0 0'0 2S ~~ Employment category

Size: px
Start display at page:

Download "0 0'0 2S ~~ Employment category"

Transcription

1 Analyze Phase O~----, ,------,,------, ,----- N = ' V~ 00 0' i-.~ fl' ~G ~~ ~O~ ()0 -S 0 -S ~~ 0 ~~ 0 ~G d> ~0~ ~0 0 0'0 2S ~~ (j «l FIGURE 10.7 Boxplots of salary by job category. Employment category Boxplots are particularly useful for comparing the distribution of values in several groups. Figure 10.7 shows boxplots for the salaries for several different job titles. The boxplot makes it easy to see the different properties of the distributions. The location, variability, and shapes of the distributions are obvious at a glance. This ease of interpretation is something that statistics alone cannot provide. Statistical Inference This section discusses the basic concept of statistical inference. The reader should also consult the glossary in the Appendix for additional information. Inferential statistics belong to the enumerative class of statistical methods. All statements made in this section are valid only for stable processes, that is, processes in statistical control. Although most applications of Six Sigma are analytic, there are times when enumerative statistics prove useful. The term inference is defined as (1) the act or process of deriving logical conclusions from premises known or assumed to be true, or (2) the act of reasoning from factual knowledge or evidence. Inferential statistics provide information that is used in the process of inference. As can be seen from the definitions, inference involves two domains: the premises and the evidence or factual knowledge. Additionally, there are two conceptual frameworks for addressing premises questions in inference: the design-based approach and the model-based approach. As discussed by Koch and Gillings (1983), a statistical analysis whose only assumptions are random selection of units or random allocation of units to experimental conditions results in design-based inferences; or, equivalently, randomization-based inferences. The objective is to structure sampling such that the sampled population has the same

2 332 C hap te r Ten characteristics as the target population. If this is accomplished then inferences from the sample are said to have internal validity. A limitation on design-based inferences for experimental studies is that formal conclusions are restricted to the finite population of subjects that actually received treatment, that is, they lack external validity. However, if sites and subjects are selected at random from larger eligible sets, then models with random effects provide one possible way of addressing both internal and external validity considerations. One important consideration for external validity is that the sample coverage includes all relevant subpopulations; another is that treatment differences be homogeneous across subpopulations. A common application of design-based inference is the survey. Alternatively, if assumptions external to the study design are required to extend inferences to the target population, then statistical analyses based on postulated probability distributional forms (e.g., binomial, normal, etc.) or other stochastic processes yield model-based inferences. A focus of distinction between design-based and modelbased studies is the population to which the results are generalized rather than the nature of the statistical methods applied. When using a model-based approach, external validity requires substantive justification for the model's assumptions, as well as statistical evaluation of the assumptions. Statistical inference is used to provide probabilistic statements regarding a scientific inference. Science attempts to provide answers to basic questions, such as can this machine meet our requirements? Is the quality of this lot within the terms of our contract? Does the new method of processing produce better results than the old? These questions are answered by conducting an experiment, which produces data. If the data vary, then statistical inference is necessary to interpret the answers to the questions posed. A statistical model is developed to describe the probabilistic structure relating the observed data to the quantity of interest (the parameters), that is, a scientific hypothesis is formulated. Rules are applied to the data and the scientific hypothesis is either rejected or not. In formal tests of a hypothesis, there are usually two mutually exclusive and exhaustive hypotheses formulated: a null hypothesis and an alternate hypothesis. Chi-Square, Student's T, and F Distributions In addition to the distributions present earlier in the Measure phase, these three distributions are used in Six Sigma to test hypotheses, construct confidence intervals, and compute control limits. Chi-Square Many characteristics encountered in Six Sigma have normal or approximately normal distributions. It can be shown that in these instances the distribution of sample variances has the form (except for a constant) of a chi-square distribution, symbolized X2. Tables have been constructed giving abscissa values for selected ordinates of the cumulative X2 distribution. One such table is given in Appendix 4. The X2 distribution varies with the quantity u, which for our purposes is equal to the sample size minus 1. For each value of u there is a different X2 distribution. Equation (10.3) gives the pdf for the X2. (10.3)

3 336 Chapter Ten F(2,2) F F FIGURE F distributions. denominator. Appendix 5 and 6 provide values for the 1 and 5% percentage points for the F distribution. The percentages refer to the areas to the right of the values given in the tables. Figure illustrates two F distributions. Point and Interval Estimation So far, we have introduced a number of important statistics including the sample mean, the sample standard deviation, and the sample variance. These sample statistics are called point estimators because they are single values used to represent population parameters. It is also possible to construct an interval about the statistics that has a predetermined probability of including the true population parameter. This interval is called a confidence interval. Interval estimation is an alternative to point estimation that gives us a better idea of the magnitude of the sampling error. Confidence intervals can be either one-sided or two-sided. A one-sided or confidence interval places an upper or lower bound on the value of a parameter with a specified level of confidence. A twosided confidence interval places both upper and lower bounds. In almost all practical applications of enumerative statistics, including Six Sigma applications, we make inferences about populations based on data from samples. In this chapter, we have talked about sample averages and standard deviations; we have even used these numbers to make statements about future performance, such as long term

4 Analyze Phase 337 yields or potential failures. A problem arises that is of considerable practical importance: any estimate that is based on a sample has some amount of sampling error. This is true even though the sample estimates are the "best estimates" in the sense that they are (usually) unbiased estimators of the population parameters. Estimates of the Mean For random samples with replacement, the sampling distribution of X has a mean /.1!..nd a standard deviation equal to (J/.};;. For large samples the sampling distribution of X is approximately normal and normal tables can be used to find the probability that a sample mean will be within a given distance of /.1. For example, in 95% of the samples we will observe..e mean within t..1.96(j/.};; of /.1. In other words, in 95% of the samples the interval from X -1.96(J/.};; to X (J/.};; will include /.1. This interval is called a "95% confidence interval for estimating /.1." It is usually shown using inequality symbols: X -1.96(J/.};; < /.1X (J/.};; The factor 1.96 is the Z value obtained from the normal in the Appendix 2. It corresponds to the Z value beyond which 2.5% of the population lie. Since the normal distribution is symmetric, 2.5% of the distribution lies above Z and 2.5% below -Z. The notation commonly used to denote Z values for confidence interval construction or hypothesis testing is Za/ z where 100(1 - a) is the desired confidence level in percent. For example, if we want 95% confidence, a = 0:05,100(1- a) = 95%, and ZO.025 = In hypothesis testing the value of a is known as the significance level. Example: Estimating Jl When 0' Is Known Supp~e that cr is known to be 2.8. Assume that we collect a sample of n = 16 and compute X = Using the e equation mentioned in previous section we find the 95% confidence interval for /.1 as follows: X-1.96cr/.};; < /.1 < X cr/.};; (2.8/.Ji6) < /.1 < (2.8/.Ji6) < /.1 < There is a 95% level of confidence associated with this interval. The numbers and are sometimes referred to as the confidence limits. Note that this is a two-sided confidence interval. There is a 2.5% probability that is lower than /.1 and a 2.5% probability that is greater than /.1. If we were only interested in, say, the probability that /.1 were greater than 14.33, then the onesided confidence interval would be /.1 > and the one-sided confidence level would be 97.5%. Example of Using Microsoft Excel to Calculate the Confidence Interval for the Mean When Sigma Is Known Microsoft Excel has a built-in capability to calculate confidence intervals for the mean. The dialog box in Fig shows the input. The formula result near the bottom of

5 338 C hap te r Ten ONFIDENCE Alpha 1.05 ~ ;;;; 0.05 Standard_de v 1'""12-.. s ,!)"...;;;; 2.8 Size 116 ~ = 10 = RelJJrns the confidence interval fur a popularon meajl. See Help fur the equation used. Size Is the sample Si28. Formula result = OK cancel FIGURE Example of finding the confidence interval when sigma is known using Microsoft Excel. the screen gives the interval width as To find the lower confidence limit subtract the width from the mean. To find the upper confidence limit add the width to the mean. Example: Estimating Jl When 0' Is Unknown When cr is not known and we wish to replace cr with s in calculating confidence intervals for /-l, we must replace Z a/ 2 with t a/2 and obtain the percentiles from tables for student's t distribution instead of the normal tables. Let's revisit the example above and assume that instead of knowing cr, it was estij!lcl.ted from the sample, that is, based on the sample of n = 16, we computed s = 2.8 and X = Then the 95% confidence interval becomes: x s/J;; < /-l < X s/J;; (2.8/Ji6) < /-l < (2.8/Ji6) < /-l < It can be seen that this interval is wider than the one obtained for known cr. The t a/ 2 value found for 15 df is (see Table 3 in the Appendix), which is greater than Z a/2 = 1.96 above. Example of Using Microsoft Excel to Calculate the Confidence Interval for the Mean When Sigma Is Unknown Microsoft Excel has no built-in capability to calculate confidence intervals for the mean when sigma is not known. However, it does have the ability to calculate t-values when given probabilities and degrees of freedom. This information can be entered into an equation and used to find the desired confidence limits. Figure illustrates the approach. The formula bar shows the formula for the 95% upper confidence limit for the mean in cell B7.

6 A n a I y z e P has e 339 B7 = =$B$:1 + TINV($8$4,$8$3-1)* \--..., J A $8$2/SQRT( $8$3) 1 Mean 2 sigma 3 n 4 Alpha Lower Confi dence 6 Limit Upper Confi dence 7 Limit FIGURE Example of finding the confidence interval when sigma is unknown using Microsoft Excel. Hypothesis Testing Statistical inference generally involves four steps: 1. Formulating a hypothesis about the population or "state of nature" 2. Collecting a sample of observations from the population 3. Calculating statistics based on the sample 4. Either accepting or rejecting the hypothesis based on a predetermined acceptance criterion There are two types of error associated with statistical inference: Type I error (a error)-the probability that a hypothesis that is actually true will be rejected. The value of a is known as the significance level of the test. Type II error (~ error)-the probability that a hypothesis that is actually false will be accepted. Type II errors are often plotted in what is known as an operating characteristics curve. Confidence intervals are usually constructed as part of a statistical test of hypotheses. The hypothesis test is designed to help us make an inference about the true population value at a desired level of confidence. We will look at a few examples of how hypothesis testing can be used in Six Sigma applications. Example: Hypothesis Test of Sample Mean Experiment: The nominal specification for filling a bottle with a test chemical is 30 cc. The plan is to draw a sample of n = 25 units from a stable process and, using the sample mean and standard deviation, construct a two-sided confidence interval (an interval that extends on either side of the sample average) that has a 95% probability of including the true population mean. If the interval includes 30, conclude that the lot mean is 30, otherwise conclude that the lot mean is not 30.

7 340 C hap te r Ten Result: A sample of 25 bottles was measured and the following statistics computed x = 28 cc s = 6 cc The appropriate test statistic is t, given by the formula t= X-Il = =-1.67 s/$z 6/Es Table 3 in the Appendix gives values for the t statistic at various degrees of freedom. There are n -1 degrees of freedom (d ). For our example we need the t 975 column and the row for 24 df. This gives a t value of Since the absolute value of this t value is greater than our test statistic, we fail to reject the hypothesis that the lot mean is 30 cc. Using statistical notation this is shown as: Ho:1l = 30 cc (the null hypothesis) H 1 :11 is not equal to 30 cc (the alternate hypothesis) a =.05 (Type I error or level of significance) Critical region: ::S; to::s; Test statistic: t = Since t lies inside the critical region, fail to reject H o ' and accept the hypothesis that the lot mean is 30 cc for the data at hand. Example: Hypothesis Test of Two Sample Variances The variance of machine X's output, based on a sample of n = 25 taken from a stable process, is 100. Machine Y's variance, based on a sample of 10, is 50. The manufacturing representative from the supplier of machine X contends that the result is a mere "statistical fluke." Assuming that a "statistical fluke" is something that has less than 1 chance in 100, test the hypothesis that both variances are actually equal The test statistic used to test for equality of two sample variances is the F statistic, which, for this example, is given by the equation S2 100 F = s~ = 50 = 2,numerator df = 24,denominator df = 9 Using Table 5 in the Appendix for F 99 we find that for 24 df in the numerator and 9 df in the denominator F = Based on this we conclude that the manufacturer of machine X could be right, the result could be a statistical fluke. This example demonstrates the volatile nature of the sampling error of sample variances and standard deviations. Example: Hypothesis Test of a Standard Deviation Compared to a Standard Value A machine is supposed to produce parts in the range of inch plus or minus inch. Based on this, your statistician computes that the absolute worst standard deviation tolerable is inch. In looking over your capability charts you find that the best machine in the shop has a standard deviation of , based on a sample of 25 units.

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 I. χ 2 or chi-square test Objectives: Compare how close an experimentally derived value agrees with an expected value. One method to

More information

Using SPSS for One Way Analysis of Variance

Using SPSS for One Way Analysis of Variance Using SPSS for One Way Analysis of Variance This tutorial will show you how to use SPSS version 12 to perform a one-way, between- subjects analysis of variance and related post-hoc tests. This tutorial

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE It would be very unusual for all the research one might conduct to be restricted to comparisons of only two samples. Respondents and various groups are seldom divided

More information

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11.

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11. Chapter 4 Statistics 45 CHAPTER 4 BASIC QUALITY CONCEPTS 1.0 Continuous Distributions.0 Measures of Central Tendency 3.0 Measures of Spread or Dispersion 4.0 Histograms and Frequency Distributions 5.0

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

Chapter 12: Inference about One Population

Chapter 12: Inference about One Population Chapter 1: Inference about One Population 1.1 Introduction In this chapter, we presented the statistical inference methods used when the problem objective is to describe a single population. Sections 1.

More information

STAT 515 fa 2016 Lec Statistical inference - hypothesis testing

STAT 515 fa 2016 Lec Statistical inference - hypothesis testing STAT 515 fa 2016 Lec 20-21 Statistical inference - hypothesis testing Karl B. Gregory Wednesday, Oct 12th Contents 1 Statistical inference 1 1.1 Forms of the null and alternate hypothesis for µ and p....................

More information

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 4 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 9. and 9.3 Lecture Chapter 10.1-10.3 Review Exam 6 Problem Solving

More information

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI Introduction of Data Analytics Prof. Nandan Sudarsanam and Prof. B Ravindran Department of Management Studies and Department of Computer Science and Engineering Indian Institute of Technology, Madras Module

More information

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics DETAILED CONTENTS About the Author Preface to the Instructor To the Student How to Use SPSS With This Book PART I INTRODUCTION AND DESCRIPTIVE STATISTICS 1. Introduction to Statistics 1.1 Descriptive and

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Inferential statistics

Inferential statistics Inferential statistics Inference involves making a Generalization about a larger group of individuals on the basis of a subset or sample. Ahmed-Refat-ZU Null and alternative hypotheses In hypotheses testing,

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last week: Sample, population and sampling

More information

Statistical Inference for Means

Statistical Inference for Means Statistical Inference for Means Jamie Monogan University of Georgia February 18, 2011 Jamie Monogan (UGA) Statistical Inference for Means February 18, 2011 1 / 19 Objectives By the end of this meeting,

More information

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last two weeks: Sample, population and sampling

More information

CH.9 Tests of Hypotheses for a Single Sample

CH.9 Tests of Hypotheses for a Single Sample CH.9 Tests of Hypotheses for a Single Sample Hypotheses testing Tests on the mean of a normal distributionvariance known Tests on the mean of a normal distributionvariance unknown Tests on the variance

More information

274 C hap te rei g h t

274 C hap te rei g h t 274 C hap te rei g h t Sampling Distributions n most Six Sigma projects involving enumerative statistics, we deal with samples, not populations. We now consider the estimation of certain characteristics

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

11: Comparing Group Variances. Review of Variance

11: Comparing Group Variances. Review of Variance 11: Comparing Group Variances Review of Variance Parametric measures of variability are often based on sum of squares (SS) around e mean: (1) For e data set {3, 4, 5, 8}, = 5 and SS = (3 5) + (4 5) + (5

More information

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers Statistical Inference Greg C Elvers 1 Why Use Statistical Inference Whenever we collect data, we want our results to be true for the entire population and not just the sample that we used But our sample

More information

Chap The McGraw-Hill Companies, Inc. All rights reserved.

Chap The McGraw-Hill Companies, Inc. All rights reserved. 11 pter11 Chap Analysis of Variance Overview of ANOVA Multiple Comparisons Tests for Homogeneity of Variances Two-Factor ANOVA Without Replication General Linear Model Experimental Design: An Overview

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

LOOKING FOR RELATIONSHIPS

LOOKING FOR RELATIONSHIPS LOOKING FOR RELATIONSHIPS One of most common types of investigation we do is to look for relationships between variables. Variables may be nominal (categorical), for example looking at the effect of an

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

Quantitative Methods for Economics, Finance and Management (A86050 F86050)

Quantitative Methods for Economics, Finance and Management (A86050 F86050) Quantitative Methods for Economics, Finance and Management (A86050 F86050) Matteo Manera matteo.manera@unimib.it Marzio Galeotti marzio.galeotti@unimi.it 1 This material is taken and adapted from Guy Judge

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

Chapter 5 Confidence Intervals

Chapter 5 Confidence Intervals Chapter 5 Confidence Intervals Confidence Intervals about a Population Mean, σ, Known Abbas Motamedi Tennessee Tech University A point estimate: a single number, calculated from a set of data, that is

More information

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Hypothesis esting Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Statistical Hypothesis: conjecture about a population parameter

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

INTRODUCTION TO ANALYSIS OF VARIANCE

INTRODUCTION TO ANALYSIS OF VARIANCE CHAPTER 22 INTRODUCTION TO ANALYSIS OF VARIANCE Chapter 18 on inferences about population means illustrated two hypothesis testing situations: for one population mean and for the difference between two

More information

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE Course Title: Probability and Statistics (MATH 80) Recommended Textbook(s): Number & Type of Questions: Probability and Statistics for Engineers

More information

Purposes of Data Analysis. Variables and Samples. Parameters and Statistics. Part 1: Probability Distributions

Purposes of Data Analysis. Variables and Samples. Parameters and Statistics. Part 1: Probability Distributions Part 1: Probability Distributions Purposes of Data Analysis True Distributions or Relationships in the Earths System Probability Distribution Normal Distribution Student-t Distribution Chi Square Distribution

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

VTU Edusat Programme 16

VTU Edusat Programme 16 VTU Edusat Programme 16 Subject : Engineering Mathematics Sub Code: 10MAT41 UNIT 8: Sampling Theory Dr. K.S.Basavarajappa Professor & Head Department of Mathematics Bapuji Institute of Engineering and

More information

Confidence Interval Estimation

Confidence Interval Estimation Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 4 5 Relationship to the 2-Tailed Hypothesis Test Relationship to the 1-Tailed Hypothesis Test 6 7 Introduction In

More information

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 1 HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 7 steps of Hypothesis Testing 1. State the hypotheses 2. Identify level of significant 3. Identify the critical values 4. Calculate test statistics 5. Compare

More information

Orthogonal, Planned and Unplanned Comparisons

Orthogonal, Planned and Unplanned Comparisons This is a chapter excerpt from Guilford Publications. Data Analysis for Experimental Design, by Richard Gonzalez Copyright 2008. 8 Orthogonal, Planned and Unplanned Comparisons 8.1 Introduction In this

More information

Chi Square Analysis M&M Statistics. Name Period Date

Chi Square Analysis M&M Statistics. Name Period Date Chi Square Analysis M&M Statistics Name Period Date Have you ever wondered why the package of M&Ms you just bought never seems to have enough of your favorite color? Or, why is it that you always seem

More information

Chapter 12: Estimation

Chapter 12: Estimation Chapter 12: Estimation Estimation In general terms, estimation uses a sample statistic as the basis for estimating the value of the corresponding population parameter. Although estimation and hypothesis

More information

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary Patrick Breheny October 13 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction Introduction What s wrong with z-tests? So far we ve (thoroughly!) discussed how to carry out hypothesis

More information

Glossary for the Triola Statistics Series

Glossary for the Triola Statistics Series Glossary for the Triola Statistics Series Absolute deviation The measure of variation equal to the sum of the deviations of each value from the mean, divided by the number of values Acceptance sampling

More information

MBA 605, Business Analytics Donald D. Conant, Ph.D. Master of Business Administration

MBA 605, Business Analytics Donald D. Conant, Ph.D. Master of Business Administration t-distribution Summary MBA 605, Business Analytics Donald D. Conant, Ph.D. Types of t-tests There are several types of t-test. In this course we discuss three. The single-sample t-test The two-sample t-test

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Chapter Eight: Assessment of Relationships 1/42

Chapter Eight: Assessment of Relationships 1/42 Chapter Eight: Assessment of Relationships 1/42 8.1 Introduction 2/42 Background This chapter deals, primarily, with two topics. The Pearson product-moment correlation coefficient. The chi-square test

More information

Quantitative Analysis and Empirical Methods

Quantitative Analysis and Empirical Methods Hypothesis testing Sciences Po, Paris, CEE / LIEPP Introduction Hypotheses Procedure of hypothesis testing Two-tailed and one-tailed tests Statistical tests with categorical variables A hypothesis A testable

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Part 1 Sampling Distributions, Point Estimates & Confidence Intervals Inferential statistics are used to draw inferences (make conclusions/judgements) about a population from a sample.

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Motivations for the ANOVA We defined the F-distribution, this is mainly used in

More information

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Understand Difference between Parametric and Nonparametric Statistical Procedures Parametric statistical procedures inferential procedures that rely

More information

Advanced Experimental Design

Advanced Experimental Design Advanced Experimental Design Topic Four Hypothesis testing (z and t tests) & Power Agenda Hypothesis testing Sampling distributions/central limit theorem z test (σ known) One sample z & Confidence intervals

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Chapter Three. Hypothesis Testing

Chapter Three. Hypothesis Testing 3.1 Introduction The final phase of analyzing data is to make a decision concerning a set of choices or options. Should I invest in stocks or bonds? Should a new product be marketed? Are my products being

More information

Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee

Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee Lecture - 04 Basic Statistics Part-1 (Refer Slide Time: 00:33)

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

Chapter 8 of Devore , H 1 :

Chapter 8 of Devore , H 1 : Chapter 8 of Devore TESTING A STATISTICAL HYPOTHESIS Maghsoodloo A statistical hypothesis is an assumption about the frequency function(s) (i.e., PDF or pdf) of one or more random variables. Stated in

More information

A SHORT INTRODUCTION TO PROBABILITY

A SHORT INTRODUCTION TO PROBABILITY A Lecture for B.Sc. 2 nd Semester, Statistics (General) A SHORT INTRODUCTION TO PROBABILITY By Dr. Ajit Goswami Dept. of Statistics MDKG College, Dibrugarh 19-Apr-18 1 Terminology The possible outcomes

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

1; (f) H 0 : = 55 db, H 1 : < 55.

1; (f) H 0 : = 55 db, H 1 : < 55. Reference: Chapter 8 of J. L. Devore s 8 th Edition By S. Maghsoodloo TESTING a STATISTICAL HYPOTHESIS A statistical hypothesis is an assumption about the frequency function(s) (i.e., pmf or pdf) of one

More information

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!! (preferred!)!!

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!!  (preferred!)!! Probability theory and inference statistics Dr. Paola Grosso SNE research group p.grosso@uva.nl paola.grosso@os3.nl (preferred) Roadmap Lecture 1: Monday Sep. 22nd Collecting data Presenting data Descriptive

More information

Black White Total Observed Expected χ 2 = (f observed f expected ) 2 f expected (83 126) 2 ( )2 126

Black White Total Observed Expected χ 2 = (f observed f expected ) 2 f expected (83 126) 2 ( )2 126 Psychology 60 Fall 2013 Practice Final Actual Exam: This Wednesday. Good luck! Name: To view the solutions, check the link at the end of the document. This practice final should supplement your studying;

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

Hypothesis testing. Data to decisions

Hypothesis testing. Data to decisions Hypothesis testing Data to decisions The idea Null hypothesis: H 0 : the DGP/population has property P Under the null, a sample statistic has a known distribution If, under that that distribution, the

More information

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Introduction When you perform statistical inference, you are primarily doing one of two things: Estimating the boundaries

More information

Basic Statistics. Resources. Statistical Tables Murdoch & Barnes. Scientific Calculator. Minitab 17.

Basic Statistics. Resources. Statistical Tables Murdoch & Barnes. Scientific Calculator. Minitab 17. Basic Statistics Resources 1160 Statistical Tables Murdoch & Barnes Scientific Calculator Minitab 17 http://www.mathsisfun.com/data/ 1 Statistics 1161 The science of collection, analysis, interpretation

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018

Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Statistical inference (estimation, hypothesis tests, confidence intervals) Oct 2018 Sampling A trait is measured on each member of a population. f(y) = propn of individuals in the popn with measurement

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #27 Estimation-I Today, I will introduce the problem of

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

1 Introduction to One-way ANOVA

1 Introduction to One-way ANOVA Review Source: Chapter 10 - Analysis of Variance (ANOVA). Example Data Source: Example problem 10.1 (dataset: exp10-1.mtw) Link to Data: http://www.auburn.edu/~carpedm/courses/stat3610/textbookdata/minitab/

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information

Background to Statistics

Background to Statistics FACT SHEET Background to Statistics Introduction Statistics include a broad range of methods for manipulating, presenting and interpreting data. Professional scientists of all kinds need to be proficient

More information

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018

Statistics Boot Camp. Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 Statistics Boot Camp Dr. Stephanie Lane Institute for Defense Analyses DATAWorks 2018 March 21, 2018 Outline of boot camp Summarizing and simplifying data Point and interval estimation Foundations of statistical

More information

Survey on Population Mean

Survey on Population Mean MATH 203 Survey on Population Mean Dr. Neal, Spring 2009 The first part of this project is on the analysis of a population mean. You will obtain data on a specific measurement X by performing a random

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc.

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc. Notes on regression analysis 1. Basics in regression analysis key concepts (actual implementation is more complicated) A. Collect data B. Plot data on graph, draw a line through the middle of the scatter

More information

Chapter 7: Statistical Inference (Two Samples)

Chapter 7: Statistical Inference (Two Samples) Chapter 7: Statistical Inference (Two Samples) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 41 Motivation of Inference on Two Samples Until now we have been mainly interested in a

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

Today: Cumulative distributions to compute confidence limits on estimates

Today: Cumulative distributions to compute confidence limits on estimates Model Based Statistics in Biology. Part II. Quantifying Uncertainty. Chapter 7.5 Confidence Limits ReCap. Part I (Chapters 1,2,3,4) ReCap Part II (Ch 5, 6) 7.0 Inferential Statistics 7.1 The Logic of Hypothesis

More information

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com 12 Simple Linear Regression Material from Devore s book (Ed 8), and Cengagebrain.com The Simple Linear Regression Model The simplest deterministic mathematical relationship between two variables x and

More information

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 12th Class 6/23/10

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 12th Class 6/23/10 Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis 12th Class 6/23/10 In God we trust, all others must use data. --Edward Deming hand out review sheet, answer, point to old test,

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 9.1-1 Chapter 9 Inferences

More information

Contents. Acknowledgments. xix

Contents. Acknowledgments. xix Table of Preface Acknowledgments page xv xix 1 Introduction 1 The Role of the Computer in Data Analysis 1 Statistics: Descriptive and Inferential 2 Variables and Constants 3 The Measurement of Variables

More information

Stat 5421 Lecture Notes Fuzzy P-Values and Confidence Intervals Charles J. Geyer March 12, Discreteness versus Hypothesis Tests

Stat 5421 Lecture Notes Fuzzy P-Values and Confidence Intervals Charles J. Geyer March 12, Discreteness versus Hypothesis Tests Stat 5421 Lecture Notes Fuzzy P-Values and Confidence Intervals Charles J. Geyer March 12, 2016 1 Discreteness versus Hypothesis Tests You cannot do an exact level α test for any α when the data are discrete.

More information