Word Representations via Gaussian Embedding. Luke Vilnis Andrew McCallum University of Massachusetts Amherst

Size: px
Start display at page:

Download "Word Representations via Gaussian Embedding. Luke Vilnis Andrew McCallum University of Massachusetts Amherst"

Transcription

1 Word Representations via Gaussian Embedding Luke Vilnis Andrew McCallum University of Massachusetts Amherst

2 Vector word embeddings teacher chef astronaut composer person Low-Level NLP [Turian et al. 2010, Collobert et al. 2011] Named Entity Extraction [Passos et al. 2014] Machine Translation [Kalchbrenner & Blunsom 2013, Cho et al. 2014] Question Answering [Weston et al. 2015] road street lane boulevard

3 Vector word embeddings What s missing? - Breadth - Asymmetry composer person

4 Gaussian word embeddings Advantages - Breadth - Asymmetry famous person Bach composer

5 Gaussian word embeddings Advantages - Breadth - Asymmetry for each word i v i

6 Gaussian word embeddings Advantages - Breadth - Asymmetry for each word i N (x; µ i, i )

7 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry for each word i N (x; µ i, i )

8 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry for each word i N (x; µ i, i ) / log det( i ) (µ i x) > 1 i (µ i x)

9 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry for each word i { Mahalanobis distance measured by Σi logarithmic penalty on volume due to normalization { N (x; µ i, i ) / log det( i ) (µ i x) > 1 i (µ i x)

10 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry: KL-divergence for each word i { Mahalanobis distance measured by Σi logarithmic penalty on volume due to normalization { N (x; µ i, i ) / log det( i ) (µ i x) > 1 i (µ i x)

11 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry: KL-divergence KL(N i kn j ) = Z x N (x; µ i, i ) log N (x; µ i, i ) N (x; µ j, j ) dx

12 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry: KL-divergence KL(N i kn j ) = Z x N (x; µ i, i ) log N (x; µ i, i ) N (x; µ j, j ) dx [Wikipedia]

13 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry: KL-divergence KL(N i kn j ) / tr( 1 i j ) (µ i µ j ) > 1 i (µ i µ j ) log det( i) det( j )

14 Gaussian word embeddings Advantages - Breadth: covariance matrix - Asymmetry: KL-divergence KL(N i kn j ) / tr( 1 i j ) (µ i µ j ) > 1 i (µ i µ j ) log det( i) det( j) { { { directions of variance should be aligned, i should be large and j small distance between means is small as measured by i logarithmic penalty on volume due to normalization

15 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque

16 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque E(word i, word j ) = hv i,v j i

17 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque (composer, musician) E(word i, word j ) = hv i,v j i

18 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque random (composer, musician) (composer, dictionary ) word E(word i, word j ) = hv i,v j i

19 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque (composer, musician) (composer, banana) E(word i, word j ) = hv i,v j i

20 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque E(composer, musician) > E(composer, banana) E(word i, word j ) = hv i,v j i

21 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque E(composer, musician) > E(composer, banana) E(word i, word j ) = X k v (k) v (k) i j

22 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque E(composer, musician) > E(composer, banana) E(word i, word j ) = Z k v i (k)v j (k)dk

23 Learning vector embeddings e.g. [Mikolov et al. 2013] German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = Z k > E(composer, banana) v i (k)v j (k)dk

24 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = Z k > E(composer, banana) v i (k)v j (k)dk

25 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = [PPK, Jebara et al. 2003] Z x > E(composer, banana) N (x; µ i, i )N (x; µ j, j )dx

26 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = [PPK, Jebara et al. 2003] Z x > E(composer, banana) N (x; µ i, i )N (x; µ j, j )dx = N (0; µ i µ j, i + j )

27 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = [PPK, Jebara et al. 2003] Z x > E(composer, banana) N (x; µ i, i )N (x; µ j, j )dx = N (0; µ i µ j, i + j ) / log det( i + j ) (µ i µ j ) > ( i + j ) 1 (µ i µ j )

28 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = [PPK, Jebara et al. 2003] Z x > E(composer, banana) N (x; µ i, i )N (x; µ j, j )dx = N (0; µ i µ j, i + j ) / log det( i + j ) (µ i µ j ) > ( i + j ) 1 (µ i µ j ) { log-volume of ellipse { Mahalanobis distance between means

29 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) E(word i, word j ) = [PPK, Jebara et al. 2003] Z x > E(composer, banana) N (x; µ i, i )N (x; µ j, j )dx = N (0; µ i µ j, i + j )

30 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) > E(composer, banana) Loss PPK (w, c pos,c neg )= max(0,m E PPK (w, c pos )+E PPK (w, c neg ))

31 Learning Gaussian embeddings German musician and composer of the Baroque E(composer, musician) > E(composer, banana) Loss KL (w, c pos,c neg ) = max(0,m+ KL(c pos kw) KL(c neg kw)) (asymmetric supervision)

32 Related work Asymmetric, sparse, distributional [Baroni et al. 2012] Dense can be better [Baroni et al. 2014] Symmetric, dense [Bengio et al. 2003, Mikolov et al. 2013, many others] Bayesian matrix factorization [Salakhutdinov & Mnih 2008] (Mixture) density networks [Bishop 1994] Gaussian process neural nets [Damianou & Lawrence 2013]

33 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

34 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

35 Synthetic hierarchy Train data Objective child ` parent parent parent child child KL(v child kv parent )

36 Synthetic hierarchy Train data Learned model KL objective accurately learns all containments

37 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

38 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

39 Entailment Binary labeled dataset of entailment pairs [Baroni et al. 2012] adrenaline is-a neurotransmitter archbishop is-a clergyman horse is-a mammal pizza is-a food (+)

40 Entailment Binary labeled dataset of entailment pairs [Baroni et al. 2012] adrenaline is-a neurotransmitter archbishop is-a clergyman horse is-a mammal pizza is-a food (+) aircrew is-not-a playlist bamboo is-not-a bear (-) no relation

41 Entailment Binary labeled dataset of entailment pairs [Baroni et al. 2012] adrenaline is-a neurotransmitter archbishop is-a clergyman horse is-a mammal pizza is-a food (+) aircrew is-not-a playlist bamboo is-not-a bear (-) no relation food is-not-a pizza molecule is-not-a carbohydrate gathering is-not-a seminar (-) reversed

42 Entailment Model: diagonal (D) and spherical (S) variances Train: ~1b tokens Wikipedia + 3b tokens of newswire Evaluate: optimal F1 operating point, average precision

43 Entailment Model: diagonal (D) and spherical (S) variances Train: ~1b tokens Wikipedia + 3b tokens of newswire Evaluate: optimal F1 operating point, average precision

44 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

45 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

46 Symmetric word similarity Word similarity tasks (e.g. WordSim-353) (money, bank, 8.5) (psychology, Freud, 8.21) (media, radio, 7.42) (drug, abuse, 6.85) (Mars, scientist, 5.63) (cup, object, 3.69) (professor, cucumber, 0.31) Evaluate: Spearman s ρ

47 Symmetric word similarity skip-gram sphere, μ sphere, μ, Σ diagonal, μ diagonal, μ, Σ

48 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

49 Experimental results Synthetic hierarchies Entailment Word similarity tasks Scientific key phrase finding

50 physics Scientific key-phrase finding computational fluid dynamics Navier Stokes equations partial differential equations

51 Scientific key-phrase finding What makes a good key-phrase? - High frequency - Predictive

52 Scientific key-phrase finding What makes a good key-phrase? - High frequency - Predictive Phrases Frequent? Predictive? conventional wisdom suggests pre-defined categories paper describes experimental results EXPTIME complete autocorrelation function operational semantics regular languages No Yes No Yes No No Yes Yes

53 Scientific key-phrase finding Sample key-phrases from scientific paper abstracts: frequent, predictive rare, uninformative linear matrix inequality satisfiability problem encryption schemes sparse matrix vector spaces exploratory study theoretical basis major contributions hot topic

54 Thank you! Conclusion Introduced Gaussian word embeddings: - Capture asymmetry - Capture broadness of meaning and uncertainty - Expressive, dense, distributed representation - Scalable learning 4 billion tokens, 1 core, 8 hours Future work: - Multi-peaked, unnormalized, non-gaussian - Relations, documents, semantic frames - Non-NLP domains for density representations

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Review: Neural Networks One-layer multi-layer perceptron architecture, NN MLP1 (x) = g(xw 1 + b 1 )W 2 + b 2 xw + b; perceptron x is the

More information

arxiv: v2 [cs.cl] 1 Jan 2019

arxiv: v2 [cs.cl] 1 Jan 2019 Variational Self-attention Model for Sentence Representation arxiv:1812.11559v2 [cs.cl] 1 Jan 2019 Qiang Zhang 1, Shangsong Liang 2, Emine Yilmaz 1 1 University College London, London, United Kingdom 2

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Word vectors Many slides borrowed from Richard Socher and Chris Manning Lecture plan Word representations Word vectors (embeddings) skip-gram algorithm Relation to matrix factorization

More information

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018 1-61 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Regularization Matt Gormley Lecture 1 Feb. 19, 218 1 Reminders Homework 4: Logistic

More information

arxiv: v1 [cs.cl] 19 Nov 2015

arxiv: v1 [cs.cl] 19 Nov 2015 Gaussian Mixture Embeddings for Multiple Word Prototypes Xinchi Chen, Xipeng Qiu, Jingxiang Jiang, Xuaning Huang Shanghai Key Laboratory of Intelligent Information Processing, Fudan University School of

More information

1 Inference in Dirichlet Mixture Models Introduction Problem Statement Dirichlet Process Mixtures... 3

1 Inference in Dirichlet Mixture Models Introduction Problem Statement Dirichlet Process Mixtures... 3 Contents 1 Inference in Dirichlet Mixture Models 2 1.1 Introduction....................................... 2 1.2 Problem Statement................................... 2 1.3 Dirichlet Process Mixtures...............................

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Diversity-Promoting Bayesian Learning of Latent Variable Models

Diversity-Promoting Bayesian Learning of Latent Variable Models Diversity-Promoting Bayesian Learning of Latent Variable Models Pengtao Xie 1, Jun Zhu 1,2 and Eric Xing 1 1 Machine Learning Department, Carnegie Mellon University 2 Department of Computer Science and

More information

GloVe: Global Vectors for Word Representation 1

GloVe: Global Vectors for Word Representation 1 GloVe: Global Vectors for Word Representation 1 J. Pennington, R. Socher, C.D. Manning M. Korniyenko, S. Samson Deep Learning for NLP, 13 Jun 2017 1 https://nlp.stanford.edu/projects/glove/ Outline Background

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Deep Learning. Ali Ghodsi. University of Waterloo

Deep Learning. Ali Ghodsi. University of Waterloo University of Waterloo Language Models A language model computes a probability for a sequence of words: P(w 1,..., w T ) Useful for machine translation Word ordering: p (the cat is small) > p (small the

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

Deep Learning Recurrent Networks 2/28/2018

Deep Learning Recurrent Networks 2/28/2018 Deep Learning Recurrent Networks /8/8 Recap: Recurrent networks can be incredibly effective Story so far Y(t+) Stock vector X(t) X(t+) X(t+) X(t+) X(t+) X(t+5) X(t+) X(t+7) Iterated structures are good

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Neural Networks Language Models

Neural Networks Language Models Neural Networks Language Models Philipp Koehn 10 October 2017 N-Gram Backoff Language Model 1 Previously, we approximated... by applying the chain rule p(w ) = p(w 1, w 2,..., w n ) p(w ) = i p(w i w 1,...,

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

Neural Word Embeddings from Scratch

Neural Word Embeddings from Scratch Neural Word Embeddings from Scratch Xin Li 12 1 NLP Center Tencent AI Lab 2 Dept. of System Engineering & Engineering Management The Chinese University of Hong Kong 2018-04-09 Xin Li Neural Word Embeddings

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 6 Standard Kernels Unusual Input Spaces for Kernels String Kernels Probabilistic Kernels Fisher Kernels Probability Product Kernels

More information

Multi-View Learning of Word Embeddings via CCA

Multi-View Learning of Word Embeddings via CCA Multi-View Learning of Word Embeddings via CCA Paramveer S. Dhillon Dean Foster Lyle Ungar Computer & Information Science Statistics Computer & Information Science University of Pennsylvania, Philadelphia,

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP CS224N Christopher Manning (Many slides borrowed from ACL 2012/NAACL 2013 Tutorials by me, Richard Socher and Yoshua Bengio) Machine Learning and NLP NER WordNet Usually machine learning

More information

Modeling Topics and Knowledge Bases with Embeddings

Modeling Topics and Knowledge Bases with Embeddings Modeling Topics and Knowledge Bases with Embeddings Dat Quoc Nguyen and Mark Johnson Department of Computing Macquarie University Sydney, Australia December 2016 1 / 15 Vector representations/embeddings

More information

DISTRIBUTIONAL SEMANTICS

DISTRIBUTIONAL SEMANTICS COMP90042 LECTURE 4 DISTRIBUTIONAL SEMANTICS LEXICAL DATABASES - PROBLEMS Manually constructed Expensive Human annotation can be biased and noisy Language is dynamic New words: slangs, terminology, etc.

More information

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1)

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1) 11/3/15 Machine Learning and NLP Deep Learning for NLP Usually machine learning works well because of human-designed representations and input features CS224N WordNet SRL Parser Machine learning becomes

More information

Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations

Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations : DAG-Structured Mixture Models of Topic Correlations Wei Li and Andrew McCallum University of Massachusetts, Dept. of Computer Science {weili,mccallum}@cs.umass.edu Abstract Latent Dirichlet allocation

More information

A fast and simple algorithm for training neural probabilistic language models

A fast and simple algorithm for training neural probabilistic language models A fast and simple algorithm for training neural probabilistic language models Andriy Mnih Joint work with Yee Whye Teh Gatsby Computational Neuroscience Unit University College London 25 January 2013 1

More information

word2vec Parameter Learning Explained

word2vec Parameter Learning Explained word2vec Parameter Learning Explained Xin Rong ronxin@umich.edu Abstract The word2vec model and application by Mikolov et al. have attracted a great amount of attention in recent two years. The vector

More information

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown

Homework 3 COMS 4705 Fall 2017 Prof. Kathleen McKeown Homework 3 COMS 4705 Fall 017 Prof. Kathleen McKeown The assignment consists of a programming part and a written part. For the programming part, make sure you have set up the development environment as

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 1 Introduction, researchy course, latest papers Going beyond simple machine learning Perception, strange spaces, images, time, behavior

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 20: Sequence labeling (April 9, 2019) David Bamman, UC Berkeley POS tagging NNP Labeling the tag that s correct for the context. IN JJ FW SYM IN JJ

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

Generative Models for Sentences

Generative Models for Sentences Generative Models for Sentences Amjad Almahairi PhD student August 16 th 2014 Outline 1. Motivation Language modelling Full Sentence Embeddings 2. Approach Bayesian Networks Variational Autoencoders (VAE)

More information

Natural Language Processing with Deep Learning CS224N/Ling284. Richard Socher Lecture 2: Word Vectors

Natural Language Processing with Deep Learning CS224N/Ling284. Richard Socher Lecture 2: Word Vectors Natural Language Processing with Deep Learning CS224N/Ling284 Richard Socher Lecture 2: Word Vectors Organization PSet 1 is released. Coding Session 1/22: (Monday, PA1 due Thursday) Some of the questions

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

Unsupervised Learning with Permuted Data

Unsupervised Learning with Permuted Data Unsupervised Learning with Permuted Data Sergey Kirshner skirshne@ics.uci.edu Sridevi Parise sparise@ics.uci.edu Padhraic Smyth smyth@ics.uci.edu School of Information and Computer Science, University

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Bayesian Paragraph Vectors

Bayesian Paragraph Vectors Bayesian Paragraph Vectors Geng Ji 1, Robert Bamler 2, Erik B. Sudderth 1, and Stephan Mandt 2 1 Department of Computer Science, UC Irvine, {gji1, sudderth}@uci.edu 2 Disney Research, firstname.lastname@disneyresearch.com

More information

Statistical Learning Reading Assignments

Statistical Learning Reading Assignments Statistical Learning Reading Assignments S. Gong et al. Dynamic Vision: From Images to Face Recognition, Imperial College Press, 2001 (Chapt. 3, hard copy). T. Evgeniou, M. Pontil, and T. Poggio, "Statistical

More information

Generating Sentences by Editing Prototypes

Generating Sentences by Editing Prototypes Generating Sentences by Editing Prototypes K. Guu 2, T.B. Hashimoto 1,2, Y. Oren 1, P. Liang 1,2 1 Department of Computer Science Stanford University 2 Department of Statistics Stanford University arxiv

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 1 Introduction, researchy course, latest papers Going beyond simple machine learning Perception, strange spaces, images, time, behavior

More information

Prepositional Phrase Attachment over Word Embedding Products

Prepositional Phrase Attachment over Word Embedding Products Prepositional Phrase Attachment over Word Embedding Products Pranava Madhyastha (1), Xavier Carreras (2), Ariadna Quattoni (2) (1) University of Sheffield (2) Naver Labs Europe Prepositional Phrases I

More information

Deep Learning for NLP Part 2

Deep Learning for NLP Part 2 Deep Learning for NLP Part 2 CS224N Christopher Manning (Many slides borrowed from ACL 2012/NAACL 2013 Tutorials by me, Richard Socher and Yoshua Bengio) 2 Part 1.3: The Basics Word Representations The

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Slide Set 3: Detection Theory January 2018 Heikki Huttunen heikki.huttunen@tut.fi Department of Signal Processing Tampere University of Technology Detection theory

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Language Models. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Language Models. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Language Models Tobias Scheffer Stochastic Language Models A stochastic language model is a probability distribution over words.

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

arxiv: v3 [cs.cl] 30 Jan 2016

arxiv: v3 [cs.cl] 30 Jan 2016 word2vec Parameter Learning Explained Xin Rong ronxin@umich.edu arxiv:1411.2738v3 [cs.cl] 30 Jan 2016 Abstract The word2vec model and application by Mikolov et al. have attracted a great amount of attention

More information

Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations

Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng CAS Key Lab of Network Data Science and Technology Institute

More information

Latent Variable Models in NLP

Latent Variable Models in NLP Latent Variable Models in NLP Aria Haghighi with Slav Petrov, John DeNero, and Dan Klein UC Berkeley, CS Division Latent Variable Models Latent Variable Models Latent Variable Models Observed Latent Variable

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

Distance Metric Learning

Distance Metric Learning Distance Metric Learning Technical University of Munich Department of Informatics Computer Vision Group November 11, 2016 M.Sc. John Chiotellis: Distance Metric Learning 1 / 36 Outline Computer Vision

More information

Andriy Mnih and Ruslan Salakhutdinov

Andriy Mnih and Ruslan Salakhutdinov MATRIX FACTORIZATION METHODS FOR COLLABORATIVE FILTERING Andriy Mnih and Ruslan Salakhutdinov University of Toronto, Machine Learning Group 1 What is collaborative filtering? The goal of collaborative

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

Design and Implementation of Speech Recognition Systems

Design and Implementation of Speech Recognition Systems Design and Implementation of Speech Recognition Systems Spring 2013 Class 7: Templates to HMMs 13 Feb 2013 1 Recap Thus far, we have looked at dynamic programming for string matching, And derived DTW from

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Learning SVM Classifiers with Indefinite Kernels

Learning SVM Classifiers with Indefinite Kernels Learning SVM Classifiers with Indefinite Kernels Suicheng Gu and Yuhong Guo Dept. of Computer and Information Sciences Temple University Support Vector Machines (SVMs) (Kernel) SVMs are widely used in

More information

Training Restricted Boltzmann Machines on Word Observations

Training Restricted Boltzmann Machines on Word Observations In this work, we directly address the scalability issues associated with large softmax visible units in RBMs. We describe a learning rule with a computational complexity independent of the number of visible

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Machine Translation. 10: Advanced Neural Machine Translation Architectures. Rico Sennrich. University of Edinburgh. R. Sennrich MT / 26

Machine Translation. 10: Advanced Neural Machine Translation Architectures. Rico Sennrich. University of Edinburgh. R. Sennrich MT / 26 Machine Translation 10: Advanced Neural Machine Translation Architectures Rico Sennrich University of Edinburgh R. Sennrich MT 2018 10 1 / 26 Today s Lecture so far today we discussed RNNs as encoder and

More information

TUTORIAL PART 1 Unsupervised Learning

TUTORIAL PART 1 Unsupervised Learning TUTORIAL PART 1 Unsupervised Learning Marc'Aurelio Ranzato Department of Computer Science Univ. of Toronto ranzato@cs.toronto.edu Co-organizers: Honglak Lee, Yoshua Bengio, Geoff Hinton, Yann LeCun, Andrew

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Language Modeling III Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Office hours on website but no OH for Taylor until next week. Efficient Hashing Closed address

More information

CS224n: Natural Language Processing with Deep Learning 1

CS224n: Natural Language Processing with Deep Learning 1 CS224n: Natural Language Processing with Deep Learning Lecture Notes: Part I 2 Winter 27 Course Instructors: Christopher Manning, Richard Socher 2 Authors: Francois Chaubard, Michael Fang, Guillaume Genthial,

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

Seman&cs with Dense Vectors. Dorota Glowacka

Seman&cs with Dense Vectors. Dorota Glowacka Semancs with Dense Vectors Dorota Glowacka dorota.glowacka@ed.ac.uk Previous lectures: - how to represent a word as a sparse vector with dimensions corresponding to the words in the vocabulary - the values

More information

An overview of word2vec

An overview of word2vec An overview of word2vec Benjamin Wilson Berlin ML Meetup, July 8 2014 Benjamin Wilson word2vec Berlin ML Meetup 1 / 25 Outline 1 Introduction 2 Background & Significance 3 Architecture 4 CBOW word representations

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

Ruslan Salakhutdinov Joint work with Geoff Hinton. University of Toronto, Machine Learning Group

Ruslan Salakhutdinov Joint work with Geoff Hinton. University of Toronto, Machine Learning Group NON-LINEAR DIMENSIONALITY REDUCTION USING NEURAL NETORKS Ruslan Salakhutdinov Joint work with Geoff Hinton University of Toronto, Machine Learning Group Overview Document Retrieval Present layer-by-layer

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Kernel methods for comparing distributions, measuring dependence

Kernel methods for comparing distributions, measuring dependence Kernel methods for comparing distributions, measuring dependence Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Principal component analysis Given a set of M centered observations

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Lecture 6: Neural Networks for Representing Word Meaning

Lecture 6: Neural Networks for Representing Word Meaning Lecture 6: Neural Networks for Representing Word Meaning Mirella Lapata School of Informatics University of Edinburgh mlap@inf.ed.ac.uk February 7, 2017 1 / 28 Logistic Regression Input is a feature vector,

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Announcements Machine Learning Lecture 2 Eceptional number of lecture participants this year Current count: 449 participants This is very nice, but it stretches our resources to their limits Probability

More information

Sparse Forward-Backward for Fast Training of Conditional Random Fields

Sparse Forward-Backward for Fast Training of Conditional Random Fields Sparse Forward-Backward for Fast Training of Conditional Random Fields Charles Sutton, Chris Pal and Andrew McCallum University of Massachusetts Amherst Dept. Computer Science Amherst, MA 01003 {casutton,

More information

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM c 1. (Natural Language Processing; NLP) (Deep Learning) RGB IBM 135 8511 5 6 52 yutat@jp.ibm.com a) b) 2. 1 0 2 1 Bag of words White House 2 [1] 2015 4 Copyright c by ORSJ. Unauthorized reproduction of

More information

text classification 3: neural networks

text classification 3: neural networks text classification 3: neural networks CS 585, Fall 2018 Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/ Mohit Iyyer College of Information and Computer Sciences University

More information

Gaussian Mixture Distance for Information Retrieval

Gaussian Mixture Distance for Information Retrieval Gaussian Mixture Distance for Information Retrieval X.Q. Li and I. King fxqli, ingg@cse.cuh.edu.h Department of omputer Science & Engineering The hinese University of Hong Kong Shatin, New Territories,

More information

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 10: Neural Language Models. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 10: Neural Language Models Princeton University COS 495 Instructor: Yingyu Liang Natural language Processing (NLP) The processing of the human languages by computers One of

More information

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I. Greg Durrett

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I. Greg Durrett CS395T: Structured Models for NLP Lecture 19: Advanced NNs I Greg Durrett Administrivia Kyunghyun Cho (NYU) talk Friday 11am GDC 6.302 Project 3 due today! Final project out today! Proposal due in 1 week

More information

2 Related Works. 1 Introduction. 2.1 Gaussian Process Regression

2 Related Works. 1 Introduction. 2.1 Gaussian Process Regression Gaussian Process Regression with Dynamic Active Set and Its Application to Anomaly Detection Toshikazu Wada 1, Yuki Matsumura 1, Shunji Maeda 2, and Hisae Shibuya 3 1 Faculty of Systems Engineering, Wakayama

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

A Continuous-Time Model of Topic Co-occurrence Trends

A Continuous-Time Model of Topic Co-occurrence Trends A Continuous-Time Model of Topic Co-occurrence Trends Wei Li, Xuerui Wang and Andrew McCallum Department of Computer Science University of Massachusetts 140 Governors Drive Amherst, MA 01003-9264 Abstract

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Sum-Product Networks: A New Deep Architecture

Sum-Product Networks: A New Deep Architecture Sum-Product Networks: A New Deep Architecture Pedro Domingos Dept. Computer Science & Eng. University of Washington Joint work with Hoifung Poon 1 Graphical Models: Challenges Bayesian Network Markov Network

More information

Additive Regularization for Hierarchical Multimodal Topic Modeling

Additive Regularization for Hierarchical Multimodal Topic Modeling Additive Regularization for Hierarchical Multimodal Topic Modeling N. A. Chirkova 1,2, K. V. Vorontsov 3 1 JSC Antiplagiat, 2 Lomonosov Moscow State University 3 Federal Research Center Computer Science

More information