Modeling and Identification of Pouring Flow Process With Tilting-Type Ladle for an Innovative Press Casting Method Using Greensand Mold

Size: px
Start display at page:

Download "Modeling and Identification of Pouring Flow Process With Tilting-Type Ladle for an Innovative Press Casting Method Using Greensand Mold"

Transcription

1 Modeling and Identification of Pouring Flow Process With Tilting-Type Ladle for an Innovative Press Casting Method Using Greensand Mold Yusuke Matsuo*, Yoshiyuki Noda*, azuhiko Terashima*, unihiro Hashimoto**, Yuji Suzuki*** * Dept. of Production Systems Engineering, Toyohashi Univ. of Technology ** Sintokogio, Ltd. *** Aisin Takaoka Co., Ltd. Abstract Recently, a new method of a press casting using greensand mold was proposed by our group as a means of ferrous casting. This method has advantages in terms of energy savings and cost because a sprue cup and runner channel are not needed. Still, it is important to pour accurately and quickly in this method. Therefore, a feedforward outflow control is presented by using a mathematical model and inverse dynamics. The outflow is measured by a loadcell under the ladle. However, the loadcell data has a large uncertainty that is caused by the tilting motion. Therefore, a compensation for the loadcell is proposed. The determination of the back-tilting time is optimized by a dichotomy method. Finally, the effectiveness of the proposed system is shown through simulation and experiment. ey words: press casting, automatic pouring, outflow volume control, batch-type pouring, modeling 210/1

2 Introduction Recently, a new innovative casting method involving a press casting using greensand mold has been proposed and studied as a ferrous casting method by our research group. This method involves a process in which molten metal in a ladle is first poured into a lower mold, and then the upper mold is pressed down on the lower mold which fills the molten metal. This method has the advantage of low cost, because a sprue cup and runner channel are not needed. The cast is produced in this method without a runner channel, which is the source of much waste in the traditional approach. As a result, the pouring temperature can be reduced. Therefore, this new casting method costs less than the traditional approach and saves energy. However, it is important when using this method to accurately and quickly pour the molten metal into the mold. Therefore, outflow control of the liquid in the automatic pouring process plays a more important role in this new casting process. On tilting-type automatic pouring machines used in industrial plants, a teaching and playback method is used. However, much time is spent on the teaching in this process, and It is difficult to achieve target outflow with accuracy because the human error. Outflow control has been largely studied by using feedback control [1],[2]. In the literature [2], the velocity curve of the ladle s tilting is switched several times during pouring by using feedback information of the molten metal. However, the appropriate velocity is determined by the trial-and-error method in the experiment. On the other hand, our group proposed a feedforward control using a fun-type ladle. A fun-type ladle is a simple shape that seems to be easy to control. A better method is required to control ladles of general shapes. In addition, our previous paper provides a method for predicting the pouring quantity that flows out after a ladle is back-tilting to cut the pouring. However, because the previous method requires real-time measuring of molten metal weight and model calculation, applying it to real Industry seems difficult. Therefore, in this paper, outflow control of the liquid in an automatic pouring process is proposed. Modeling by using the system identification method is presented, and then feedforward control using the inverse dynamics of the pouring process is achieved. The automatic pouring machine has a servo-motor to drive a ladle and a loadcell for measuring outflow. However, the outflow measured directly by the loadcell has a large level of uncertainty, because the data includes the reaction force caused by the tilting. Therefore, a compensation method [3] incorporating a mathematic model of the loadcell is being newly proposed here. Finally, the effectiveness of the proposed system is shown through simulation and experiment. It is shown that the method proposed in this 210/2

3 paper can be applied to pouring systems used in industry, and the cost of molten metal can be reduced by the proposed optimum outflow control. Automatic Pouring System The laboratory water experimental apparatus and the industry molten metal apparatus used in this paper are shown in Figs.1(a) and (b) respectively. The rotary direction of the T-axis is driven by an AC servomotor in both apparatuses. The driving force of the AC servomotor can be amplified by reducing the gear ratio. The center of the ladle s rotation shaft is placed near the ladle s center of gravity. When the ladle is rotated around the center of gravity, the tip of the ladle nozzle (or mouth) moves in a circular trajectory. It is then difficult to pour the molten metal into a mold if the pouring mouth is moved by tilting. Then, the position of the tip of the ladle nozzle is maintained during pouring by means of a synchronous control of the Y- and Z-axes for rotational motion around the T-axis of the ladle [4]. The rotation angle is measured by an encoder installed in the AC servomotor. Y-, Z- and T-axes are also driven by AC servomotors, but the driving force of each of these motors is amplified through the ball screw mechanism. Each axis can be independently moved. The weight of fluid in a ladle is measured by a loadcell located under the pouring machine. The measured values from the encoder of each axis and the loadcell are input into a computer with an A/D converter. A control input is sent to a motor driver via a D/A converter, driving the AC servomotor. In the automatic pouring machine with water used as the substance being pouring, a control instruction is carried out in the DSP through the AD/DA converter and an up/down counter. In the apparatus used industrially in plants, a control instruction is carried out in the PLC through the AD/DA converter and an up/down counter. And the apparatus used in industry is controlled by position control. So, the tilting angle obtained by the water experiment is directly applied to the industry apparatus. A Series of Models of the Total Pouring Process In this section, modeling of the pouring process is carried out using water. The kinematical viscosity of the water (293[]) and the molten metal (1673[]) are [m 2 /s] and [m 2 /s], respectively. Therefore, the fluid behavior of the water is nearly identical to that of the molten metal. Here, two models, from the input voltage u(t)[v] for the motor to the flow rate q(t) are divided into two parts. 1. A model showing the relation between the input voltage of the AC servo motor u(t) and the tilting angular velocity of the ladle ω(t) : G M 2. A model showing the relation between the tilting angular velocity of the ladle ω(t) and the flow rate into a under mold q(t) : G q 210/3

4 G M (s) and G q (s) are respectively referred to here as the motor model and flow rate model. MOTOR MODEL : The relationship between the tilting angular velocity of the ladle and the input voltage to the motor is described in the following equation: G MT ΩT MT = = (1) U 1+ T s T, where ω (t)[rad/s] is the tilting angular velocity, u(t)[v] is the input voltage for the T-axis, MT [rad/(sv)] is the gain of the motor, and T MT [s] is the time constant of the motor. Further, the motor model of the X-, Y-, and Z-axis is described in the same form as in Eq. (1). FLOW RATE MODEL : In this paper, the ladle shown in Fig.2 is used for the pouring. Here, with regard to the fun-type ladle, controlling the tip of the ladle nozzle invariably, the surface area of the liquid in the ladle is constant while the ladle is tilted. Therefore, the pouring flow rate can be considered to be constant when a ladle is rotated at a constant angular velocity. Hence, the flow rate model can be described by a first-order transfer function as follows. G qf MT Q( s) qf = = (2) Ω 1+ T s T, where qf [m 3 /rad] and T qf [s] are the gain and the time constant of the funtype ladle s flow rate model, respectively. However, the surface area of the liquid in a practical ladle is not constant while the ladle is tilted. Therefore, the ladle s flow rate model can be expressed by varying the gain and the time constant of the fun-type ladle s flow model in correspondence with the tilting angle. The ladle s flow rate model can be described by the Linear Parameter Varying function (LPV model) as follows. qf Q( s) q ( θ ) Gq = = (3) Ω( s) 1+ T ( θ ) s, where q (θ )[m 3 /rad] and T q (θ ) are the gain and the time constant of the flow rate model, respectively. Derivation System of Feedforward Input for Outflow Control q 210/4

5 In this paper, a feedforward system is proposed as shown in Fig.3. The inverse model is used for deriving the control input. The inverse model is shown in Eqs.(4) and (5). 1 TM d u( t) = ω ref ( t) + ω ref ( t) M M dt (4) 1 Tqf ( θ ) d ω ref ( t) = qref ( t) + qref ( t) ( θ ) ( θ ) dt (5) qf In the outflow control, the flow cuts the pouring flow through ladle backtilting in order to obtain the target outflow. However, during the back-tilting, the pouring flow continues initially. Therefore, we must predict the flow quantity during back-tilting. We call this flow quantity the after-flow quantity. Thus, we must consider the after-flow quantity as we begin the back-tilting. In this paper, the optimum back-tilting timing is detected by a dichotomy method [5] that is a general numerical solution method for algebraic equations. A block diagram of the outflow control system is shown in Fig.4. In the simulation, the control input is obtained by a dichotomy method, and outflow control is realized by giving the control input to the apparatus by means of feedforward control. Flow cutting is implemented to switch from forward-tilting to back-tilting at a given time t s [s]. The outflow when the flow is cut at t s is denoted by f(t s ) [m 3 ]. Here, Eq.(6) is solved by a dichotomy method, where f ref [m 3 ] is the target outflow. qf f f ( t ) = 0 (6) ref Compensation System of Load Cell The gain q (θ ) and time constant T q (θ ) of the flow rate model as shown in Eq.(3) are obtained by experiment. The parameters are identified using the loadcell data. However, there is a problem in the loadcell data, as they are influenced by the acceleration in the ladle s up and down movement under synchronous control as shown in Fig.5. Therefore, the exact weight of the ladle cannot be measured. Therefore, in this paper a system of compensation for the loadcell system is proposed, as shown in Fig.6. The exact weight of the molten metal in a ladle is obtained by subtracting the output of the empty ladle model from that of the original loadcell. Here, the relationship between the Z-axis acceleration and the load cell output is described by the second order transfer function in the following equation. s 2 nl Fl lω Gl = = (7) 2 A s + 2ζ ω s + ω z l nl 2 nl 210/5

6 , where l [kg s 2 /m], ω nl [rad/s] and ζ l [-] are the gain, angular velocity and dumping rate of load cell model, respectively. The parameters are identified using a simplex method [6]. The evaluation function is described in Eq.(8). J = t 2 ( f l0 ( τ ) fl ( τ )) dτ (8) 0, where f l0 (t)[m 3 ] represents the experimental data of the loadcell when the empty ladle is moved. On the other hand, where f l (t)[m 3 ] represents the output if the empty ladle mold calculated in Eq.(7), F l (s)=l[f l (t)] and L[-] denotes the operator of the Laplace transformation. Good compensation results were obtained, and they are shown in Fig.7. Flow Model Parameter Identification The flow model parameter is identified by using the proposed loadcell compensation system. The parameter identification sequence is as follows; [Procedure of parameter identification]: 1. The ladle is tilted from the given angle of the ladle to 3[deg]. 2. The outflow is measured by using a loadcell when Step 1 is effectuated. 3. The obtained data in Step 2 are approximated in the first order system. 4. The gain and time constant of the first order system are same as the gain and time constant of the LPV model in the initial tilting angle. 5. The steps from Step 1 to Step 4 are repeated at every 1[deg] interval for the operable angle (from 20 to 42 [deg] in this paper). The identification results obtained by the above sequence are shown in Fig.8. Experimental Results and Discussion In this section, the experimental results of the outflow control are shown. The simulation and experimental results of the outflow control with water, using the water experimental apparatus, are shown in Fig.9. The designed flow rate reference is shown in Fig.9. Here, as the experimental condition, the initial angle, target outflow and back-tilting motion are 26[deg], 0.783[kg] and 3[deg] for 1.5 [s], respectively. As a result, the actual outflow is 0.758[kg] for reference 0.783[kg]. The pouring error is 3.2[%]. The control input used in the water experiment is straightforwardly given to the molten metal apparatus in industry. The experimental results obtained by using the molten metal are shown in Fig.10. As the experimental condition, the initial angle, target outflow and back tilting motion are 26[deg], 5.48[kg] and 3[deg] for 1.5[s], respectively. As a result, the actual outflow is 5.74[kg] for reference 5.48[kg]. The pouring error is 4.7[%]. 210/6

7 Both the results in laboratory and industrial results are considered to be good, because the pouring error is 5[%]. This means that scrap loss is less than 5[%], and then the yield rate is 95[%]. In the traditional casting process using greensand molding, the yield rate is below 50[%]. Hence, the proposed innovative process is very effective. Conclusion This study presented a series of outflow control systems for automatic pouring machine used in an industrial plant setting. The obtained results are summarized as follows. (1) The untrue loadcell data for Z-axis motion could be compensated for by the proposed loadcell compensation system. (2) The pouring machine could pour the target outflow with an error rate of about 5[%]. (3) The system proposed in this research involves sensorless feedforward control, which can be easily applied to the existing automatic pouring machine currently used in industry. References 1. azuhiko Terashima and en ichi Yano: Supervisory Control of Pouring Proscess, 66 th World Foundry Congress, Istanbul, Turkey, 6-9 Sept, Jiro Satoh, enichi Yoshida: Automatic pouring equipment for casting "Mel Pore system, Industrial Heating, 1992, vol.29, No.4, pp19-27 in Japanese 3. Janxin Sun, Yoshihiro Fujioka, Toshiro Ono, Takeyoshi Nagao and Toru ohashi: On the Fast and High Accurate Mass Measurement under the Conditions of Floor Vibration, Journal of The Japan Society for Precision Engineering, 1998, vol. 64, No.4, pp in Japanese 4. azuhiko Terashima, en ichi Yano, Yu Sugimoto and Mitsuaki Watanabe: Position Control of Ladle Tip And Sloshing Suppression During Tilting Motion in Automatic Pouring Machine, 10 th IFAC Symposium Automation in Mining Mineral and Metal Processing (MMM2001), Japan, Tokyo, 4-6 Sept, 2001, pp Brice Carnahan, H. A. Luther, James O. Wilkes: Applied Numerical Methods, John Wiley & Sons, Inc., L. Collatz, W. Wetterling: Optimization Problem, Spring-Verlag New York, /7

8 Table Table1 Model parameter Parameter Symbol Value Motor gain (T-axis) MT [rad/(sv)] Motor gain (Y-axis) MY [m/(sv)] Motor gain (Z-axis) MZ [m/(sv)] Time constant (T-axis) T MT [s] Time constant (Y-axis) T MY [s] Time constant (Z-axis) T MZ [s] Loadcell gain l [kg s 2 /m] Loadcell angular velocity ω nl [rad/s] Loadcell dumping rate ζ l 0.28 Figures X Z T Ladle AC servo motor and encoder Ladle Z T Y Loadcell Y (a) Laboratory Automatic Pouring Machine by Using Water AC servo motor and encoder (b) Industry Automatic Pouring Machine by Using Molten Metal Fig.1 Automatic Pouring Machine Outline Nozzl Dam Fig.2 Ladle Outline Fig.3 Structure of Pouring System and Inverse System 210/8

9 Fig.4 Schematic Diagram of Outflow Control Fig.5 Effect of Synchronous Control of Ladle on the Loadcell Sensor Fig.6 Compensation System of Loadcell Fig.7 Experimental Results by Compensation System of Loadcell 210/9

10 Fig.8 Flow Model Parameter Fig.9 Experimental Results by Using Water Fig.10 Experimental Results by Using Molten Metal 210/10

CONTROL OF SELF-TRANSFER-TYPE AUTOMATIC POURING ROBOT WITH CYLINDRICAL LADLE. Yoshiyuki Noda Ken ichi Yano Kazuhiko Terashima

CONTROL OF SELF-TRANSFER-TYPE AUTOMATIC POURING ROBOT WITH CYLINDRICAL LADLE. Yoshiyuki Noda Ken ichi Yano Kazuhiko Terashima CONTROL OF SELF-TRANSFER-TYPE AUTOMATIC POURING ROBOT WITH CYLINDRICAL LADLE Yoshiyuki Noda Ken ichi Yano Kazuhiko Terashima Dept. of Production Systems Engineering, Toyohashi University of Technology,

More information

MODELING WITH CURRENT DYNAMICS AND VIBRATION CONTROL OF TWO PHASE HYBRID STEPPING MOTOR IN INTERMITTENT DRIVE

MODELING WITH CURRENT DYNAMICS AND VIBRATION CONTROL OF TWO PHASE HYBRID STEPPING MOTOR IN INTERMITTENT DRIVE MODELING WITH CURRENT DYNAMICS AND VIBRATION CONTROL OF TWO PHASE HYBRID STEPPING MOTOR IN INTERMITTENT DRIVE Ryota Mori, Yoshiyuki Noda, Takanori Miyoshi, Kazuhiko Terashima Department of Production Systems

More information

Manufacturing Equipment Control

Manufacturing Equipment Control QUESTION 1 An electric drive spindle has the following parameters: J m = 2 1 3 kg m 2, R a = 8 Ω, K t =.5 N m/a, K v =.5 V/(rad/s), K a = 2, J s = 4 1 2 kg m 2, and K s =.3. Ignore electrical dynamics

More information

Robust Liquid Container Transfer Control for Complete Sloshing Suppression

Robust Liquid Container Transfer Control for Complete Sloshing Suppression IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 3, MAY 2001 483 Robust Liquid Container Transfer Control for Complete Sloshing Suppression Ken ichi Yano, Associate Member, IEEE, and Kazuhiko

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system

Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system ACTA IMEKO ISSN: 1 870X July 017, Volume 6 Number, 65 69 Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system Yuji Yamakawa 1, Takanori Yamazaki 1

More information

A RECEDING HORIZON CONTROL FOR LIFTING PING-PONG BALL. Sumiko Majima and Keii Chou

A RECEDING HORIZON CONTROL FOR LIFTING PING-PONG BALL. Sumiko Majima and Keii Chou A RECEDING HORIZON CONROL FOR LIFING PING-PONG BALL Sumiko Majima and Keii Chou Graduate School of Systems and Information Engineering, University of sukuba, sukuba, Ibaraki, Japan Abstract: his paper

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

for Articulated Robot Arms and Its Applications

for Articulated Robot Arms and Its Applications 141 Proceedings of the International Conference on Information and Automation, December 15-18, 25, Colombo, Sri Lanka. 1 Forcefree Control with Independent Compensation for Articulated Robot Arms and Its

More information

Precision tracking control of a horizontal arm coordinate measuring machine in the presence of dynamic flexibilities

Precision tracking control of a horizontal arm coordinate measuring machine in the presence of dynamic flexibilities Int J Adv Manuf Technol 2006) 27: 960 968 DOI 10.1007/s00170-004-2292-3 ORIGINAL ARTICLE Tugrul Özel Precision tracking control of a horizontal arm coordinate measuring machine in the presence of dynamic

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1-DOF Torsion 1-DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

More information

AN EXPERIMENTAL WEB TENSION CONTROL SYSTEM: SYSTEM SET-UP

AN EXPERIMENTAL WEB TENSION CONTROL SYSTEM: SYSTEM SET-UP Advances in Production Engineering & Management 2 (2007) 4, 185-193 ISSN 1854-6250 Professional paper AN EXPERIMENTAL WEB TENSION CONTROL SYSTEM: SYSTEM SET-UP Giannoccaro, N.I. * ; Oishi, K. ** & Sakamoto,

More information

Dynamic Characteristic and Power Consumption on an Electro-Pneumatic Hybrid Positioning System

Dynamic Characteristic and Power Consumption on an Electro-Pneumatic Hybrid Positioning System 2B2-4 Proceedings of the 6th JFPS International Symposium on Fluid Power, TSUKUBA 2005 November 7-10, 2005 Dynamic Characteristic and Power Consumption on an Electro-Pneumatic Hybrid Positioning System

More information

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS Inertia Identification and Auto-Tuning of Induction Motor Using MRAS Yujie GUO *, Lipei HUANG *, Yang QIU *, Masaharu MURAMATSU ** * Department of Electrical Engineering, Tsinghua University, Beijing,

More information

Coupled Drive Apparatus Modelling and Simulation

Coupled Drive Apparatus Modelling and Simulation University of Ljubljana Faculty of Electrical Engineering Victor Centellas Gil Coupled Drive Apparatus Modelling and Simulation Diploma thesis Menthor: prof. dr. Maja Atanasijević-Kunc Ljubljana, 2015

More information

Technical Guide for Servo Motor Selection

Technical Guide for Servo Motor Selection Technical Guide for Servo otor Selection CS_Servo Selection_TG_E_3_1 Servo otor Selection Software Use your PC to select a Servo otor "otor Selection Program for Windows" o you always feel "Calculation

More information

APPLICATION OF ADAPTIVE CONTROLLER TO WATER HYDRAULIC SERVO CYLINDER

APPLICATION OF ADAPTIVE CONTROLLER TO WATER HYDRAULIC SERVO CYLINDER APPLICAION OF ADAPIVE CONROLLER O WAER HYDRAULIC SERVO CYLINDER Hidekazu AKAHASHI*, Kazuhisa IO** and Shigeru IKEO** * Division of Science and echnology, Graduate school of SOPHIA University 7- Kioicho,

More information

Servo Motor Selection Flow Chart

Servo Motor Selection Flow Chart Servo otor Selection Flow Chart START Selection Has the machine Been Selected? YES NO Explanation etermine the size, mass, coefficient of References friction, and external forces of all the moving part

More information

Mikho Mikhov Technical University of Sofia Faculty of Automatics Sofia, Bulgaria

Mikho Mikhov Technical University of Sofia Faculty of Automatics Sofia, Bulgaria Study of Electric rives for Rotary Table of Milling Machines Marin Zhilevski Technical University of Sofia Faculty of Automatics Sofia, Bulgaria mzhilevski@tu-sofia.bg Mikho Mikhov Technical University

More information

Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales

Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales Takanori YAMAZAKI*, Yoshiharu SAKURAI**, Hideo OHNISHI*** Masaaki KOBAYASHI***, Shigeru KUROSU** *Tokyo Metropolitan College of Technology,

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

Evaluation of a surface acoustic wave motor with a multi-contact-point slider

Evaluation of a surface acoustic wave motor with a multi-contact-point slider Smart Mater. Struct. 7 (1998) 305 311. Printed in the UK PII: S0964-1726(98)91230-7 Evaluation of a surface acoustic wave motor with a multi-contact-point slider Minoru Kuribayashi Kurosawa, Makoto Chiba

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Exponential Controller for Robot Manipulators

Exponential Controller for Robot Manipulators Exponential Controller for Robot Manipulators Fernando Reyes Benemérita Universidad Autónoma de Puebla Grupo de Robótica de la Facultad de Ciencias de la Electrónica Apartado Postal 542, Puebla 7200, México

More information

COILER CONTROL IN ENDLESS HOT STRIP ROLLING. T. Motomura, K. Ueda, T. Imazeki, Y. Fukui, K. Yahiro

COILER CONTROL IN ENDLESS HOT STRIP ROLLING. T. Motomura, K. Ueda, T. Imazeki, Y. Fukui, K. Yahiro COILER CONTROL IN ENDLESS HOT STRIP ROLLING T. otomura, K. Ueda, T. Imazeki, Y. Fukui, K. Yahiro East Japan Works, JFE steel corporation,, Kawasaki-cho, Chuo-ku, Chiba 6-835, Japan Abstract: JFE Steel

More information

The Design of Gating System 3. Theoretical considerations in gating design

The Design of Gating System 3. Theoretical considerations in gating design MME 345 Lecture 16 The Design of Gating System 3. Theoretical considerations in gating design Ref: [1] ASM Metal Handbook, Vol. 15: Casting, ASM International [] Taylor, Flemings, and Wulff. Foundry engineering,

More information

Selection of Servomotors and Reducer Units for a 2 DoF PKM

Selection of Servomotors and Reducer Units for a 2 DoF PKM Selection of Servomotors and Reducer Units for a 2 DoF PKM Hermes GIBERTI, Simone CINQUEMANI Mechanical Engineering Department, Politecnico di Milano, Campus Bovisa Sud, via La Masa 34, 20156, Milano,

More information

557. Radial correction controllers of gyroscopic stabilizer

557. Radial correction controllers of gyroscopic stabilizer 557. Radial correction controllers of gyroscopic stabilizer M. Sivčák 1, J. Škoda, Technical University in Liberec, Studentská, Liberec, Czech Republic e-mail: 1 michal.sivcak@tul.cz; jan.skoda@pevnosti.cz

More information

6) Motors and Encoders

6) Motors and Encoders 6) Motors and Encoders Electric motors are by far the most common component to supply mechanical input to a linear motion system. Stepper motors and servo motors are the popular choices in linear motion

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1

More information

Joint Torque Control for Backlash Compensation in Two-Inertia System

Joint Torque Control for Backlash Compensation in Two-Inertia System Joint Torque Control for Backlash Compensation in Two-Inertia System Shota Yamada*, Hiroshi Fujimoto** The University of Tokyo 5--5, Kashiwanoha, Kashiwa, Chiba, 227-856 Japan Phone: +8-4-736-3873*, +8-4-736-43**

More information

Positioning Control of One Link Arm with Parametric Uncertainty using Quantitative Feedback Theory

Positioning Control of One Link Arm with Parametric Uncertainty using Quantitative Feedback Theory Memoirs of the Faculty of Engineering, Okayama University, Vol. 43, pp. 39-48, January 2009 Positioning Control of One Link Arm with Parametric Uncertainty using Quantitative Feedback Theory Takayuki KUWASHIMA,

More information

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum ISSN (Online): 347-3878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =

More information

AF SERIES AWEA MECHANTRONIC CO., LTD. High Performance Vertical Machining Center AGENT ISO 9001 ISO 14001

AF SERIES AWEA MECHANTRONIC CO., LTD. High Performance Vertical Machining Center AGENT ISO 9001 ISO 14001 AWEA MECHANTRONIC CO., LTD. HEADQUARTERS 629, Suezhetou Section, Kwanpu Rd., Wenshan Li, Hsinpu, Hsinchu, Taiwan TEL : +886-3-88-191 FAX : +886-3-88-19 Website : www.awea.com CENTRAL TAIWAN SCIENCE PARK

More information

Research on the synchronous vibration of the non-integral. mechanism under the vibration environment

Research on the synchronous vibration of the non-integral. mechanism under the vibration environment International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 3-9364 ISSN (Print): 3-9356 Volume 3 Issue ǁ December. 5 ǁ PP.-6 Research on the synchronous vibration of the non-integral

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

High Precision Control of Ball Screw Driven Stage Using Repetitive Control with Sharp Roll-off Learning Filter

High Precision Control of Ball Screw Driven Stage Using Repetitive Control with Sharp Roll-off Learning Filter High Precision Control of Ball Screw Driven Stage Using Repetitive Control with Sharp Roll-off Learning Filter Tadashi Takemura and Hiroshi Fujimoto The University of Tokyo --, Kashiwanoha, Kashiwa, Chiba,

More information

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved

More information

Wataru Ohnishi a) Student Member, Hiroshi Fujimoto Senior Member Koichi Sakata Member, Kazuhiro Suzuki Non-member Kazuaki Saiki Member.

Wataru Ohnishi a) Student Member, Hiroshi Fujimoto Senior Member Koichi Sakata Member, Kazuhiro Suzuki Non-member Kazuaki Saiki Member. IEEJ International Workshop on Sensing, Actuation, and Motion Control Proposal of Decoupling Control Method for High-Precision Stages using Multiple Actuators considering the Misalignment among the Actuation

More information

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new

More information

Hybrid Control and Switched Systems. Lecture #1 Hybrid systems are everywhere: Examples

Hybrid Control and Switched Systems. Lecture #1 Hybrid systems are everywhere: Examples Hybrid Control and Switched Systems Lecture #1 Hybrid systems are everywhere: Examples João P. Hespanha University of California at Santa Barbara Summary Examples of hybrid systems 1. Bouncing ball 2.

More information

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law, Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

More information

Decoupling Identification for Serial Two-link Robot Arm with Elastic Joints

Decoupling Identification for Serial Two-link Robot Arm with Elastic Joints Preprints of the 1th IFAC Symposium on System Identification Saint-Malo, France, July 6-8, 9 Decoupling Identification for Serial Two-link Robot Arm with Elastic Joints Junji Oaki, Shuichi Adachi Corporate

More information

Decoupling Identification with Closed-loop-controlled Elements for Two-link Arm with Elastic Joints

Decoupling Identification with Closed-loop-controlled Elements for Two-link Arm with Elastic Joints Preprints of the 9th International Symposium on Robot Control (SYROCO'9) The International Federation of Automatic Control Nagaragawa Convention Center, Gifu, Japan, September 9-2, 29 Decoupling Identification

More information

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems 2 Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems Paul Lambrechts Digital Motion Control (4K4), 23 Faculty of Mechanical Engineering, Control Systems Technology Group /42 2

More information

IIE5. Modul Electricity II. Earth s magnetic field

IIE5. Modul Electricity II. Earth s magnetic field IIE5 Modul Electricity II Earth s magnetic field In the present experiment, the earth s magnetic field is measured for different axes of rotation of induced voltage. From the amplitude and the frequency

More information

MAE106 Laboratory Exercises Lab # 6 - Vibrating systems

MAE106 Laboratory Exercises Lab # 6 - Vibrating systems MAE106 Laboratory Exercises Lab # 6 - Vibrating systems Goals Understand how the oscillations in a mechanical system affect its behavior. Parts & equipment Qty Part/Equipment 1 Seeeduino board 1 Motor

More information

666. Controllable vibro-protective system for the driver seat of a multi-axis vehicle

666. Controllable vibro-protective system for the driver seat of a multi-axis vehicle 666. Controllable vibro-protective system for the driver seat of a multi-axis vehicle A. Bubulis 1, G. Reizina, E. Korobko 3, V. Bilyk 3, V. Efremov 4 1 Kaunas University of Technology, Kęstučio 7, LT-4431,

More information

On-Line Fast Algebraic Parameter and State Estimation for a DC Motor Applied to Adaptive Control

On-Line Fast Algebraic Parameter and State Estimation for a DC Motor Applied to Adaptive Control Proceedings of the World Congress on Engineering 28 Vol II WCE 28, July 2-4, 28, London, U.K. On-Line Fast Algebraic Parameter and State Estimation for a DC Motor Applied to Adaptive Control G. Mamani,

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

Influence of the gap and the friction on trajectory reproduction accuracy in a multiaxis machine with CNC

Influence of the gap and the friction on trajectory reproduction accuracy in a multiaxis machine with CNC Influence of the gap and the friction on trajectory reproduction accuracy in a multiaxis machine with CNC O. V. Pas 1, N. A. Serkov 2 Blagonravov Institute of Engineering Science, Russian Academy of Sciences,

More information

Centripetal Force. Equipment: Centripetal Force apparatus, meter stick, ruler, timer, slotted weights, weight hanger, and analog scale.

Centripetal Force. Equipment: Centripetal Force apparatus, meter stick, ruler, timer, slotted weights, weight hanger, and analog scale. Centripetal Force Equipment: Centripetal Force apparatus, meter stick, ruler, timer, slotted weights, weight hanger, and analog scale. 1 Introduction In classical mechanics, the dynamics of a point particle

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

Centripetal and centrifugal force

Centripetal and centrifugal force Introduction In the everyday language use, the centrifugal force is often referred to as the cause of the occurring force during a uniform non-linear motion. Situated in a moving object that changes its

More information

Research Article Characterization and Modelling of LeBlanc Hydrodynamic Stabilizer: A Novel Approach for Steady and Transient State Models

Research Article Characterization and Modelling of LeBlanc Hydrodynamic Stabilizer: A Novel Approach for Steady and Transient State Models Modelling and Simulation in Engineering Volume 215, Article ID 729582, 11 pages http://dx.doi.org/1.1155/215/729582 Research Article Characterization and Modelling of LeBlanc Hydrodynamic Stabilizer: A

More information

Radial Turbine with Pitch-controlled Guide Vanes for Wave Energy Conversion

Radial Turbine with Pitch-controlled Guide Vanes for Wave Energy Conversion Radial Turbine with Pitch-controlled Guide Vanes for Wave Energy Conversion M. Takao 1, M. Suzuki, T. Setoguchi 3, B. Pereiras and F. Castro 1 Department of Mechanical Engineering, Matsue College of Technology,

More information

Decentralized PD Control for Non-uniform Motion of a Hamiltonian Hybrid System

Decentralized PD Control for Non-uniform Motion of a Hamiltonian Hybrid System International Journal of Automation and Computing 05(2), April 2008, 9-24 DOI: 0.007/s633-008-09-7 Decentralized PD Control for Non-uniform Motion of a Hamiltonian Hybrid System Mingcong Deng, Hongnian

More information

Rigid Manipulator Control

Rigid Manipulator Control Rigid Manipulator Control The control problem consists in the design of control algorithms for the robot motors, such that the TCP motion follows a specified task in the cartesian space Two types of task

More information

Mechanics. Centrifugal force Dynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about

Mechanics. Centrifugal force Dynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about Dynamics Mechanics What you can learn about Centripetal force Rotary motion Angular velocity Apparent force Principle: A body with variable mass moves on a circular path with adjustable radius and variable

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

High-Precision Control for Ball-Screw-Driven Stage in Zero-Speed Region by Explicitly Considering Elastic Deformation

High-Precision Control for Ball-Screw-Driven Stage in Zero-Speed Region by Explicitly Considering Elastic Deformation MEC-13-162 High-Precision Control for Ball-Screw-Driven Stage in Zero-Speed Region by Explicitly Considering Elastic Deformation Hongzhong Zhu, Hiroshi Fujimoto (The University of Tokyo) Abstract Ball--driven

More information

Journal of System Design and Dynamics

Journal of System Design and Dynamics Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback* Feng SUN** and Koichi OKA** ** Kochi University of Technology 185 Miyanokuchi, Tosayamada, Kami city, Kochi 782-8502, Japan

More information

Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer. Hisao Kubota* and Kouki Matsuse**

Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer. Hisao Kubota* and Kouki Matsuse** Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer Hisao Kubota* and Kouki Matsuse** Dept. of Electrical Engineering, Meiji University, Higashimit Tama-ku, Kawasaki 214,

More information

PRECISION CONTROL OF LINEAR MOTOR DRIVEN HIGH-SPEED/ACCELERATION ELECTRO-MECHANICAL SYSTEMS. Bin Yao

PRECISION CONTROL OF LINEAR MOTOR DRIVEN HIGH-SPEED/ACCELERATION ELECTRO-MECHANICAL SYSTEMS. Bin Yao PRECISION CONTROL OF LINEAR MOTOR DRIVEN HIGH-SPEED/ACCELERATION ELECTRO-MECHANICAL SYSTEMS Bin Yao Intelligent and Precision Control Laboratory School of Mechanical Engineering Purdue University West

More information

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential

More information

Modelling of Primary Frequency Control and Effect Analyses of Governing System Parameters on the Grid Frequency. Zhixin Sun

Modelling of Primary Frequency Control and Effect Analyses of Governing System Parameters on the Grid Frequency. Zhixin Sun Modelling of Primary Frequency Control and Effect Analyses of Governing System Parameters on the Grid Frequency Zhixin Sun Outline Introduction Mathematical Model of Primary Frequency Control Dynamic Test

More information

Two-Mass, Three-Spring Dynamic System Investigation Case Study

Two-Mass, Three-Spring Dynamic System Investigation Case Study Two-ass, Three-Spring Dynamic System Investigation Case Study easurements, Calculations, anufacturer's Specifications odel Parameter Identification Which Parameters to Identify? What Tests to Perform?

More information

Automatic Control Systems. -Lecture Note 15-

Automatic Control Systems. -Lecture Note 15- -Lecture Note 15- Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Cost-effective ii)

More information

Overview of motors and motion control

Overview of motors and motion control Overview of motors and motion control. Elements of a motion-control system Power upply High-level controller ow-level controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,

More information

Is the ventilation control for longitudinal system difficult?

Is the ventilation control for longitudinal system difficult? Is the ventilation control for longitudinal system difficult? Akisato MIZUNO and Tomoaki OKUBO, Kogakuin University, Tokyo, Japan ABSTRACT By adopting longitudinal ventilation system, construction costs

More information

Backlash Estimation of a Seeker Gimbal with Two-Stage Gear Reducers

Backlash Estimation of a Seeker Gimbal with Two-Stage Gear Reducers Int J Adv Manuf Technol (2003) 21:604 611 Ownership and Copyright 2003 Springer-Verlag London Limited Backlash Estimation of a Seeker Gimbal with Two-Stage Gear Reducers J. H. Baek, Y. K. Kwak and S. H.

More information

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

Laboratory Exercise 1 DC servo

Laboratory Exercise 1 DC servo Laboratory Exercise DC servo Per-Olof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,

More information

An Earth Auger as Excavator for Planetary Underground Explorer Robot. Using Peristaltic Crawling

An Earth Auger as Excavator for Planetary Underground Explorer Robot. Using Peristaltic Crawling An Earth Auger as Excavator for Planetary Underground Explorer Robot Using Peristaltic Crawling H. Omori *, T. Murakami, H. Nagai, T. Nakamura **, and T. Kubota *** * Department of Precision Mechanics,

More information

Energy. This provides a practical measure of the usefulness of a machine. The useful energy transfer in a generator can be represented by:

Energy. This provides a practical measure of the usefulness of a machine. The useful energy transfer in a generator can be represented by: Sensors: Loggers: Voltage, Current, Motion Any EASYSENSE Physics Logging time: 10 seconds 44a Efficiency of an electric generator Read Machines use energy transfers to achieve a useful job of work. No

More information

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Goal: This exercise is designed to take a real-world problem and apply the modeling and analysis concepts discussed in class. As

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test)

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test) s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 202/203 XE2 ENGINEERING CONCEPTS (Test) Time allowed: TWO hours Answer: Attempt FOUR questions only, a maximum of TWO questions

More information

Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks

Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks International Journal of Scientific and Research Publications, Volume 5, Issue 11, November 2015 168 Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks L. Vidyaratan Meetei, Benjamin

More information

Visual State Feedback Digital Control of a Linear Synchronous Motor using Generic Video-Camera Signal

Visual State Feedback Digital Control of a Linear Synchronous Motor using Generic Video-Camera Signal Visual State Feedback Digital Control of a Linear Synchronous Motor using Generic Video-Camera Signal Takafumi Koseki 1, Genevieve Patterson 1 and Takeomi Suzuki 2 1 The University of Tokyo/Department

More information

Dynamic Tests on Ring Shear Apparatus

Dynamic Tests on Ring Shear Apparatus , July 1-3, 2015, London, U.K. Dynamic Tests on Ring Shear Apparatus G. Di Massa Member IAENG, S. Pagano, M. Ramondini Abstract Ring shear apparatus are used to determine the ultimate shear strength of

More information

Motion Control of the Pressing Rollers in the Paper Tape Crimping Machine Based on Servo Control

Motion Control of the Pressing Rollers in the Paper Tape Crimping Machine Based on Servo Control Journal of Physics: Conference Series PAPER OPEN ACCESS Motion Control of the Pressing Rollers in the Paper Tape Crimping Machine Based on Servo Control To cite this article: Hui Li and Xiao Wu 08 J. Phys.:

More information

DEVELOPMENT OF A REAL-TIME HYBRID EXPERIMENTAL SYSTEM USING A SHAKING TABLE

DEVELOPMENT OF A REAL-TIME HYBRID EXPERIMENTAL SYSTEM USING A SHAKING TABLE DEVELOPMENT OF A REAL-TIME HYBRID EXPERIMENTAL SYSTEM USING A SHAKING TABLE Toshihiko HORIUCHI, Masahiko INOUE And Takao KONNO 3 SUMMARY A hybrid experimental method, in which an actuator-excited vibration

More information

Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control

Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control Yi-Cheng Huang *, Xiang-Yuan Chen Department of Mechatronics Engineering, National Changhua University of Education,

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

6 th International Conference on Trends in Agricultural Engineering 7-9 September 2016, Prague, Czech Republic

6 th International Conference on Trends in Agricultural Engineering 7-9 September 2016, Prague, Czech Republic DYNAMIC CHARACTERISTICS OF THE KARAKURI TRANSPORT TROLLEY I Mašín 1, T Riegr 2 1 Institute for Nanomaterials, Advanced Technology and Innovation, Technical University in Liberec, Czech Republic 2 Department

More information

Modeling and System Identification for a DC Servo

Modeling and System Identification for a DC Servo Modeling and System Identification for a DC Servo Kevin M. Passino and Nicanor Quijano Dept. Electrical Engineering, The Ohio State University 5 Neil Avenue, Columbus, OH 3-7 March 7, Abstract First, you

More information

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2. Force and Motion Team In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Input-output data sets for development and benchmarking in nonlinear identification

Input-output data sets for development and benchmarking in nonlinear identification Input-output data sets for development and benchmarking in nonlinear identification Torbjörn Wigren Division of Systems and Control, Department of Information Technology, Uppsala University, PO box 337,

More information

CROP. P r o g r e s s Presentation. Project in Mechanical & System Design Engineering. Prof. Jungsu Kim. Jinwoo Lee Jaeshin Kang Dooki Ahn Tackwan Woo

CROP. P r o g r e s s Presentation. Project in Mechanical & System Design Engineering. Prof. Jungsu Kim. Jinwoo Lee Jaeshin Kang Dooki Ahn Tackwan Woo CROP P r o g r e s s Presentation Project in Mechanical & System Design Engineering Prof. Jungsu Kim Jinwoo Lee Jaeshin Kang Dooki Ahn Tackwan Woo Index 1. CROP Overview 2. Prototype 3. Detailed Design

More information

Dragline Bucket and Rigging Dynamics

Dragline Bucket and Rigging Dynamics Dragline Bucket and Rigging Dynamics Dr Peter Ridley and Rindert Algra Dr Peter Corke School of Mechanical Engineering, CSIRO Manufacturing Science and Technology, Queensland University of Technology,

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Eleven Instantaneous Centre and General Motion Part A (Introductory) 1. (Problem 5/93 from Meriam and Kraige - Dynamics) For the instant

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information