Thermodynamics part III.

Size: px
Start display at page:

Download "Thermodynamics part III."

Transcription

1 Thermodynamics part III. a.) Fenomenological thermodynamics macroscopic description b.) Molecular thermodynamics microscopic description b1.) kinetical gas theory b2.) statistical thermodynamics

2 Laws of thermodynamics

3 Basics types of thermodynamical systems 1. Isolated system: The system is thermodynamically isolated if there is no particle and energy exchange between the system itself and its neighbor (or surroundings). Icon: 2. Closed system: The system is thermodynamically closed if there is no particle exchange (but there might be energy exchange) between the system and its surroundings. Icon: 3. Opened system: The system is thermodynamically open if there might be particle and energy exchange between the system and its surroundings. Icon:

4 Work done by the outer system on its surroundings 1. Work elements: Work belongs to the change of the volume: W i = p i dv i i = 1, 2,, n n N 1. Total work done by the outer system on the gas system: n W = p i dv i 2. Using infinitesimally short divisions for definition of the total work: V 2p W = dv 3. Work done by the gas on the outer system or surroundings: i=1 V 1 W = W = V 2p dv V 1

5 Work done by the outer system on its surroundings p p 1 1. p 2 W 2. V 1 V 2 V Magnitude of the work done by the gas on the surroundings is equal to the numerical value of the area under the plot.

6 Internal energy of the ideal gas (U) Definition of the internal energy for the ideal gas is based on the energy types associated with the gas system. An ideal gas system has two types of energies: 1. Kinetical energy 2. Potential energy Consequently: Inertial energy of the ideal gas = Sum of (Kinetical energy + potential energy) Symbol: U Dimension: joule, J

7 First law of thermodynamics conservation of energy 1. Macroscopic form: U = Q + W 2. In words: The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems. The law of conservation of energy states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but cannot be created or destroyed. The first law of thermodynamics recognizes a particular form of energy called internal energy. It is often formulated by stating that the change in the internal energy of a closed system is equal to the amount of heat supplied to the system, plus the amount of work derived to the system. It is also often formulated by stating that when a closed system has a change of state, and its internal energy is changed only by work and not by heat transfer, then the net amount of work transferred is the same for all arrangements of work transfer that are possible for that change of state. Also, when two systems, open to each other for transfer of matter and energy, interact but are otherwise isolated, then the sum of their internal energies does not change. 1. Microscopic form: du = δq + δw

8 Processes for ideal gases I. Isochoric process (V=constant) V = constant dv = 0 But: dw = p dv = 0 Form of the first law of thermodynamics in this case: du = δq + δw = δq + 0 = δq But: Q = c V m T δq = c V m dt du = δq (after integration) U = Q So: U = c V m T U = c V m T

9 Processes for ideal gases II. Isobar process (p=constant) p = constant Heat element: δq = c p m dt Q = c p m T Work done by the surroundings on the gas: W = p dv Definition (enthalpy): It is a status indicator and defined by the following way: H = U + pv Form of the first law of thermodynamics: property of derivation: du = δq + δw du δw = δq du p dv = δq du + p δw = δq d U + pv = δq dh = δq dh = c p m dt H = c p m T

10 Processes for ideal gas III. Isotherm process (T=constant) T = constant Internal energy of the ideal gas: du = 0 U = 0 Form of the first law of thermodynamics: du = δq + δw = 0 or δq = δw = p dv The work done by the surroundings on the gas: W = m M RT ln V later V earlier = m M RT ln V 2 V 1 The heat: Q = W = + m M RT ln V later V earlier = + m M RT ln V 2 V 1

11 Processes for ideal gases IV. Adiabatic process (Q=0) Definition (adiabatic process): There is no heat exchange between the gas system and its surroundings: Q = 0 Form of the first law of thermodynamics: du = δq + δw or du = 0 + δw = δw For macroscopic quantities: U = W = c V m T More formulas for adiabatic processes: Ratio of the heat capacities: κ = c p c V = C p C V T V κ 1 = constant T 1 V 1 κ 1 = T 2 V 2 κ 1 Poisson formula: p V κ = constant p 1 V 1 κ = p 2 V 2 κ T κ p κ 1 = constant T 1 p κ 1 = T 2 1 κ κ p 2 κ 1

12 Processes: p=const p isobar isotherm isochoric adiabatic V=const V

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics Lecture by Dr. Hebin Li Assignment Due at 11:59pm on Sunday, December 7 HW set on Masteringphysics.com Final exam: Time: 2:15pm~4:15pm, Monday, December 8. Location:

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 19 To represent

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law TMOS 5130 Lecture 7 The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Caacity Secial Cases of the First Law Pressure-Volume Work Exanding Volume Pressure δw = f & dx δw = F ds

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

Work, heat and the first law of thermodynamics

Work, heat and the first law of thermodynamics Chapter 3 Work, heat and the first law of thermodynamics 3.1 Mechanical work Mechanical work is defined as an energy transfer to the system through the change of an external parameter. Work is the only

More information

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory Week 5. Energy Analysis of Closed Systems Objectives 1. Examine the moving boundary work or PdV work commonly encountered in reciprocating devices such as automotive engines and compressors 2. Identify

More information

dv = adx, where a is the active area of the piston. In equilibrium, the external force F is related to pressure P as

dv = adx, where a is the active area of the piston. In equilibrium, the external force F is related to pressure P as Chapter 3 Work, heat and the first law of thermodynamics 3.1 Mechanical work Mechanical work is defined as an energy transfer to the system through the change of an external parameter. Work is the only

More information

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process Outline roperty diagrams involving entropy What is entropy? T-ds relations Entropy change of substances ure substances (near wet dome) Solids and liquids Ideal gases roperty diagrams involving entropy

More information

NOTE: Only CHANGE in internal energy matters

NOTE: Only CHANGE in internal energy matters The First Law of Thermodynamics The First Law of Thermodynamics is a special case of the Law of Conservation of Energy It takes into account changes in internal energy and energy transfers by heat and

More information

ATMOS 5130 Lecture 9. Enthalpy Conservation Property The Second Law and Its Consequences Entropy

ATMOS 5130 Lecture 9. Enthalpy Conservation Property The Second Law and Its Consequences Entropy ATMOS 5130 Lecture 9 Enthalpy Conservation Property The Second Law and Its Consequences Entropy CLASS Presentation Form group of 2 students Present ~20 minute presentation (~ 10 minute each person) Focus

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

Thermodynamics 1 Lecture Note 2

Thermodynamics 1 Lecture Note 2 Thermodynamics 1 Lecture Note 2 March 20, 2015 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Physical Chemistry Chemistry is the study of Matter and

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

Internal Energy (example)

Internal Energy (example) Internal Energy (example) A bucket of water KEs: translational: rotational: vibrational: PEs: within molecules: between molecules: @ rest on the table molecular bonds dipole-dipole interactions Internal

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics September 11, 2013 The first law of thermodynamics is the conservation of energy applied to thermal systems. Here, we develop the principles of thermodynamics for a discrete

More information

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities Phys 160 Thermodynamics and Statistical Physics Lecture 4 Isothermal and Adiabatic Work Heat Capacities Heat and Work Much of thermodynamics deals with three closely - related concepts; temperature, energy,

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes I. The concept of work, expansion and additional (useful) work. II. The concept of heat. III. Definition of internal energy and its molecular interpretation. I. Different forms of the first law of thermodynamics..

More information

19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas 19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

The first law of thermodynamics continued

The first law of thermodynamics continued Lecture 7 The first law of thermodynamics continued Pre-reading: 19.5 Where we are The pressure p, volume V, and temperature T are related by an equation of state. For an ideal gas, pv = nrt = NkT For

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 46 Outline 1 Lecture 6: Electromechanical Systems

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Earlier Topics. Introduction to Cryogenic Engineering An introductory knowledge of Cryogenic Engineering.

Earlier Topics. Introduction to Cryogenic Engineering An introductory knowledge of Cryogenic Engineering. 8 1 Earlier Topics Introduction to Cryogenic Engineering An introductory knowledge of Cryogenic Engineering. Properties of Cryogenic Fluids Properties of Cryogens, T s diagram, Hydrogen, Helium. Properties

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 9 The First Law of Thermodynamics Topics for Chapter 9 I. First Law of Thermodynamics Internal energy, concept of state variables Difference between Work and Heat II. Examine various types of thermodynamic

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05

Chapter 19. First Law of Thermodynamics. Dr. Armen Kocharian, 04/04/05 Chapter 19 First Law of Thermodynamics Dr. Armen Kocharian, 04/04/05 Heat and Work Work during volume change Work in Thermodynamics Work can be done on a deformable system, such as a gas Consider a cylinder

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

AAE THERMOCHEMISTRY BASICS

AAE THERMOCHEMISTRY BASICS 5.4 THERMOCHEMISTRY BASICS Ch5 23 Energies in Chemical Reactions Enthalpy of Combustion (Reactions): Q CV H in = H reactant H out = H product REACTANTS Stoichiometric fuel-oxidizer (air) mixture at standard

More information

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics CHAPTER 2 Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics Internal Energy and the First Law of Thermodynamics Internal Energy (U) Translational energy of molecules Potential

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system:

CHEM Thermodynamics. Work. There are two ways to change the internal energy of a system: There are two ways to change the internal energy of a system: Thermodynamics Work 1. By flow of heat, q Heat is the transfer of thermal energy between and the surroundings 2. By doing work, w Work can

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Exam 1 Solutions 100 points

Exam 1 Solutions 100 points Chemistry 360 Fall 018 Dr. Jean M. Standard September 19, 018 Name KEY Exam 1 Solutions 100 points 1.) (14 points) A chunk of gold metal weighing 100.0 g at 800 K is dropped into 100.0 g of liquid water

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Lecture 7, 8 and 9 : Thermodynamic process by: Asst. lect. Karrar Al-Mansoori CONTENTS. 7) Thermodynamic process, path and cycle 2

Lecture 7, 8 and 9 : Thermodynamic process by: Asst. lect. Karrar Al-Mansoori CONTENTS. 7) Thermodynamic process, path and cycle 2 CONTENTS Topics pages 7) Thermodynamic process, path and cycle 8) Reversibility and irreversibility 4 9) Thermodynamic processes and calculation of work 5 9.: Constant pressure process or isobaric process

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

For more info visit

For more info visit Basic Terminology: Terms System Open System Closed System Isolated system Surroundings Boundary State variables State Functions Intensive properties Extensive properties Process Isothermal process Isobaric

More information

Physics 53. Thermal Physics 1. Statistics are like a bikini. What they reveal is suggestive; what they conceal is vital.

Physics 53. Thermal Physics 1. Statistics are like a bikini. What they reveal is suggestive; what they conceal is vital. Physics 53 Thermal Physics 1 Statistics are like a bikini. What they reveal is suggestive; what they conceal is vital. Arthur Koestler Overview In the following sections we will treat macroscopic systems

More information

2. Describe the second law in terms of adiabatic and reversible processes.

2. Describe the second law in terms of adiabatic and reversible processes. Lecture #3 1 Lecture 3 Objectives: Students will be able to: 1. Describe the first law in terms of heat and work interactions.. Describe the second law in terms of adiabatic and reversible processes. 3.

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 34 Outline 1 Lecture 7: Recall on Thermodynamics

More information

Classical thermodynamics

Classical thermodynamics Classical thermodynamics More about irreversibility chap. 6 Isentropic expansion of an ideal gas Sudden expansion of a gas into vacuum cf Kittel and Kroemer end of Cyclic engines cf Kittel and Kroemer

More information

Chapter 2 Thermodynamics

Chapter 2 Thermodynamics Chapter 2 Thermodynamics 2.1 Introduction The First Law of Thermodynamics is a statement of the existence of a property called Energy which is a state function that is independent of the path and, in the

More information

du = δq + δw = δq rev + δw rev = δq rev + 0

du = δq + δw = δq rev + δw rev = δq rev + 0 Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 6 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 6-6. Paraphrase: Compute

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Thermodynamic Processes and Thermochemistry

Thermodynamic Processes and Thermochemistry General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

More information

Ch. 19: The Kinetic Theory of Gases

Ch. 19: The Kinetic Theory of Gases Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on

More information

THERMODYNAMICS NOTES. These notes give a brief overview of engineering thermodynamics. They are based on the thermodynamics text by Black & Hartley.

THERMODYNAMICS NOTES. These notes give a brief overview of engineering thermodynamics. They are based on the thermodynamics text by Black & Hartley. THERMODYNAMICS NOTES These notes give a brief overview of engineering thermodynamics. They are based on the thermodynamics text by Black & Hartley. Topics covered include: concepts; properties; conservation

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

Introduction to thermodynamics

Introduction to thermodynamics Chapter 6 Introduction to thermodynamics Topics First law of thermodynamics Definitions of internal energy and work done, leading to du = dq + dw Heat capacities, C p = C V + R Reversible and irreversible

More information

Lecture 2 The First Law of Thermodynamics (Ch.1)

Lecture 2 The First Law of Thermodynamics (Ch.1) Lecture he First Law o hermodynamics (h.) Lecture - we introduced macroscopic parameters that describe the state o a thermodynamic system (including temperature), the equation o state (,,) 0, and linked

More information

6.3 The First Law of Thermodynamics

6.3 The First Law of Thermodynamics 6.3 The First Law of Thermodynamics Physics Tool box Thermodynamic System - any collection of objects that is convenient to regard as a unit, and may have the potential to exchange energy with its surroundings.

More information

CH 15. Zeroth and First Law of Thermodynamics

CH 15. Zeroth and First Law of Thermodynamics CH 15 Zeroth and First Law of Thermodynamics THERMODYNAMICS Thermodynamics Branch of Physics that is built upon the fundamental laws that heat and work obey. Central Heating Objectives: After finishing

More information

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x Lecture 7: Kinetic Theory of Gases, Part 2 Last lecture, we began to explore the behavior of an ideal gas in terms of the molecules in it We found that the pressure of the gas was: P = N 2 mv x,i! = mn

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

MCQs THERMODYNAMICS. Physics Without Fear.

MCQs THERMODYNAMICS. Physics Without Fear. MCQs THERMODYNAMICS Physics Without Fear Thermodynamics: At a glance Zeroth law of thermodynamics: Two systems A and B each in thermal equilibrium with a third system C are in thermal equilibrium with

More information

Thermodynamics 1. Thermodynamics means flow of heat. This deals with the quantitative relationship existing between heat and other forms of energy in physicochemical transformations. 2. The four laws are

More information

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics.

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics. Eng3901 - Thermodynamics I 1 1 Introduction 1.1 Thermodynamics Thermodynamics is the study of the relationships between heat transfer, work interactions, kinetic and potential energies, and the properties

More information

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases Physics week 7 Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases 3.1.1. Experimental Laws and the Equation of State 3.1.. Molecular Model of an Ideal Gas 3.. Mean Free Path 3.3. The Boltzmann Distribution

More information

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26 Conservation of Energy for a Closed System Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-, Bangladesh zahurul@me.buet.ac.bd

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Learning Objectives and Fundamental Questions

Learning Objectives and Fundamental Questions Learning Objectives and Fundamental Questions What is thermodynamics and how are its concepts used in geochemistry? How can heat and mass flux be predicted or interpreted using thermodynamic models? How

More information

3. First Law of Thermodynamics and Energy Equation

3. First Law of Thermodynamics and Energy Equation 3. First Law of Thermodynamics and Energy Equation 3. The First Law of Thermodynamics for a ontrol Mass Undergoing a ycle The first law for a control mass undergoing a cycle can be written as Q W Q net(cycle)

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

Concepts of Thermodynamics

Concepts of Thermodynamics Thermodynamics Industrial Revolution 1700-1800 Science of Thermodynamics Concepts of Thermodynamics Heavy Duty Work Horses Heat Engine Chapter 1 Relationship of Heat and Temperature to Energy and Work

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

KINETIC THEORY OF GASES AND THERMODYNAMICS SECTION I Kinetic theory of gases

KINETIC THEORY OF GASES AND THERMODYNAMICS SECTION I Kinetic theory of gases PHYSICS NOTES KINETIC THEORY OF GASES AND THERMODYNAMICS SECTION I Kinetic theory of gases Some important terms in kinetic theory of gases Macroscopic quantities: Physical quantities like pressure, temperature,

More information

Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State

Conservation of Energy for a Closed System. First Law of Thermodynamics. First Law of Thermodynamics for a Change in State Conservation of Energy for a Closed System First Law of Thermodynamics Dr. Md. Zahurul Haq rofessor Department of Mechanical Engineering Bangladesh University of Engineering & Technology BUET Dhaka-000,

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Thermodynamics General

Thermodynamics General Thermodynamics General Lecture 5 Second Law and Entropy (Read pages 587-6; 68-63 Physics for Scientists and Engineers (Third Edition) by Serway) Review: The first law of thermodynamics tells us the energy

More information

Phase Changes and Latent Heat

Phase Changes and Latent Heat Review Questions Why can a person remove a piece of dry aluminum foil from a hot oven with bare fingers without getting burned, yet will be burned doing so if the foil is wet. Equal quantities of alcohol

More information

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally.

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally. Heat and Thermodynamics. February., 0 Solution of Recitation Answer : We have given that, Initial volume of air = = 0.4 m 3 Initial pressure of air = P = 04 kpa = 04 0 3 Pa Final pressure of air = P =

More information

Thermodynamics 2013/2014, lecturer: Martin Zápotocký

Thermodynamics 2013/2014, lecturer: Martin Zápotocký Thermodynamics 2013/2014, lecturer: Martin Zápotocký 2 lectures: 1. Thermodynamic processes, heat and work, calorimetry, 1 st and 2 nd law of thermodynamics 2. Entropy, thermodynamic potentials, nonequilibrium

More information

Physics is time symmetric Nature is not

Physics is time symmetric Nature is not Fundamental theories of physics don t depend on the direction of time Newtonian Physics Electromagnetism Relativity Quantum Mechanics Physics is time symmetric Nature is not II law of thermodynamics -

More information

Measure separately. Properties D, E, F. Properties A, B, C. Thermodynamic relations

Measure separately. Properties D, E, F. Properties A, B, C. Thermodynamic relations 1 Review of Fundamentals The following brief notes cover some of the more important points which students have met in previous courses on thermodynamics. A principal objective of thermodynamics is to provide

More information

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course

Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course BASICS OF THERMODYNAMICS Vikasana - Bridge Course 2012 1 Energy: 1. Energy is an abstract physical quantity 2. It can be measured only by means of its effect Vikasana - Bridge Course 2012 2 HEAT Heat is

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

First Law of Thermodynamics Basic Concepts

First Law of Thermodynamics Basic Concepts 236 7 PHYSICAL CHEMISTRY 7 CHAPTER First Law of Thermodynamics Basic Concepts CONTENTS THERMODYNAMIC TERMS SYSTEM, BOUNDARY, SURROUNDINGS HOMOGENEOUS AND HETEROGENEOUS SYSTEMS TYPES OF THERMODYNAMIC SYSTEMS

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information