME 340

Laboratory handouts, ME 340 Laboratory handouts, ME 34 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 6. 214-216 Harry Dankowicz, unless otherwise noted

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4120 Ship Structural Design (P) Lecture 8 - Local and Global Vibratory Response Kul-24.4120 Ship Structures Response Lecture 5: Tertiary Response: Bending

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 5 Torsional Vibrations Lecture - 4 Transfer Matrix Approach

More information

Principal Input and Output Directions and Hankel Singular Values

Principal Input and Output Directions and Hankel Singular Values Principal Input and Output Directions and Hankel Singular Values CEE 629 System Identification Duke University, Fall 2017 1 Continuous-time systems in the frequency domain In the frequency domain, the

More information

Imaginary. Axis. Real. Axis

Imaginary. Axis. Real. Axis Name ME6 Final. I certify that I upheld the Stanford Honor code during this exam Monday December 2, 25 3:3-6:3 p.m. ffl Print your name and sign the honor code statement ffl You may use your course notes,

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 1 Lecture - 10 Methods of Writing Equation of Motion (Refer

More information

Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

More information

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 PROBLEM 1: You are given the lumped parameter dynamic differential equations of motion for a two degree-offreedom model of an automobile suspension system for small

More information

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams V. Lotfi Department of Civil and Environmental Engineering, Amirkabir University, Iran Abstract A new approach is

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

PROJECT 1 DYNAMICS OF MACHINES 41514

PROJECT 1 DYNAMICS OF MACHINES 41514 PROJECT DYNAMICS OF MACHINES 454 Theoretical and Experimental Modal Analysis and Validation of Mathematical Models in Multibody Dynamics Ilmar Ferreira Santos, Professor Dr.-Ing., Dr.Techn., Livre-Docente

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Software Verification

Software Verification EXAMPLE 6-003 LINK GAP ELEMENT PROBLEM DESCRIPTION This example uses a single-bay, single-story rigid frame to test the gap link element. This link element carries compression loads only; it has zero stiffness

More information

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Module - 02 Lecture - 15 Machine Foundations - 3 Hello viewers, In the last class we

More information