Small scale mixing in coastal areas

Size: px
Start display at page:

Download "Small scale mixing in coastal areas"

Transcription

1 Spice in coastal areas 1, Jody Klymak 1, Igor Yashayaev 2 University of Victoria 1 Bedford Institute of Oceanography 2 19 October, 2015

2 Spice Lateral stirring on scales less than the Rossby radius are rarely observed. Labrador Sea has large salinity contracts between the Labrador Current and the main basin. Goal1: Improving understanding of upper ocean by examining transects in the Labrador Sea (Part A).

3 Spice Lateral stirring on scales less than the Rossby radius are rarely observed. Labrador Sea has large salinity contracts between the Labrador Current and the main basin. Goal1: Improving understanding of upper ocean by examining transects in the Labrador Sea (Part A). Goal2: Understanding the mechanisms of the enhanced submesoscale activity in the winter mixed layer using ADCP data (Part B).

4 Moving Vessel Profiler Moving Vessel Profiler Collecting data sets from both shallow (100m) and deep water( Maximum-800m) Primary function: Without the need to stop the vessel Spice Figure: The MVP deployed from a typical vessel collecting three sets of profile data Figure: It shows the path of the Free Fall Fish for a typical cast.

5 Spice Figure: Locations of data with Survey A section noted by the black arrow MVP can capture both lateral and vertical information; Downcasts were used for the ; Vertical and horizontal resolution are 0.5m and 6.5km, respectively; The ship s speed is 6m/s on average.

6 Spice: γ = sgn(t T )(α 2 (T T ) 2 + β 2 (S S) 2 ) 1 2 Spice Figure: Temperature-salinity plot from SurveyA. Color dots indicate distance along the line, with red indicating south and gray shows north. Black curves is the mean for the section used to calculate spice along isopycnals. Figure: a) Salinity and b) temperature along Survey A plotted at the mean depth of the isopycnals with isopycnals contoured in black lines c) Spice,, plotted on isopycnal depths.

7 Spice statistics: Lateral decorrelation length scale The length scales reflect the size of eddies stirring the fluid Spice Figure: Lateral lag correlations for high-passed (λ less than 50km ) spice along isopycnals. Individual traces are in grey, and the average for the depth bin is colored. The short black line represents the decorrelation scale, which is defined as when the mean trace first drop below a lag correlation of 0.1.

8 Spice statistics: Spice spectra Spice Indicate what physical processes are stirring the tracer along isopycnals Figure: Spectra of lateral spice variation based on different depth bins, normalized by large-scale spice gradient. The dashed lines are power law fit over wavenumber range cpkm to 0.04 cpkm. The deep spectra is redder with depth, which indicates that more dissipation of lateral variance with depth The redder spectra in depth is the opposite of the trend predicted by QG/SQG theory What is happened here?

9 Spice statistics: PDF of lateral spice gradient Spice Peaked pdf compared with normal distribution Fontogenesis is acting sharpen small scale gradients. Other spice statistics: Figure: PDF of normalized spice gradient with two depth bins of m and m.

10 Spice statistics: PDF of lateral spice gradient Spice Peaked pdf compared with normal distribution Fontogenesis is acting sharpen small scale gradients. Other spice statistics: Lateral displacement; Figure: PDF of normalized spice gradient with two depth bins of m and m.

11 Spice statistics: PDF of lateral spice gradient Spice Peaked pdf compared with normal distribution Fontogenesis is acting sharpen small scale gradients. Other spice statistics: Lateral displacement; Vertical de-coherence length scales Figure: PDF of normalized spice gradient with two depth bins of m and m.

12 Part B : ADCP Spice

13 Part B: Observational transection Spice N N N N 47.5 N W W W W W Figure: Maps showing LineP line.

14 Part B: Observational results Spice Depth[m] U (Along track) Distance from LineP Depth[m] V (Across track) Distance from LineP Figure: Along track (U) and across track (V) velocities in the upper 500m.

15 Part B: Observational results Spice Power spectrum density (m 3 s 2 ) Cu: Along track power spectra k 2 Cu Wavenumber k x [cpkm] Cv: Across track power spectra k 2 Cv Wavenumber k x [cpkm] Figure: Power spectrum of observed transverse (a) and longitudinal (b) kinetic energy at depth of 152m.

16 Part B: Observational results Helmholtz decomposition: Spice PSD m (a) k m (b) k m (c) k K ψ : non-divergent k 3 K φ : divergent wavenumber[cpkm 1 ] K ψ : non-divergent k 3 K φ : divergent wavenumber[cpkm 1 ] K ψ : non-divergent k 3 K φ : divergent wavenumber[cpkm 1 ] Figure: ADCP KE spectrum for three layers: (a) m, (b) m, and (c) m. The figure shows along-track (blue line) and across-track (green line) KE spectra, and the spectral decomposition into horizontally rotational (red line) and divergent components (cyan line).

17 Whether there is a seasonal cycle for the submesoscale in the upper mixed layer? Spice

18 Spice Whether there is a seasonal cycle for the submesoscale in the upper mixed layer? How the seasonality in the submesoscale turbulence affects the exchanges of the nutrients between the nutrient-depleted mixed layer and the nutrient-rich thermocline?

19 Spice Whether there is a seasonal cycle for the submesoscale in the upper mixed layer? How the seasonality in the submesoscale turbulence affects the exchanges of the nutrients between the nutrient-depleted mixed layer and the nutrient-rich thermocline? Applying these methodology for modelling data (Youyu Lu).

20 Spice

that individual/local amplitudes of Ro can reach O(1).

that individual/local amplitudes of Ro can reach O(1). Supplementary Figure. (a)-(b) As Figures c-d but for Rossby number Ro at the surface, defined as the relative vorticity ζ divided by the Coriolis frequency f. The equatorial band (os-on) is not shown due

More information

Lateral Mixing Progress Report November 8, 2012

Lateral Mixing Progress Report November 8, 2012 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing Progress Report November 8, 2012 Jody Klymak School of Earth and Ocean Sciences University of Victoria P.O.

More information

Decomposing kinetic energy along Line P in the Pacific ocean. Manman Wang B.Sc., Ocean University of China, 2012

Decomposing kinetic energy along Line P in the Pacific ocean. Manman Wang B.Sc., Ocean University of China, 2012 Decomposing kinetic energy along Line P in the Pacific ocean by Manman Wang B.Sc., Ocean University of China, 2012 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master

More information

meso to submesoscale!

meso to submesoscale! meso to submesoscale! horizontal wavenumber spectra! in Drake Passage Cesar B Rocha*! Teresa K Chereskin* Sarah T Gille* Dimitris Menemenlis+ * : SIO, UC San Diego +: JPL, NASA Snapshot of surface relative

More information

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven

More information

Finescale Water-Mass Variability from ARGO Profiling Floats

Finescale Water-Mass Variability from ARGO Profiling Floats DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Finescale Water-Mass Variability from ARGO Profiling Floats Eric Kunze Applied Physics Lab, University of Washington 1013

More information

Lateral Mixing Progress Report November 8, 2012

Lateral Mixing Progress Report November 8, 2012 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing Progress Report November 8, 2012 Jody Klymak School of Earth and Ocean Sciences University of Victoria P.O.

More information

Seismic Reflection Methods for Study of the Water Column

Seismic Reflection Methods for Study of the Water Column Contribution MS number 581 for Encyclopedia of Ocean Sciences Seismic Reflection Methods for Study of the Water Column Ilker Fer Bjerknes Centre for Climate Research, and Geophysical Institute University

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing Eric A. D Asaro APL/UW 1013 NE 40 th Str Seattle, WA 98105 phone: (206) 685-2982 fax: (206) 543-6785 email:

More information

primitive equation simulation results from a 1/48th degree resolution tell us about geostrophic currents? What would high-resolution altimetry

primitive equation simulation results from a 1/48th degree resolution tell us about geostrophic currents? What would high-resolution altimetry Scott 2008: Scripps 1 What would high-resolution altimetry tell us about geostrophic currents? results from a 1/48th degree resolution primitive equation simulation Robert B. Scott and Brian K. Arbic The

More information

SIO 210: Data analysis

SIO 210: Data analysis SIO 210: Data analysis 1. Sampling and error 2. Basic statistical concepts 3. Time series analysis 4. Mapping 5. Filtering 6. Space-time data 7. Water mass analysis 10/8/18 Reading: DPO Chapter 6 Look

More information

SIO 210: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis

SIO 210: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis SIO 210: Data analysis methods L. Talley, Fall 2016 1. Sampling and error 2. Basic statistical concepts 3. Time series analysis 4. Mapping 5. Filtering 6. Space-time data 7. Water mass analysis Reading:

More information

SAMS Gliders: Research Activities

SAMS Gliders: Research Activities SAMS Gliders: Research Activities Mark Inall, Toby Sherwin, Stuart Cunningham Estelle Dumont, Marie Porter, Dmitry Aleynik Scottish Association for Marine Science Scottish Marine Institute Oban PA37 1QA

More information

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 17 Learning objectives: understand the concepts & physics of 1. Ekman layer 2. Ekman transport 3. Ekman pumping 1. The Ekman Layer Scale analyses

More information

Modeling and Parameterizing Mixed Layer Eddies

Modeling and Parameterizing Mixed Layer Eddies Modeling and Parameterizing Mixed Layer Eddies Baylor Fox-Kemper (MIT) with Raffaele Ferrari (MIT), Robert Hallberg (GFDL) Los Alamos National Laboratory Wednesday 3/8/06 Mixed Layer Eddies Part I: Baroclinic

More information

SIO 210 CSP: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis

SIO 210 CSP: Data analysis methods L. Talley, Fall Sampling and error 2. Basic statistical concepts 3. Time series analysis SIO 210 CSP: Data analysis methods L. Talley, Fall 2016 1. Sampling and error 2. Basic statistical concepts 3. Time series analysis 4. Mapping 5. Filtering 6. Space-time data 7. Water mass analysis Reading:

More information

Comparison Figures from the New 22-Year Daily Eddy Dataset (January April 2015)

Comparison Figures from the New 22-Year Daily Eddy Dataset (January April 2015) Comparison Figures from the New 22-Year Daily Eddy Dataset (January 1993 - April 2015) The figures on the following pages were constructed from the new version of the eddy dataset that is available online

More information

Wave vortex decomposition of one-dimensional ship-track data

Wave vortex decomposition of one-dimensional ship-track data J. Fluid Mech. (014), vol. 756, pp. 1007 106. c Cambridge University Press 014 doi:10.1017/jfm.014.488 1007 Wave vortex decomposition of one-dimensional ship-track data Oliver Bühler 1,, Jörn Callies and

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing Eric A. D Asaro APL/UW 1013 NE 40 th Str Seattle, WA 98105 phone: (206) 685-2982 fax: (206) 543-6785 email:

More information

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Ocean Dynamics. The Great Wave off Kanagawa Hokusai Ocean Dynamics The Great Wave off Kanagawa Hokusai LO: integrate relevant oceanographic processes with factors influencing survival and growth of fish larvae Physics Determining Ocean Dynamics 1. Conservation

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing Eric A. D Asaro APL/UW 1013 NE 40 th Str Seattle, WA 98105 phone: (206) 685-2982 fax: (206) 543-6785 email:

More information

CHAPTER 7 Ocean Circulation Pearson Education, Inc.

CHAPTER 7 Ocean Circulation Pearson Education, Inc. CHAPTER 7 Ocean Circulation 2011 Pearson Education, Inc. Types of Ocean Currents Surface currents Deep currents 2011 Pearson Education, Inc. Measuring Surface Currents Direct methods Floating device tracked

More information

Internal Waves in the Vicinity of the Kuroshio Path

Internal Waves in the Vicinity of the Kuroshio Path Internal Waves in the Vicinity of the Kuroshio Path Ren-Chieh Lien Applied Physics Laboratory University of Washington Seattle, Washington 98105 phone: (206) 685-1079 fax: (206) 543-6785 email: lien@apl.washington.edu

More information

Lab 12: El Nino Southern Oscillation

Lab 12: El Nino Southern Oscillation Name: Date: OCN 104: Our Dynamic Ocean Lab 12: El Nino Southern Oscillation Part 1: Observations of the tropical Pacific Ocean during a normal year The National Oceanographic and Atmospheric Administration

More information

A Comparison of Predicted Along-channel Eulerian Flows at Cross- Channel Transects from an EFDC-based Model to ADCP Data in South Puget Sound

A Comparison of Predicted Along-channel Eulerian Flows at Cross- Channel Transects from an EFDC-based Model to ADCP Data in South Puget Sound A Comparison of Predicted Along-channel Eulerian Flows at Cross- Channel Transects from an EFDC-based Model to ADCP Data in South Puget Sound Skip Albertson, J. A. Newton and N. Larson Washington State

More information

Mean Stream-Coordinate Structure of the Kuroshio Extension First Meander Trough

Mean Stream-Coordinate Structure of the Kuroshio Extension First Meander Trough Mean Stream-Coordinate Structure of the Kuroshio Extension First Meander Trough 6 March, 2008 Penelope J. Howe, Kathleen A. Donohue, and D. Randolph Watts Graduate School of Oceanography University of

More information

Submesoscale Routes to Lateral Mixing in the Ocean

Submesoscale Routes to Lateral Mixing in the Ocean DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Submesoscale Routes to Lateral Mixing in the Ocean Amit Tandon Physics Department, UMass Dartmouth 285 Old Westport Rd

More information

Decadal variability in the Kuroshio and Oyashio Extension frontal regions in an eddy-resolving OGCM

Decadal variability in the Kuroshio and Oyashio Extension frontal regions in an eddy-resolving OGCM Decadal variability in the Kuroshio and Oyashio Extension frontal regions in an eddy-resolving OGCM Masami Nonaka 1, Hisashi Nakamura 1,2, Youichi Tanimoto 1,3, Takashi Kagimoto 1, and Hideharu Sasaki

More information

Thermohaline and wind-driven circulation

Thermohaline and wind-driven circulation Thermohaline and wind-driven circulation Annalisa Bracco Georgia Institute of Technology School of Earth and Atmospheric Sciences NCAR ASP Colloquium: Carbon climate connections in the Earth System Tracer

More information

Turbulence and mixing within anticyclonic eddies in the Mediterranean sea during BOUM experiment

Turbulence and mixing within anticyclonic eddies in the Mediterranean sea during BOUM experiment Turbulence and mixing within anticyclonic eddies in the Mediterranean sea during BOUM experiment Yannis Cuypers, Pascale Bouruet-Aubertot, Claudie Marec, Jean-Luc Fuda BOUM Objectives Biogeochimie de l'oligotrophie

More information

Baltic Sea Research Institute

Baltic Sea Research Institute Baltic Sea Research Institute Warnemuende (IOW) Cruise Report No. 44/96/ 04 R/V "A.v.Humboldt" MESODYN Cruise 01 to 12 March 1996 Stolpe Furrow / Baltic Sea This report is based on preliminary data and

More information

Wave vortex decomposition of one-dimensional shiptrack

Wave vortex decomposition of one-dimensional shiptrack Wave vortex decomposition of one-dimensional shiptrack data The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Generation and Evolution of Internal Waves in Luzon Strait

Generation and Evolution of Internal Waves in Luzon Strait DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon Strait Ren-Chieh Lien Applied Physics Laboratory University of Washington

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Summary of the climatic responses to the Gulf Stream. On the offshore flank of the SST front (black dashed curve) of the Gulf Stream (green long arrow), surface wind convergence associated with

More information

Submesoscale Dynamics of the South China Sea

Submesoscale Dynamics of the South China Sea DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Submesoscale Dynamics of the South China Sea Craig M. Lee Applied Physics Laboratory, 1013 NE 40 th St, Seattle, WA 98105

More information

Scalable Lateral Mixing and Coherent Turbulence DRI: Use of an AUV to Quantify Submesoscale Mixing Processes

Scalable Lateral Mixing and Coherent Turbulence DRI: Use of an AUV to Quantify Submesoscale Mixing Processes DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scalable Lateral Mixing and Coherent Turbulence DRI: Use of an AUV to Quantify Submesoscale Mixing Processes Louis Goodman

More information

FRICTION-DOMINATED WATER EXCHANGE IN A FLORIDA ESTUARY

FRICTION-DOMINATED WATER EXCHANGE IN A FLORIDA ESTUARY FRICTION-DOMINATED WATER EXCHANGE IN A FLORIDA ESTUARY By KIMBERLY ARNOTT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

Simulation of Lagrangian Drifters in the Labrador Sea

Simulation of Lagrangian Drifters in the Labrador Sea Simulation of Lagrangian Drifters in the Labrador Sea Roland W. Garwood Jr. and Ramsey R. Harcourt Department of Oceanography Naval Postgraduate School 833 Dyer Rd Rm 328 Monterey, CA 93943-5193 phone:

More information

DIAMIX an experimental study of diapycnal deepwater mixing in the virtually tideless Baltic Sea

DIAMIX an experimental study of diapycnal deepwater mixing in the virtually tideless Baltic Sea BOREAL ENVIRONMENT RESEARCH 7: 363 369 ISSN 1239-6095 Helsinki 23 December 2002 2002 DIAMIX an experimental study of diapycnal deepwater mixing in the virtually tideless Baltic Sea Anders Stigebrandt 1),

More information

Loss of Gaussianity in Oceanic Turbulent Flows with Internal Waves and Solitons

Loss of Gaussianity in Oceanic Turbulent Flows with Internal Waves and Solitons Loss of Gaussianity in Oceanic Turbulent Flows with Internal Waves and Solitons Peter C. Chu Naval Ocean Analysis and Prediction Laboratory, Naval Postgraduate School Monterey, California 93940 1 Abstract

More information

the 2 past three decades

the 2 past three decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2840 Atlantic-induced 1 pan-tropical climate change over the 2 past three decades 3 4 5 6 7 8 9 10 POP simulation forced by the Atlantic-induced atmospheric

More information

Donald Slinn, Murray D. Levine

Donald Slinn, Murray D. Levine 2 Donald Slinn, Murray D. Levine 2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,

More information

Tracer transport and meridional overturn in the equatorial ocean

Tracer transport and meridional overturn in the equatorial ocean OFES workshops, February 2006 Tracer transport and meridional overturn in the equatorial ocean Akio Ishida with Yoshikazu Sasai, Yasuhiro Yamanaka, Hideharu Sasaki, and the OFES members Chlorofluorocarbon

More information

Compensation and Alignment of Thermohaline Gradients in the Ocean Mixed Layer

Compensation and Alignment of Thermohaline Gradients in the Ocean Mixed Layer 2214 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 33 Compensation and Alignment of Thermohaline Gradients in the Ocean Mixed Layer RAFFAELE FERRARI Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX)

Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX) Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX) Toshio Suga (JAMSTEC/Tohoku Univ.) & the INBOX Group: S. Hosoda, R. Inoue, K. Sato, K. Shinya, T. Kobayashi,

More information

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow Abstract Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow Stephanne Taylor and David Straub McGill University stephanne.taylor@mail.mcgill.ca The effect of forced

More information

Chapter 6. Antarctic oceanography

Chapter 6. Antarctic oceanography Chapter 6 Antarctic oceanography The region of the world ocean bordering on Antarctica is unique in many respects. First of all, it is the only region where the flow of water can continue all around the

More information

2 Observing the Ocean Ships Navigation The Electronics Era 16

2 Observing the Ocean Ships Navigation The Electronics Era 16 Contents Preface xiii 1 Introduction 1 2 Observing the Ocean 4 2.1 Ships 5 2.2 Navigation 6 2.3 The Preelectronics Era 6 2.4 The Electronics Era 16 2.5 The Rise of Satellites 27 2.6 Intermediate- and Long-Duration

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Acoustical Oceanography Session 2aAO: Seismic Oceanography 2aAO8. Current-eddy

More information

The California current is the eastern boundary current that lies to the west of

The California current is the eastern boundary current that lies to the west of I. INTORDUCTION A. California Current System The California current is the eastern boundary current that lies to the west of North America. The California current flows from north, Washington, to south,

More information

Winds and Currents in the Oceans

Winds and Currents in the Oceans Winds and Currents in the Oceans Atmospheric Processes Density of air is controlled by temperature, pressure, and moisture content. 1. Warm air is less dense than cold air and moist air is less dense than

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

The role of the midlatitude ocean in sub-seasonal prediction

The role of the midlatitude ocean in sub-seasonal prediction The role of the midlatitude ocean in sub-seasonal prediction R. Saravanan Xiaohui Ma, Xue Liu, J. Steinweg-Woods J. Kurian, R. Montuoro, P. Chang, I. Szunyogh Yinglai Jia, Ocean University of China J.

More information

Homework 5: Background Ocean Water Properties & Stratification

Homework 5: Background Ocean Water Properties & Stratification 14 August 2008 MAR 110 HW5: Ocean Properties 1 Homework 5: Background Ocean Water Properties & Stratification The ocean is a heterogeneous mixture of water types - each with its own temperature, salinity,

More information

J2.6 SONAR MEASUREMENTS IN THE GULF STREAM FRONT ON THE SOUTHEAST FLORIDA SHELF COORDINATED WITH TERRASAR-X SATELLITE OVERPASSES

J2.6 SONAR MEASUREMENTS IN THE GULF STREAM FRONT ON THE SOUTHEAST FLORIDA SHELF COORDINATED WITH TERRASAR-X SATELLITE OVERPASSES J2.6 SONAR MEASUREMENTS IN THE GULF STREAM FRONT ON THE SOUTHEAST FLORIDA SHELF COORDINATED WITH TERRASAR-X SATELLITE OVERPASSES Chris Maingot 1, Alexander Soloviev 1, Silvia Matt 1, Mikhail Gilman 1,

More information

Physical Oceanographic Context of Seamounts. Pierre Dutrieux Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawai'i

Physical Oceanographic Context of Seamounts. Pierre Dutrieux Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawai'i Physical Oceanographic Context of Seamounts Pierre Dutrieux Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawai'i PEW Workshop, October 2007 Seamounts: definitions submarine topographic

More information

Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders

Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Ayah Lazar 1,2 Andrew Thompson 2 Gillian Damerell 3 Karen Heywood 3 Christian Buckingham 4 Alberto Naveira Garabato

More information

Cruise and Data Report: R/V Shana Rae operations in support of April 2015 AirSWOT campaign, April 17-20, 2015

Cruise and Data Report: R/V Shana Rae operations in support of April 2015 AirSWOT campaign, April 17-20, 2015 Cruise and Data Report: R/V Shana Rae operations in support of April 2015 AirSWOT campaign, April 17-20, 2015 J. Thomas Farrar, Benjamin Hodges, Sebastien Bigorre Physical Oceanography Department Woods

More information

National Oceanography Centre. Research & Consultancy Report No. 36

National Oceanography Centre. Research & Consultancy Report No. 36 National Oceanography Centre Research & Consultancy Report No. 36 State of the eastern North Atlantic subpolar gyre: The Extended Ellett Line Programme Annual Report No. 1 N P Holliday 1, S Cunningham

More information

On the horizontal variability of the upper ocean

On the horizontal variability of the upper ocean On the horizontal variability of the upper ocean Daniel L. Rudnick Scripps Institution of Oceanography, La Jolla, California Abstract. The last decade has seen a tremendous increase in the number and quality

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the

Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the Antarctic Circumpolar Current connects the ocean basins, establishing

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

The Physical Context for Thin Layers in the Coastal Ocean

The Physical Context for Thin Layers in the Coastal Ocean The Physical Context for Thin Layers in the Coastal Ocean David M. Fratantoni Physical Oceanography Department Woods Hole Oceanographic Institution Woods Hole, MA 02543 phone: (508) 289-2908 fax: (508)

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

2. Measurements of suspended sediment concentrations from ADCP backscatter in strong currents

2. Measurements of suspended sediment concentrations from ADCP backscatter in strong currents 2. Measurements of suspended sediment concentrations from ADCP backscatter in strong currents Lucas M. Merckelbach 1 and H. Ridderinkhof 2 1 Helmholtz-Zentrum Geesthacht, D-21502 Germany, email: lucas.merckelbach@hzg.de

More information

Carbon pathways in the South Atlantic

Carbon pathways in the South Atlantic Carbon pathways in the South Atlantic Olga T. Sato, Ph.D. Paulo Polito, Ph.D. olga.sato@usp.br - polito@usp.br Oceanographic Institute University of São Paulo Olga Sato and Paulo Polito (IOUSP) Carbon

More information

Early Student Support for a Process Study of Oceanic Responses to Typhoons

Early Student Support for a Process Study of Oceanic Responses to Typhoons DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Early Student Support for a Process Study of Oceanic Responses to Typhoons Ren-Chieh Lien Applied Physics Laboratory University

More information

Water mass formation, subduction, and the oceanic heat budget

Water mass formation, subduction, and the oceanic heat budget Chapter 5 Water mass formation, subduction, and the oceanic heat budget In the first four chapters we developed the concept of Ekman pumping, Rossby wave propagation, and the Sverdrup circulation as the

More information

SMS 303: Integrative Marine

SMS 303: Integrative Marine SMS 303: Integrative Marine Sciences III Instructor: E. Boss, TA: A. Palacz emmanuel.boss@maine.edu, 581-4378 5 weeks & topics: diffusion, mixing, tides, Coriolis, and waves. Pre-class quiz. Mixing: What

More information

Eddy-Mixed Layer Interactions in the Ocean

Eddy-Mixed Layer Interactions in the Ocean Eddy-Mixed Layer Interactions in the Ocean The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Ferrari,

More information

The production and dissipation of compensated thermohaline variance by mesoscale stirring

The production and dissipation of compensated thermohaline variance by mesoscale stirring The production and dissipation of compensated thermohaline variance by mesoscale stirring K. Shafer Smith Center for Atmosphere Ocean Science Courant Institute of Mathematical Sciences New York University

More information

Observation of Oceanic Structure around Tosa-Bae Southeast of Shikoku

Observation of Oceanic Structure around Tosa-Bae Southeast of Shikoku Journal of Oceanography Vol. 50, pp. 543 to 558. 1994 Observation of Oceanic Structure around Tosa-Bae Southeast of Shikoku YOSHIHIKO SEKINE, HARUKI OHWAKI and MOTOYA NAKAGAWA Institute of Oceanography,

More information

Field Observations of an Internal Ship Wake in the Saguenay Fjord

Field Observations of an Internal Ship Wake in the Saguenay Fjord Field Observations of an Internal Ship Wake in the Saguenay Fjord Daniel Bourgault, Institut des sciences de la mer de Rimouski, Rimouski, Québec, Canada Peter Galbraith, Maurice Lamontagne Institute,

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

Geostrophic Current Analysis through the CenCal Box

Geostrophic Current Analysis through the CenCal Box Geostrophic Current Analysis through the CenCal Box LT Sean P. Yemm OC357 Winter Quarter, 23 I. Introduction A. California Current System The California Current System is composed of numerous jets, filaments,

More information

Bay of Bengal Surface and Thermocline and the Arabian Sea

Bay of Bengal Surface and Thermocline and the Arabian Sea DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Bay of Bengal Surface and Thermocline and the Arabian Sea Arnold L. Gordon Lamont-Doherty Earth Observatory of Columbia

More information

Passive Scalars in Stratified Turbulence

Passive Scalars in Stratified Turbulence GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, Passive Scalars in Stratified Turbulence G. Brethouwer Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden E. Lindborg Linné Flow Centre,

More information

Using Dye to Study Lateral Mixing in the Ocean: 100 m to 1 km

Using Dye to Study Lateral Mixing in the Ocean: 100 m to 1 km DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Using Dye to Study Lateral Mixing in the Ocean: 100 m to 1 km Murray D. Levine Oregon State University College of Earth,

More information

The World Ocean. Pacific Ocean 181 x 10 6 km 2. Indian Ocean 74 x 10 6 km 2. Atlantic Ocean 106 x 10 6 km 2

The World Ocean. Pacific Ocean 181 x 10 6 km 2. Indian Ocean 74 x 10 6 km 2. Atlantic Ocean 106 x 10 6 km 2 The World Ocean The ocean and adjacent seas cover 70.8% of the surface of Earth, an area of 361,254,000 km 2 Pacific Ocean 181 x 10 6 km 2 Indian Ocean 74 x 10 6 km 2 Atlantic Ocean 106 x 10 6 km 2 Oceanic

More information

Equatorial Deep Jets and Abyssal Mixing in the Indian Ocean

Equatorial Deep Jets and Abyssal Mixing in the Indian Ocean APRIL 2002 DENGLER AND QUADFASEL 1165 Equatorial Deep Jets and Abyssal Mixing in the Indian Ocean MARCUS DENGLER Institut für Meereskunde an der Universität Kiel, Kiel, Germany DETLEF QUADFASEL Niels Bohr

More information

Parameterizing Eddy Heat Flux in a 1/10 Ocean. Simulation: A Wavenumber Perspective

Parameterizing Eddy Heat Flux in a 1/10 Ocean. Simulation: A Wavenumber Perspective Parameterizing Eddy Heat Flux in a 1/10 Ocean Simulation: A Wavenumber Perspective Alexa Griesel Sarah T. Gille Janet Sprintall Julie L. McClean Scripps Institution of Oceanography, La Jolla Mathew E.

More information

ROLES OF THE OCEAN MESOSCALE IN THE LATERAL SUPPLY OF MASS, HEAT, CARBON AND NUTRIENTS TO THE NORTHERN HEMISPHERE SUBTROPICAL GYRE

ROLES OF THE OCEAN MESOSCALE IN THE LATERAL SUPPLY OF MASS, HEAT, CARBON AND NUTRIENTS TO THE NORTHERN HEMISPHERE SUBTROPICAL GYRE ROLES OF THE OCEAN MESOSCALE IN THE LATERAL SUPPLY OF MASS, HEAT, CARBON AND NUTRIENTS TO THE NORTHERN HEMISPHERE SUBTROPICAL GYRE AYAKO YAMAMOTO 1*, JAIME B. PALTER 1,2, CAROLINA O. DUFOUR 1,3, STEPHEN

More information

Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown)

Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown) Lagrangian Statistics in Nonhydrostatic and QG turbulence Baylor Fox-Kemper (Brown) LAPCOD, Schoodic Pt., ME 7/28/15 Sponsor: GoMRI/CARTHE P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P.

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Analysis of Subsurface Velocity Data from the Arctic Ocean

Analysis of Subsurface Velocity Data from the Arctic Ocean Analysis of Subsurface Velocity Data from the Arctic Ocean Albert J. Plueddemann 202A Clark Lab, MS-29 Woods Hole Oceanographic Institution Woods Hole, MA 02541-1541 ph: (508) 289-2789, fax: (508) 457-2163

More information

A multi-proxy study of planktonic foraminifera to identify past millennialscale. climate variability in the East Asian Monsoon and the Western Pacific

A multi-proxy study of planktonic foraminifera to identify past millennialscale. climate variability in the East Asian Monsoon and the Western Pacific This pdf file consists of all pages containing figures within: A multi-proxy study of planktonic foraminifera to identify past millennialscale climate variability in the East Asian Monsoon and the Western

More information

5. Two-layer Flows in Rotating Channels.

5. Two-layer Flows in Rotating Channels. 5. Two-layer Flows in Rotating Channels. The exchange flow between a marginal sea or estuary and the open ocean is often approximated using two-layer stratification. Two-layer models are most valid when

More information

How to form halocline water?

How to form halocline water? How to form halocline water? Atlantic water - cannot form Halocline water simply by mixing (Aagaard, 1981) Surface Water Adapted from Steele and Boyd, 1998 ADVECTIVE HC Temp Fresh Salty Aagaard et al,

More information

Lecture 20 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY

Lecture 20 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 20 Learning objectives: should be able to apply mixed layer temperature equation to explain observations; understand buoyancy forcing & salinity

More information

Observation and dynamics of baroclinic eddies southeast of Okinawa Island

Observation and dynamics of baroclinic eddies southeast of Okinawa Island Observation and dynamics of baroclinic eddies southeast of Okinawa Island Xiao-Hua Zhu 1, Jea-Hun Park 2 and Daji Huang 1 1 Second Institute of Oceanography, State Oceanic Administration, China 2 Graduate

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Assessment of the performance of a turbulence closure model: along the tidally-influenced Kaipara River to the estuary, NZ

Assessment of the performance of a turbulence closure model: along the tidally-influenced Kaipara River to the estuary, NZ Assessment of the performance of a turbulence closure model: along the tidally-influenced Kaipara River to the estuary, NZ Berengere S. Dejeans 1, Julia C. Mullarney 2, Iain T. MacDonald 3 and Glen M.

More information

Using a Broadband ADCP in a Tidal Channel. Part II: Turbulence

Using a Broadband ADCP in a Tidal Channel. Part II: Turbulence 1568 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 16 Using a Broadband ADCP in a Tidal Channel. Part II: Turbulence YOUYU LU* AND ROLF G. LUECK School of Earth and Ocean Sciences, University of

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information