Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders

Size: px
Start display at page:

Download "Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders"

Transcription

1 Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Ayah Lazar 1,2 Andrew Thompson 2 Gillian Damerell 3 Karen Heywood 3 Christian Buckingham 4 Alberto Naveira Garabato 4 Liam Brannigan 5 1 National Institute of Oceanography, IOLR 2 California Institute of Technology 3 University of East Anglia 4 National Oceanography Centre, Southampton 5 Oxford University

2 What is the Ocean Boundary Surface Layer? (Mixed Layer) Eastern-northern Pacific along 14 o W Ferrari and Rudnick, 2 2

3 What is the Ocean Boundary Surface Layer? (Mixed Layer) Wind Buoyancy flux: Net Heat Evaporation/ Percipitation 3

4 What is the Ocean Boundary Surface Layer? (Mixed Layer) Wind Buoyancy flux: Net Heat Evaporation/ Percipitation B surf = g Q C p + g (E P )S Q surf = Q + Q fresh 4

5 What is the Ocean Boundary Surface Layer? (Mixed Layer) Wind Buoyancy flux: Heat Fresh water 3D turbulence 1 m from Rafael Ferrari 5

6 Why do we care about the upper ocean? Heat/gas/momentum fluxes Air/Sea fluxes (heat, gas) - fast Mixed Layer/Deep Ocean fluxes (heat, gas) - slow This is the part of the ocean that the atmosphere sees 6

7 Why do we care about the upper ocean? Biology - Phytoplankton Winter low light & heat low phyt. high nutrient Spring increase light & heat increase phyt. decrease nutrient Summer high light & heat decrease phyt. low nutrient Autumn decrease light & heat low phyt. increase nutrient light Phytoplankton (Dead) Nutrients 7

8 BUT there is spatial variability 8 NASA Ocean Color image gallery

9 Baroclinic instability r h b Warm Eddy overturning stream function Cold H N = b z deformation radius L d = NH f 9

10 BUT there is spatial variability 1 NASA Ocean Color image gallery

11 Submesocale turbulence Turbulence emerges at smaller scales Sea Surface Temperature 6 km resolution.75 km resolution [km] [km] Capet et al., 28 [km] [km] 11

12 Mixed layer baroclinic instability Ri & 1 b x Hot x Cold h x Fox-Kemper et al., 28 deformation radius N = b z L d = NH f 12

13 Mixed layer baroclinic instability Ri & 1 b x Hot x Cold h = Ch 2 rb k f µ(z) µ(z) 1 C.6 =.6 b xh 2 f x Fox-Kemper et al., 28 B BCI =.6 b xh 2 f b x Q BCI =.6 b2 xh 2 f C p g Always stratifying 13

14 Wind Driven Flux L.N. Thomas et al. / Deep-Sea Research II 91 (213) y(m) z (m) Down-front wind Ekman Thermal Wind Surface heat flux r h b -16 h (m) Thomas et al. (213) x (km) Fig. 4. Schematic of the LES configuration. Ekman buoyancy flux B Ek = 2 2 Q Ek = b x y f C p g h (m) w f k r h b Q Ek < Q Ek > destratifying (cooling) stratifying (heating)

15 Total Equivalent Heat Flux Q tot = Q heat + Q fresh + Q BCI + Q Ek Surface (One dimensional) Horizontal gradients 15

16 Inertial/Symmetric/Gravitational instability Ri < 1 Instability occurs when: fq < q =(fk + r u) rb Ertel potential vorticity q =(f + )N 2 +(w y v z )b x +(u z w x )b y q vert q hor Assuming thermal wind balance (u z,v z ) ( b y,b x )/f q hor 1/f r h b 2 q =(f + )N 2 1/f r h b 2 16

17 Inertial/Symmetric/Gravitational instability Ri < 1 Instability occurs when: fq < q =(fk + r u) rb Ertel potential vorticity q =(f + )N 2 1/f r h b 2 q vert q hor N 2 < Gravitational instability 17

18 Inertial/Symmetric/Gravitational instability Ri < 1 Instability occurs when: fq < q =(fk + r u) rb Ertel potential vorticity q =(f + )N 2 1/f r h b 2 q vert q hor q ver > q hor /f < 1 Inertial instability 18

19 Inertial/Symmetric/Gravitational instability Ri < 1 Instability occurs when: fq < q =(fk + r u) rb Ertel potential vorticity q =(f + )N 2 1/f r h b 2 q vert q hor q hor > q ver Symmetric instability 19

20 Inertial/Symmetric/Gravitational instability Ri < 1 (Ri < f/ g ) Thomas et al. (213) Ri = f 2 N 2 r h b 2 2

21 OSMOSIS: Ocean Surface Mixing, Ocean Submesocale Interaction Study Year-long study of seasonal variations in upper ocean turbulence at high resolution SST log(eke) Sept. 212 Sept. 213

22 OSMOSIS: Ocean Surface Mixing, Ocean Submesocale Interaction Study Year-long study of seasonal variations in upper ocean turbulence at high resolution SST Depth 9 Moorings

23 OSMOSIS - Gliders Two gliders throughout the year 3 deployments moorings( SG566((Sep(to(Jan)( SG52( SG566((Apr(to(Sep)( White(blobs(are(GPS(posi<ons( every(<me(a(glider(surfaces.( sampling temperature, salinity, pressure, dissolved oxygen, dive-averaged currents, CDOM fluorescence, chlorophyll fluorescence, optical backscatter, photosynthetically available radiation

24 Example Data Salinity Buoyancy [m s-2] Depth (m) x Depth (m) Time (days) Time (days after 1/9/212) 1 3 x Time (days) Time (days after 1/9/212) 1

25 Buoyancy - time series Autumn b [ms 2 ] x pressure time since 1/9/212 Winter x pressure time since 1/9/212 Spring-Summer x pressure time since 1/9/212

26 Potential Vorticity from Glider Data Ri < 1 Instability occurs when: fq < q =(fk + r u) rb Ertel potential vorticity q =(f + )N 2 +(w y v z )b x +(u z w x )b y q vert q hor = v x u y Glider path v z = b x /f q =(f + v x )N 2 b 2 x/f 26

27 Symmetric Instability Example 23/12/212 SST and glider Temperature Salinity Latitude Longitude Depth (m) Longitude Longtiude Longitude Longitude x x Depth (m) Longitude Latitude b [ms 2 ] q [1 9 s 3 ] log 1 (Ri 1 ) Latitude 1

28 Potential Vorticity Autumn q [1 9 s 3 ] Winter Spring-Summer

29 Lateral Buoyancy gradient Autumn Winter Spring-Summer

30 Instabilities throughout the year Autumn Winter Spring-Summer Autumn - mostly gravitational instability Winter - symmetric and mixed instability Late Spring/Summer- Stable

31 Total Equivalent Heat Flux - Restratification Q tot = Q heat + Q fresh + Q BCI + Q Ek Surface (One dimensional) Horizontal gradients L.N. Thomas et al. / Deep-Sea Research II 91 (213) y(m) z (m) Thermal Wind ML Baroclinic Instability x (km) Ekman Buoyancy Flux Fig. 4. Schematic of the LES configuration. 31 4

32 Winter - Restratification processes Q BCI =.6 b2 xh 2 f C p g Q Ek = b x y f C p g

33 Winter - Restratification processes Strong positive buoyancy forcing (BCI) > Stable stratification. Persistent negative forcing > Gravitational instability.

34 Winter - Restratification processes Forcing due to submesoscale fronts can reverse the sign of the equivalent surface buoyancy forcing up to 25% of the time during the winter.

35 Winter - Restratification processes Mean mixed-layer depth is only weakly dependent on the surface heat flux (black squares). Shallow MLDs are associated with the strongest total fluxes (red circles), both positive and negative.

36 Winter - Restratification processes Mean mixed-layer depth is only weakly dependent on the surface heat flux (black squares). Shallow MLDs are associated with the strongest total fluxes (red circles), both positive and negative.

37 Winter - Restratification processes Q Ek << Mean mixed-layer depth is only weakly dependent on the surface heat flux (black squares). Shallow MLDs are associated with the strongest total fluxes (red circles), both positive and negative.

38 Winter - Restratification processes Q tot = Q surf + Q BCI + Q Ek Q BCI = Q Ek Q Ek = b x y f C p g Q BCI =.6 b2 xh 2 f C p g h max =4 r y b x h = 255 m

39 Winter - Restratification processes - Negative PV instabilities Significant SI events coincide with low values of h/h. The reduction in h/h is not caused by an increase in H >SI also has an active role in modifying the stratification of the mixed layer

40 Summary Submesoscale fronts have a significant impact on upper ocean stratification (Both BCI and SI likely contribute). Submesoscale motions, with horizontal scales of 5-1km are ubiquitous in the open-ocean! Throughout the year. Seasonal cycle in amplitude of mixed layer lateral buoyancy gradients: elevated in fall. Seasonal cycle of negative PV instabilities - 1. Gravitational Instability in the Autumn 2. Symmetric and mixed instability in Winter 3. Stable in Spring-Summer Intermittentally forcing is significantly larger than the surface forcing (In winter the total flux is positive 25% of the time). 4

Modeling and Parameterizing Mixed Layer Eddies

Modeling and Parameterizing Mixed Layer Eddies Modeling and Parameterizing Mixed Layer Eddies Baylor Fox-Kemper (MIT) with Raffaele Ferrari (MIT), Robert Hallberg (GFDL) Los Alamos National Laboratory Wednesday 3/8/06 Mixed Layer Eddies Part I: Baroclinic

More information

Capabilities of Ocean Mixed Layer Models

Capabilities of Ocean Mixed Layer Models Capabilities of Ocean Mixed Layer Models W.G. Large National Center for Atmospheric Research Boulder Co, USA 1. Introduction The capabilities expected in today s state of the art models of the ocean s

More information

Turbulence and the Spring Phytoplankton Bloom

Turbulence and the Spring Phytoplankton Bloom Turbulence and the Spring Phytoplankton Bloom Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Collaborators: Sophia Merrifield and John Taylor Toronto, February 2, 2012 Phytoplankton Bloom

More information

that individual/local amplitudes of Ro can reach O(1).

that individual/local amplitudes of Ro can reach O(1). Supplementary Figure. (a)-(b) As Figures c-d but for Rossby number Ro at the surface, defined as the relative vorticity ζ divided by the Coriolis frequency f. The equatorial band (os-on) is not shown due

More information

Symmetric instability in the Gulf Stream

Symmetric instability in the Gulf Stream Symmetric instability in the Gulf Stream Leif N. Thomas a,, John R. Taylor b,ra aeleferrari c, Terrence M. Joyce d a Department of Environmental Earth System Science,Stanford University b Department of

More information

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Instructor: Leif Thomas TA: Gonçalo Zo Zo Gil http://pangea.stanford.edu/courses/eess146bweb/ Course Objectives Identify and characterize

More information

What governs the location of the Southern Ocean deep winter mixing in CESM

What governs the location of the Southern Ocean deep winter mixing in CESM NSF NCAR WYOMING SUPERCOMPUTER CENTER DOE SCIDAC FUNDED PROJECT What governs the location of the Southern Ocean deep winter mixing in CESM Justin Small Dan Whitt Alice DuVivier Matt Long Acknowledging:

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

Antarctic Circumpolar Current:

Antarctic Circumpolar Current: Taking the Circumpolar out of the Antarctic Circumpolar Current: The ACC and the OC University of Washington, Program on Climate Change 2016 Summer Institute @ Friday Harbor Marine Lab Andrew Thompson,

More information

Seasonal variations of vertical structure in the deep waters of the Southern Caspian Sea

Seasonal variations of vertical structure in the deep waters of the Southern Caspian Sea 278 Research in Marine Sciences Volume 3, Issue 1, 2018 Pages 278-286 Seasonal variations of vertical structure in the deep waters of the Southern Caspian Sea Somayeh Nahavandian 1,*, and Alireza Vasel

More information

A modeling study of the North Pacific shallow overturning circulation. Takao Kawasaki, H. Hasumi, 2 M. Kurogi

A modeling study of the North Pacific shallow overturning circulation. Takao Kawasaki, H. Hasumi, 2 M. Kurogi PICES 2011 Annual Meeting, Khabarovsk, Russia A modeling study of the North Pacific shallow overturning circulation 1 Takao Kawasaki, H. Hasumi, 2 M. Kurogi 1 Atmosphere and Ocean Research Institute, University

More information

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Ocean Dynamics. The Great Wave off Kanagawa Hokusai Ocean Dynamics The Great Wave off Kanagawa Hokusai LO: integrate relevant oceanographic processes with factors influencing survival and growth of fish larvae Physics Determining Ocean Dynamics 1. Conservation

More information

Eddy-Mixed Layer Interactions in the Ocean

Eddy-Mixed Layer Interactions in the Ocean Eddy-Mixed Layer Interactions in the Ocean The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Ferrari,

More information

Ocean fronts trigger high latitude phytoplankton blooms

Ocean fronts trigger high latitude phytoplankton blooms GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, 1 2 Ocean fronts trigger high latitude phytoplankton blooms J. R. Taylor, 1, R. Ferrari, 2 1 Department of Applied Mathematics and Theoretical

More information

The World Ocean. Pacific Ocean 181 x 10 6 km 2. Indian Ocean 74 x 10 6 km 2. Atlantic Ocean 106 x 10 6 km 2

The World Ocean. Pacific Ocean 181 x 10 6 km 2. Indian Ocean 74 x 10 6 km 2. Atlantic Ocean 106 x 10 6 km 2 The World Ocean The ocean and adjacent seas cover 70.8% of the surface of Earth, an area of 361,254,000 km 2 Pacific Ocean 181 x 10 6 km 2 Indian Ocean 74 x 10 6 km 2 Atlantic Ocean 106 x 10 6 km 2 Oceanic

More information

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven

More information

Submesoscale Routes to Lateral Mixing in the Ocean

Submesoscale Routes to Lateral Mixing in the Ocean DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Submesoscale Routes to Lateral Mixing in the Ocean Amit Tandon Physics Department, UMass Dartmouth 285 Old Westport Rd

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Boundary layer controls on extratropical cyclone development

Boundary layer controls on extratropical cyclone development Boundary layer controls on extratropical cyclone development R. S. Plant (With thanks to: I. A. Boutle and S. E. Belcher) 28th May 2010 University of East Anglia Outline Introduction and background Baroclinic

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

Parameterizations with and without Climate Process Teams

Parameterizations with and without Climate Process Teams Parameterizations with and without Climate Process Teams Baylor Fox-Kemper Brown University, DEEP Sciences Mixed Layer Eddy Sponsors: NSF OCE-0612143, OCE-0612059, OCE-0825376, DMS-0855010, and OCE-0934737

More information

Ocean surface circulation

Ocean surface circulation Ocean surface circulation Recall from Last Time The three drivers of atmospheric circulation we discussed: Differential heating Pressure gradients Earth s rotation (Coriolis) Last two show up as direct

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO3053 1 2 Contribution of topographically-generated submesoscale turbulence to Southern Ocean overturning 3

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

Lecture 9+10: Buoyancy-driven flow, estuarine circulation, river plume, Tidal mixing, internal waves, coastal fronts and biological significance

Lecture 9+10: Buoyancy-driven flow, estuarine circulation, river plume, Tidal mixing, internal waves, coastal fronts and biological significance Lecture 9+10: Buoyancy-driven flow, estuarine circulation, river plume, Tidal mixing, internal waves, coastal fronts and biological significance Thermohaline circulation: the movement of water that takes

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

Air-Sea Coupling in an Eastern Boundary Current Region

Air-Sea Coupling in an Eastern Boundary Current Region Air-Sea Coupling in an Eastern Boundary Current Region Eric D. Skyllingstad CEOAS, Oregon State University Roger M. Samelson D. B. Chelton, A. Kurapov CEOAS, Oregon State University N. Perlin RSMAS, University

More information

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q. 1 Q. 9 carry one mark each & Q. 10 Q. 22 carry two marks each. Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q.2 The pair of variables that

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Eddy-mixed layer interactions in the ocean

Eddy-mixed layer interactions in the ocean Eddy-mixed layer interactions in the ocean Raffaele Ferrari 1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA Numerical models have become essential tools in the study and prediction of

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 5, 2012; 50 minutes Answer key

SIO 210 Introduction to Physical Oceanography Mid-term examination November 5, 2012; 50 minutes Answer key SIO 210 Introduction to Physical Oceanography Mid-term examination November 5, 2012; 50 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Lateral Mixing Eric A. D Asaro APL/UW 1013 NE 40 th Str Seattle, WA 98105 phone: (206) 685-2982 fax: (206) 543-6785 email:

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 19 Learning objectives: develop a physical understanding of ocean thermodynamic processes 1. Ocean surface heat fluxes; 2. Mixed layer temperature

More information

What makes the Arctic hot?

What makes the Arctic hot? 1/3 total USA UN Environ Prog What makes the Arctic hot? Local communities subsistence Arctic Shipping Routes? Decreasing Ice cover Sept 2007 -ice extent (Pink=1979-2000 mean min) Source: NSIDC Oil/Gas

More information

Chapter 7: Thermodynamics

Chapter 7: Thermodynamics Chapter 7: Thermodynamics 7.1 Sea surface heat budget In Chapter 5, we have introduced the oceanic planetary boundary layer-the Ekman layer. The observed T and S in this layer are almost uniform vertically,

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

2. Can you describe how temperature and dissolved solids changes the density of water?

2. Can you describe how temperature and dissolved solids changes the density of water? Unit 4: Oceanography LT 4.1 Density: I can explain the role density plays to help form some currents. #1 Yes I can: 1. Can you explain what density is and how you calculate it? 2. Can you describe how

More information

Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea

Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern

More information

Reduction of the usable wind work on the general circulation by forced symmetric instability

Reduction of the usable wind work on the general circulation by forced symmetric instability GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044680, 2010 Reduction of the usable wind work on the general circulation by forced symmetric instability L. N. Thomas 1 and J. R. Taylor 2 Received

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

What is a system? What do the arrows in this diagram represent? What do the boxes represent? Why is it useful to study and understand systems?

What is a system? What do the arrows in this diagram represent? What do the boxes represent? Why is it useful to study and understand systems? Systems What is a system? What do the arrows in this diagram represent? What do the boxes represent? Why is it useful to study and understand systems? evaporation River & Lake water rain Atmosphere Water

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 17 Learning objectives: understand the concepts & physics of 1. Ekman layer 2. Ekman transport 3. Ekman pumping 1. The Ekman Layer Scale analyses

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key

psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key NAME: psio 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Answer key Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100

More information

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7 Atmospheric Sciences 321 Science of Climate Lecture 20: More Ocean: Chapter 7 Community Business Quiz discussion Next Topic will be Chapter 8, Natural Climate variability in the instrumental record. Homework

More information

Presentation A simple model of multiple climate regimes

Presentation A simple model of multiple climate regimes A simple model of multiple climate regimes Kerry Emanuel March 21, 2012 Overview 1. Introduction 2. Essential Climate Feedback Processes Ocean s Thermohaline Circulation, Large-Scale Circulation of the

More information

Relationship between the mixed layer depth and surface chlorophyll in the Japan/East Sea

Relationship between the mixed layer depth and surface chlorophyll in the Japan/East Sea Relationship between the mixed layer depth and surface chlorophyll in the Japan/East Sea Hyun-cheol Kim 1,2, Sinjae Yoo 1 Im Sang Oh 2 1. Korea Ocean Research & Development Institute 2.. Seoul National

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 1. The Pacific Ocean is approximately 10,000 km wide. Its upper layer (wind-driven gyre*) is approximately 1,000 m deep. Consider a west-to-east

More information

Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer

Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer NOVEMBER 2008 T H O M A S A N D F E R R A R I 2501 Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS* Department of Physical Oceanography, Woods Hole Oceanographic

More information

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes Carol Anne Clayson Dept.

More information

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity?

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Name: Date: TEACHER VERSION: Suggested Student Responses Included Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Introduction The circulation

More information

1. Oceans. Example 2. oxygen.

1. Oceans. Example 2. oxygen. 1. Oceans a) Basic facts: There are five oceans on earth, making up about 72% of the planet s surface and holding 97% of the hydrosphere. Oceans supply the planet with most of its oxygen, play a vital

More information

CHAPTER 7 Ocean Circulation Pearson Education, Inc.

CHAPTER 7 Ocean Circulation Pearson Education, Inc. CHAPTER 7 Ocean Circulation 2011 Pearson Education, Inc. Types of Ocean Currents Surface currents Deep currents 2011 Pearson Education, Inc. Measuring Surface Currents Direct methods Floating device tracked

More information

Seasonal Climate Watch January to May 2016

Seasonal Climate Watch January to May 2016 Seasonal Climate Watch January to May 2016 Date: Dec 17, 2015 1. Advisory Most models are showing the continuation of a strong El-Niño episode towards the latesummer season with the expectation to start

More information

Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea

Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea Yu LIU,Qinzheng LIU,Jie Su*, Shan BAI,Maoning Tang National Marine Environmental Forecasting Center * Ocean University

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes NAME: SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

Surface Circulation. Key Ideas

Surface Circulation. Key Ideas Surface Circulation The westerlies and the trade winds are two of the winds that drive the ocean s surface currents. 1 Key Ideas Ocean water circulates in currents. Surface currents are caused mainly by

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Springtime phytoplankton blooms in highand

Springtime phytoplankton blooms in highand Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms Amala Mahadevan, 1 Eric D Asaro, 2 * Craig Lee, 2 Mary Jane Perry 3 Springtime phytoplankton blooms photosynthetically fix

More information

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used.

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used. SIO 210 Final Exam December 10, 2003 11:30 2:30 NTV 330 No books, no notes. Calculators can be used. There are three sections to the exam: multiple choice, short answer, and long problems. Points are given

More information

OCEANIC SUBMESOSCALE SAMPLING WITH WIDE-SWATH ALTIMETRY. James C. McWilliams

OCEANIC SUBMESOSCALE SAMPLING WITH WIDE-SWATH ALTIMETRY. James C. McWilliams . OCEANIC SUBMESOSCALE SAMPLING WITH WIDE-SWATH ALTIMETRY James C. McWilliams Department of Atmospheric & Oceanic Sciences Institute of Geophysics & Planetary Physics U.C.L.A. Recall the long-standing

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Air Sea Process in the IndianI. Ocean and the Intraseasonal Oscillation. J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F.

Air Sea Process in the IndianI. Ocean and the Intraseasonal Oscillation. J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F. Air Sea Process in the IndianI Ocean and the Intraseasonal Oscillation J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F. Doblas Reyes Origin of the intraseasonal variability (ISV) of the convection?

More information

Lecture 20 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY

Lecture 20 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 20 Learning objectives: should be able to apply mixed layer temperature equation to explain observations; understand buoyancy forcing & salinity

More information

Introduction to Meteorology & Climate. Climate & Earth System Science. Atmosphere Ocean Interactions. A: Structure of the Ocean.

Introduction to Meteorology & Climate. Climate & Earth System Science. Atmosphere Ocean Interactions. A: Structure of the Ocean. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

On the horizontal variability of the upper ocean

On the horizontal variability of the upper ocean On the horizontal variability of the upper ocean Daniel L. Rudnick Scripps Institution of Oceanography, La Jolla, California Abstract. The last decade has seen a tremendous increase in the number and quality

More information

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow

Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow Abstract Influence of forced near-inertial motion on the kinetic energy of a nearly-geostrophic flow Stephanne Taylor and David Straub McGill University stephanne.taylor@mail.mcgill.ca The effect of forced

More information

Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders

Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders Craig M. Lee, Luc Rainville and Jason I.

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature.

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature. Lecture 6: The Ocean General Circulation and Climate Basic Ocean Current Systems Upper Ocean surface circulation Basic Structures Mixed Layer Wind-Driven Circulation Theories Thermohaline Circulation Ocean

More information

Homework 5: Background Ocean Water Properties & Stratification

Homework 5: Background Ocean Water Properties & Stratification 14 August 2008 MAR 110 HW5: Ocean Properties 1 Homework 5: Background Ocean Water Properties & Stratification The ocean is a heterogeneous mixture of water types - each with its own temperature, salinity,

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

Water Stratification under Wave Influence in the Gulf of Thailand

Water Stratification under Wave Influence in the Gulf of Thailand Water Stratification under Wave Influence in the Gulf of Thailand Pongdanai Pithayamaythakul and Pramot Sojisuporn Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

More information

Island Wakes in Shallow Water

Island Wakes in Shallow Water Island Wakes in Shallow Water Changming Dong, James C. McWilliams, et al Institute of Geophysics and Planetary Physics, University of California, Los Angeles 1 ABSTRACT As a follow-up work of Dong et al

More information

The Impact of Submesoscale Physics on Primary Productivity of Plankton

The Impact of Submesoscale Physics on Primary Productivity of Plankton I MA08CH17-Mahadevan ARI 11 September 2015 14:51 R E V I E W S Review in Advance first posted online on September 21, 2015. (Changes may still occur before final publication online and in print.) E N C

More information

From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales

From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales From Climate to Kolmogorov - Simulations Spanning Upper Ocean Scales Baylor Fox-Kemper (CU-Boulder & CIRES) with Peter Hamlington (CU), Sean Haney (ATOC), Adrean Webb (APPM), Scott Bachman (ATOC), Katie

More information

Atlantic Water inflow north of Svalbard; new insights from recent years

Atlantic Water inflow north of Svalbard; new insights from recent years Atlantic Water inflow north of Svalbard; new insights from recent years Arild Sundfjord, Norwegian Polar Institute, Tromsø Partners: Norwegian Polar Institute, Institute of Marine Research, Universty of

More information

Office of Naval Research Arctic Observing Activities

Office of Naval Research Arctic Observing Activities Office of Naval Research Arctic Observing Activities Jim Thomson Applied Physics Laboratory, University of Washington jthomson@apl.washington.edu Scott L. Harper, Program Officer, Arctic and Global Prediction

More information

CGSN Overview. GSN Sites CSN Sites Shore Facilities

CGSN Overview. GSN Sites CSN Sites Shore Facilities GSN Sites CSN Sites Shore Facilities CGSN Overview Coastal Pioneer Array Endurance Array Global Irminger Sea Southern Ocean Station Papa Fixed assets Surface mooring Subsurface mooring Mobile assets Ocean

More information

Waves and Weather. 1. Where do waves come from? 2. What storms produce good surfing waves? 3. Where do these storms frequently form?

Waves and Weather. 1. Where do waves come from? 2. What storms produce good surfing waves? 3. Where do these storms frequently form? Waves and Weather 1. Where do waves come from? 2. What storms produce good surfing waves? 3. Where do these storms frequently form? 4. Where are the good areas for receiving swells? Where do waves come

More information

Thermohaline and wind-driven circulation

Thermohaline and wind-driven circulation Thermohaline and wind-driven circulation Annalisa Bracco Georgia Institute of Technology School of Earth and Atmospheric Sciences NCAR ASP Colloquium: Carbon climate connections in the Earth System Tracer

More information

u g z = g T y (1) f T Margules Equation for Frontal Slope

u g z = g T y (1) f T Margules Equation for Frontal Slope Margules Equation for Frontal Slope u g z = g f T T y (1) Equation (1) is the thermal wind relation for the west wind geostrophic component of the flow. For the purposes of this derivation, we assume that

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean. Earth s Oceans & Ocean Floor Date: Feelin Blue What are Earth s five main oceans? Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

More information

lecture 11 El Niño/Southern Oscillation (ENSO) Part II

lecture 11 El Niño/Southern Oscillation (ENSO) Part II lecture 11 El Niño/Southern Oscillation (ENSO) Part II SYSTEM MEMORY: OCEANIC WAVE PROPAGATION ASYMMETRY BETWEEN THE ATMOSPHERE AND OCEAN The atmosphere and ocean are not symmetrical in their responses

More information

Atmosphere-Ocean-Land Interaction Theme. VOCALS Preparatory Workshop - NCAR, May 18-29, 2007

Atmosphere-Ocean-Land Interaction Theme. VOCALS Preparatory Workshop - NCAR, May 18-29, 2007 Atmosphere-Ocean-Land Interaction Theme VOCALS Preparatory Workshop - NCAR, May 18-29, 2007 The Southeastern Pacific Cloud-topped ABLs, with mesoscale structures Influenced by and influential on remote

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Building and removing stratification in the Arctic Ocean

Building and removing stratification in the Arctic Ocean Building and removing stratification in the Arctic Ocean John Marshall Massachusetts Institute of Technology With help and advice from: An Nguyen Patrick Heimbach Hajoon Song Christopher Klingshirn FAMOS

More information

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means?

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means? Lecture 7: Disturbance (Outline) Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies (From Weather & Climate) Flux Components (1) (2) (3) Three components contribute

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

The feature of atmospheric circulation in the extremely warm winter 2006/2007

The feature of atmospheric circulation in the extremely warm winter 2006/2007 The feature of atmospheric circulation in the extremely warm winter 2006/2007 Hiroshi Hasegawa 1, Yayoi Harada 1, Hiroshi Nakamigawa 1, Atsushi Goto 1 1 Climate Prediction Division, Japan Meteorological

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN Title CIRCULATION slide I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up

More information

Characterizing the Physical Oceanography of Coastal Waters Off Rhode Island

Characterizing the Physical Oceanography of Coastal Waters Off Rhode Island Characterizing the Physical Oceanography of Coastal Waters Off Rhode Island Dan Codiga and Dave Ullman Graduate School of Oceanography University of Rhode Island RI OSAMP Stakeholder Meeting January 5,

More information

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B Lecture 4:the observed mean circulation Atmosphere, Ocean, Climate Dynamics EESS 146B/246B The observed mean circulation Lateral structure of the surface circulation Vertical structure of the circulation

More information